JPH05228956A - Manufacture of slender article - Google Patents

Manufacture of slender article

Info

Publication number
JPH05228956A
JPH05228956A JP4033017A JP3301792A JPH05228956A JP H05228956 A JPH05228956 A JP H05228956A JP 4033017 A JP4033017 A JP 4033017A JP 3301792 A JP3301792 A JP 3301792A JP H05228956 A JPH05228956 A JP H05228956A
Authority
JP
Japan
Prior art keywords
rib
warpage
article
main body
unit structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4033017A
Other languages
Japanese (ja)
Inventor
Hiromitsu Sakai
宏光 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP4033017A priority Critical patent/JPH05228956A/en
Publication of JPH05228956A publication Critical patent/JPH05228956A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Connector Housings Or Holding Contact Members (AREA)

Abstract

PURPOSE:To ensure the accuracy of outside dimensions by a method wherein a plastic molded form is divided into unit structure, the quantity of warpage is predicted regarding each unit structure, the quantity of warpage of unit structure is totalled regarding the whole article and balance in the asymmetric direction is measured. CONSTITUTION:When an asymmetric sectional article having a structure unit consisting of a rib 1 and a main body 2 joined in the longitudinal direction and being made of slender plastics is manufactured through injection molding, bending moment M at both ends of unit structure is obtained by using a distortion factor (n) capable of being predicted on the basis of the thickness R of the rib 1, the thickness S of the main body 2 and the height H1 of the rib 1 the elastic modulus of a plastic material and the dimensions of the rib l and the main body 2. The quantity of warpage D of unit structure is calculated from formula 5 of ML<2>/48EI (L represents the overall length of unit structure and El the sum of the product of the modulus of longitudinal elasticity and the moment of inertia of the section regarding the main body 2 and the rib 1), and the quantity of warpage regarding the whole structure of the asymmetric article is balanced including the factors of a thick-wall section, lightening, a groove, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は,プラスチックスの射
出成形により細長い非対称断面物品を製造する方法にお
ける反り対策に関するものである。この発明はプラスチ
ックス成形品一般に利用することができるが,特に正確
な寸法の細長い成形品を必要とする産業分野,例えば電
子機器用のコネクター基板等の部品製造において特に有
用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a warp countermeasure in a method of manufacturing an elongated asymmetric cross-section article by injection molding of plastics. INDUSTRIAL APPLICABILITY The present invention can be applied to plastic molded articles in general, but is particularly useful in the industrial field that requires elongated molded articles of accurate dimensions, for example, in the manufacture of parts such as connector boards for electronic devices.

【0002】[0002]

【従来の技術】本発明を代表的な利用分野である電子機
器用のコネクター(以下単にコネクターという)基板の
例について説明する。コネクターは,通常,幅や高さ
(共に5〜20mm程度)に比べて細長い(50〜200
mm程度)箱形の基体に多数の端子を埋め込んだものであ
る。ヘッダーとソケットの2タイプがあり,両者の嵌合
により端子同士を電気的に接触させて機能を発揮するた
めに,外径寸法の正確さが必要である。
2. Description of the Related Art An example of a connector (hereinafter simply referred to as a connector) substrate for electronic equipment, which is a typical field of use of the present invention, will be described. The connector is usually elongated (50 to 200 mm) compared to its width and height (both are 5 to 20 mm).
It is a box-shaped substrate with many terminals embedded in it. There are two types, a header and a socket, and it is necessary for the outer diameter dimension to be accurate in order to bring the terminals into electrical contact and to exert their functions when they are fitted together.

【0003】コネクター基体は,電気絶縁性や成形性,
価格等の要因を考慮して一般にプラスチックスの射出成
形品が用いられ,特に耐熱性,剛性,寸法安定性等の要
求を満たすものとしてエンジニアリングプラスチックス
(例:PPS,LCP,ポリアミド,PBT,PE
T),特にガラス繊維等で強化されたものの射出成形品
がよく用いられる.しかし,コネクター基体のような細
長い箱形構造をもつ物品を射出成形により得ようとする
と,しばしば成形冷却時の不等収縮により反りを生じ
る。精密機器部品として必要な外径寸法の正確さを確保
できない成形品は,不良品として取り除かれなければな
らず,検査体制の充実を必要とするだけでなく,製品歩
留りの低下,製品信頼性の低下等,多くの不都合の原因
となる。
The connector base has electrical insulation and moldability,
Injection moldings of plastics are generally used in consideration of factors such as price, and engineering plastics (eg, PPS, LCP, polyamide, PBT, PE) are used to meet the requirements for heat resistance, rigidity, and dimensional stability.
T), especially injection molded products reinforced with glass fiber etc. are often used. However, when an article having an elongated box-like structure, such as a connector substrate, is to be obtained by injection molding, warping often occurs due to unequal shrinkage during molding and cooling. Molded products that cannot ensure the accuracy of the outer diameter required for precision equipment parts must be removed as defective products, which requires not only a thorough inspection system, but also a reduction in product yield and product reliability. It causes many problems such as deterioration.

【0004】一般に,射出成形に伴なう反り(以下単に
反りという)は,断面が非対称な細長い物品について著
しく生じる。断面の非対称性は形状におけるものが最も
普通であるが,材料の性質における非対称性のある場合
も問題の本質は同様である。逆に,例えば長さを短くし
たり,非対称性をなくす等の設計変更は反り防止の有力
な手段になり得る。しかし,長さや断面外形,材質は使
用者の必要性から定められ,成形する者の都合で自由に
変えるわけにはゆかない。所要の長さ,断面外形,素材
の制約内で反りの少ない射出成形品を得る一般的な技術
手法は,従来知られていなかった。
In general, the warpage (hereinafter referred to as warpage) associated with injection molding occurs remarkably in an elongated article having an asymmetric cross section. The cross-section asymmetry is most common in shape, but the essence of the problem is similar when there is asymmetry in material properties. Conversely, design changes such as shortening the length or eliminating asymmetry can be a powerful means of preventing warpage. However, the length, cross-sectional outer shape, and material are determined by the needs of the user, and cannot be freely changed depending on the convenience of the molding person. A general technical method for obtaining an injection-molded product with less warpage within the constraints of the required length, cross-sectional outer shape, and material has not been known.

【0005】[0005]

【発明が解決しようとする課題】射出成形品は,使用
者,例えばコネクター設計者から指定された外径寸法に
基いて,強度等その他使用に必要な条件を満足する肉厚
で設計される。図1及び図2は,このような細長い射出
成形品をモデル化して表現したものの斜視図である。現
実には,図1の形状の側板を2つ並べて隔壁で結合した
構造や,図2の形状のものの両端に端板がある箱形等の
基本構造に,更に位置決めピンその他の部分が加わって
複雑な形状となるが,本発明の目的とする実用的な反り
の予測については,図のように単純化したモデルで近似
的に考えることができる。
The injection-molded article is designed with a wall thickness that satisfies the strength and other necessary conditions for use based on the outer diameter dimension specified by the user, for example, the connector designer. 1 and 2 are perspective views of a model of such an elongated injection molded product. In reality, two side plates of the shape shown in FIG. 1 are arranged side by side and connected by partition walls, or a basic structure such as a box with end plates at both ends of the shape of FIG. 2 is added with positioning pins and other parts. Although it has a complicated shape, the practical prediction of warpage, which is the object of the present invention, can be approximately considered by a simplified model as shown in the figure.

【0006】図1において,上部は下部よりも厚さの小
さい板状部分であり,リブと呼ぶことにする。下部はリ
ブよりも大きい断面積,通常リブの厚さ以上の幅と高さ
とを持つ部分で,本体と呼ぶことにする。本体の断面は
必ずしも四角形である必要はないが,便宜上四角形の場
合を主として説明する。円,六角形,その他異形断面の
場合は四角形で近似して考えればよい。図1には本体部
分の高さが幅よりも大きい例を示しているが,幅と高さ
が同じ又は幅が高さよりも大きくてもよい(図3)。断
面形状において,図1に示すものはリブが本体の端に位
置するL字形であるが,それに限定されることはなく,
例えば凸字形でもよい.L字形断面のものを2つ左右に
接続すれば溝形断面,即ち図2になる。この場合,側
板,底板と呼ぶことにする。側板,底板はどちらが厚く
てもよく,厚い方を本体,薄い方をリブと考えることが
できる.図2に見られるように,左右方向(便宜上x方
向とする)にほぼ対称性がある場合,成形の際に生じる
左右方向の収縮は内部応力としてバランスをとり,x方
向には大きな歪みを生じにくい。図1のものを隔壁によ
り左右対称に2つ結合した場合も同様である。しかし,
上下方向(y方向とする,コネクターで言えば差し込み
方向)は本質的に非対称の構造である。
In FIG. 1, the upper portion is a plate-shaped portion having a smaller thickness than the lower portion, and is called a rib. The lower part has a larger cross-sectional area than the rib, and usually has a width and height that are greater than the thickness of the rib, and is called the main body. The cross section of the main body does not necessarily have to be a quadrangle, but for convenience sake, the case of a quadrangle will be mainly described. Circles, hexagons, and other irregular cross-sections can be approximated by squares. Although FIG. 1 shows an example in which the height of the main body portion is larger than the width, the width and the height may be the same or the width may be larger than the height (FIG. 3). In the cross-sectional shape, the one shown in FIG. 1 is an L-shape in which the rib is located at the end of the main body, but is not limited to this.
For example, it may be convex. If two L-shaped sections are connected to the left and right, a groove-shaped section, that is, FIG. 2 is obtained. In this case, we will call them side plates and bottom plates. Either the side plate or the bottom plate may be thick, and the thicker one can be considered as the main body and the thinner one as the rib. As shown in Fig. 2, when there is almost symmetry in the left-right direction (for convenience, it is referred to as the x-direction), the contraction in the left-right direction that occurs during molding balances as internal stress, and a large strain occurs in the x-direction. Hateful. The same applies to the case where the two shown in FIG. 1 are connected symmetrically by a partition wall. However,
The vertical direction (the y direction, in the case of a connector, the inserting direction) is essentially asymmetrical structure.

【0007】図1及び図2の例の場合,上部の肉厚が小
さいと,そちら側の板がより大きな収縮を生じやすく,
その為に上方が凹面になるように反りやすい。当然,反
りは全長が大きいほど著しい。本願発明は,このように
最大の長さをもつ方向(z方向とする)に対して直角な
方向のうち,少なくとも1方向について非対称である
「細長い非対称物品」を熱可塑性プラスチックスの射出
成形により製造する際に,反りを防止して正確な寸法の
成形品を得る方法に関するものである。以下,便宜上高
さ方向(y方向)が非対称である場合について説明す
る。
In the case of the example of FIGS. 1 and 2, if the thickness of the upper part is small, the plate on that side is likely to cause a larger contraction,
Therefore, it tends to warp so that the upper part is concave. Naturally, the warp is more remarkable as the total length is larger. According to the present invention, a "slender asymmetric article" which is asymmetric in at least one of the directions perpendicular to the direction having the maximum length (z direction) is formed by injection molding of thermoplastics. The present invention relates to a method for obtaining a molded product having an accurate dimension by preventing warpage during manufacturing. Hereinafter, for convenience, a case where the height direction (y direction) is asymmetric will be described.

【0008】即ち,この発明の第1の課題は,非対称断
面をもつ細長いプラスチックス製の物品(単に非対称物
品と略す)の射出成形において,反りが事実上問題にな
らない程度のものとなり,外径寸法の正確さを確保する
一般的な技術手法を提供することである。更にこの発明
はまた,与えられた長さ,断面外形の制約内で反りの少
ない射出成形コネクター基体を製造する方法を提供する
ものである。
That is, the first object of the present invention is that the warp is practically no problem in the injection molding of an elongated plastic article having an asymmetric cross section (simply referred to as an asymmetric article). It is to provide a general technical method for ensuring dimensional accuracy. Furthermore, the present invention also provides a method of manufacturing an injection molded connector substrate having less warpage within the constraints of given length and cross sectional profile.

【0009】[0009]

【課題を解決する手段】本発明者は,射出成形に伴う反
り現象を探求した結果,事実上次のような考えに基づい
て解析してゆけば,現実に起こる反りをある程度定量的
に理解できることを見出し,その成果を利用して本発明
の反り対策技術を完成した.即ち,樹脂が金型を充填し
ながら流動してゆく過程で,線状高分子分子や異方性形
状(例:繊維状)充填剤の配向が起り,これが冷却,固
化すると,部分部分が配向の向き,度合が異なり,従っ
て異なる収縮特性をもつ部分の接合体である成形品がで
きる。このように部分により異なる収縮特性が成形品内
部で働く剪断力,ひいては接合体の両端に働く曲げモー
メントを生じて反りを起す。
As a result of exploring the warpage phenomenon associated with injection molding, the present inventor can understand the actual warpage to some extent quantitatively by conducting an analysis based on the following idea. Was found, and the warping countermeasure technology of the present invention was completed by utilizing the results. That is, linear polymer molecules and anisotropic shape (eg fibrous) fillers are oriented in the process in which the resin flows while filling the mold, and when this is cooled and solidified, the partial parts are oriented. Therefore, it is possible to obtain a molded product that is a joined body of parts having different shrinkage characteristics because of different orientations and degrees. In this way, the shrinkage characteristics that differ depending on the part generate shearing force that acts inside the molded product, and eventually bending moments that act on both ends of the joined body, causing warpage.

【0010】もとより,現実の成形体の形状は種々様々
であり,反りを厳密に予測するのは困難である。しか
し,本発明者は,実用的な反り対策の観点からすれば,
成形体を適切な単位構造に分けて考え,その単位構造が
もたらす反り因子という概念を導入することにより,全
体として発現する反りは,単位構造の反り量の寄せ集め
によるものであると考えてさしつかえないことを見出し
た。即ち,本発明を生んだ基礎となる技術思想は,ま
ず,現実の複雑な構造の非対称物品の反りも,長さ方向
で接合する2つの板の組合せである部分構造単位のもつ
反り因子に分けて,単純化して考えることができるとす
るものであり,更に単位構造の接合部分のもたらす反り
量は,上記のメカニズムに従った考察によりある程度定
量的に予測しようとするものである。そして,このよう
な試みは,リブの厚さ,本体の厚さ及びリブの高さに基
づいて予測することのできるパラメータである歪み率n
の概念を用いることにより成功し,これに基づいて本発
明を完成することができた。
Naturally, the shapes of actual molded bodies are various, and it is difficult to exactly predict the warpage. However, from the viewpoint of practical warpage countermeasures, the present inventor
By considering the molded body by dividing it into appropriate unit structures and introducing the concept of a warpage factor caused by the unit structure, it is possible to think that the warpage that occurs as a whole is due to a collection of the warp amounts of the unit structures. I found that there is no. That is, the technical idea which is the basis of the present invention is that the warpage of an actual asymmetric article having a complicated structure is divided into the warpage factors of the partial structural unit which is a combination of two plates joined in the length direction. Therefore, the amount of warpage caused by the joint portion of the unit structure will be quantitatively predicted to some extent by consideration of the above mechanism. Then, such an attempt is based on the thickness of the rib, the thickness of the main body, and the height of the rib.
The present invention could be completed based on the success of the above concept.

【0011】一般に,プラスチックス射出成形品は所要
の外径寸法,使用上必要な強度,樹脂の流れ等を考慮し
て設計される構造に基づいて金型が作られ,成形され
る。便宜上,このような従来から常用されてきた設計基
準による構造設計を基準構造設計とよぶことにする。し
かし,強度等を考慮しただけの基準構造設計ではしばし
ば反りが生じ,コネクター基板のように正確な寸法を必
要とする製品の製造技術としては問題があった。また,
このように現実に反りが認識された後で設計変更を余儀
無くされるのは甚だ不都合であり,その対策にしても試
行錯誤的なものが多かった。
Generally, a plastic injection-molded product is produced by molding a mold based on a structure designed in consideration of a required outer diameter dimension, a strength required for use, a resin flow and the like. For the sake of convenience, the structural design based on the conventionally used design standard will be referred to as a standard structural design. However, a standard structure design that only considers strength and the like often causes warpage, which is a problem as a manufacturing technology for products that require accurate dimensions such as connector boards. Also,
It is extremely inconvenient to change the design after the warp is actually recognized in this way, and there are many trial and error measures against it.

【0012】本発明の技術的ポイントは,従来反りの定
量的な予測が困難で,対策にも有効な基本方針が知られ
ていなかった射出成形技術において,反りをある程度定
量的に予測し,事前に対策を取ることを可能にすること
である.このような課題は,前記のように成形品に反り
をもたらす因子を,事実上,単位構造の反り量の重ね合
わせであると考えて全体の反りを事前に予測し,従来の
設計による基準構造では大きな反りが予想される場合,
これを打ち消す方向の反り因子を付加して,成形品全体
としての反り量を内部的にバランスさせて反りを防ぐと
いう技術思想に基づいて解決される。ここで基本となる
単位構造としては,2つの板状部分が長さ方向で接合す
るモデルを考え,まず歪み比率nを予測し,nの値と2
つの板の肉厚,高さ及び長さ寸法に基づいて反り量が算
定される.以下,この発明につき,実施例を含めて詳細
に説明する。
The technical point of the present invention is that it is difficult to quantitatively predict the warp in the past, and in the injection molding technology for which a basic policy effective as a countermeasure has not been known, the warp is quantitatively predicted to some extent and It is possible to take measures against. Such a problem is that the factor that causes the warpage of the molded product as described above is, in effect, a superposition of the warpage amounts of the unit structures, and the overall warpage is predicted in advance. Then, if a large warp is expected,
This is solved based on the technical idea of adding a warpage factor in the direction of canceling this to internally balance the amount of warpage of the entire molded product to prevent warpage. Here, as a basic unit structure, consider a model in which two plate-like portions are joined in the longitudinal direction, first predict the strain ratio n, and calculate the value of n and
The amount of warpage is calculated based on the wall thickness, height and length of each plate. Hereinafter, the present invention will be described in detail including examples.

【0013】[0013]

【歪み比率】本発明者は,プラスチックス射出成形時の
反りの実態を把握するために,まず細長いリブ付き板
(図3:斜視図)を,その一端に設けたゲートから長さ
L方向に射出成形して基礎データの収集を行なった。使
用した材料はガラス繊維強化液晶ポリマーである。この
ような結果をもとに,歪み比率n(最大の歪みを1とす
る)をリブ及び本体の厚さ(R,S)とリブの高さH1
をパラメーターとして図示したものが図4である。図の
横軸は本体の厚さ,縦軸は歪み比率nである。歪み比率
nの値が基線よりも下にある場合はリブ側が凹に,上に
ある場合はリブ側が凸に反る場合である。図4は,R/
Sの5水準,H1 の2水準,全部で10ケース(図4A
〜図4J)について表しているが,勿論必要に応じてよ
り詳しく表すことができる.図示したものは実験的に求
めたデータに基づいているが,ある程度樹脂の流れと関
係付けて解釈することもできるので,歪み比率nとして
理論を併用した予測した値を用いることもできる。
[Distortion ratio] In order to understand the actual state of warpage during plastics injection molding, the present inventor first installed an elongated ribbed plate (Fig. 3: perspective view) from the gate provided at one end in the direction of length L. Injection molding was performed to collect basic data. The material used is a glass fiber reinforced liquid crystal polymer. Based on these results, the strain ratio n (the maximum strain is 1) is set to the rib and body thicknesses (R, S) and the rib height H 1
Is shown in FIG. 4 as a parameter. The horizontal axis of the figure is the thickness of the main body, and the vertical axis is the strain ratio n. When the value of the strain ratio n is below the baseline, the rib side warps concavely, and when it is above the baseline, the rib side warps convexly. Figure 4 shows R /
5 levels of S, 2 levels of H 1 , a total of 10 cases (Fig. 4A
~ Fig. 4J), but of course it can be shown in more detail if necessary. Although the illustrated one is based on experimentally obtained data, it can be interpreted in relation to the flow of the resin to some extent, and thus a predicted value obtained by using a theory can be used as the strain ratio n.

【0014】図4A,図4Bの場合を例にとり,得られ
た結果を樹脂の流れから解釈すると次のようである。こ
の場合,リブの厚さは本体の1/3と小さいので,一端
のゲートから射出された樹脂の本流は本体キャビティ中
を長さz方向に真っ直ぐに進み,リブキャビティは本体
に充填された樹脂の一部が高さy方向に流れを変えた支
流により充填されてゆく。従って本体はz方向に配向
し,リブは多少なりともy方向に配向する。y方向に配
向気味のリブは,z方向配向の本体に比べて長さz方向
の収縮が大きく,成形品にリブ側凹の反りをもたらす。
歪み比率nはその程度を示しており,リブの高さの大き
い図4Bの場合は,y方向への流れの傾向がより大きい
ので歪みは大きくなる。しかし,ある程度断面寸法の大
きな成形品になれば,Rの絶対値も大きくなるので,リ
ブキャビティも初めからz方向の流れで充填され,本体
との差が小さくなるので図4A,図4B共に右の方では
基線に近づく。
Taking the cases of FIGS. 4A and 4B as an example, the results obtained are interpreted as follows from the flow of resin. In this case, since the thickness of the rib is as small as ⅓ of the main body, the main stream of the resin injected from the gate at one end goes straight through the main body cavity in the length z direction, and the rib cavity is filled with the resin filled in the main body. Is partially filled with the tributary whose flow is changed in the height y direction. Therefore, the body is oriented in the z direction and the ribs are oriented in the y direction to some extent. Ribs that tend to be oriented in the y-direction have a greater shrinkage in the length z-direction than a body oriented in the z-direction, and cause a rib-shaped concave warpage in the molded product.
The strain ratio n indicates the degree thereof, and in the case of FIG. 4B in which the height of the rib is large, the strain becomes large because the tendency of the flow in the y direction is larger. However, if the molded product has a relatively large cross-sectional size, the absolute value of R will also increase, and the rib cavity will also be filled with the flow in the z direction from the beginning, and the difference with the main body will be small, so both FIGS. 4A and 4B are right. Approaching the baseline.

【0015】[0015]

【反り量】本発明者はこのような歪み比率nという概念
をを創造した上で,反り量(変型量)に関して次のよう
に定量的な解析を行なった.まず,収縮の異なる2つの
部分,即ちリブ(i=1)と本体(i=2)とが長さ方向で上下
に接合しているモデル(図1)について,高さ方向座標
yの関数である歪みに比例する力W(y)を考える。W
(y)が剪断力の微分であることから歪みの大きさの分
布はyの指数関数 ai *exp(−ki y) (1) で表すことができる.ki は,プラスチックス材料の縦
弾性率Ei ,剪断弾性率G,及び長さ寸法Lとから定め
ることができる。SQRT(N)はNの平方根を意味する. ki =SQRT(8Ei /GL2 ) (2)。
[Amount of Warp] The present inventor created such a concept of the strain ratio n, and then performed the following quantitative analysis of the amount of warp (deformation amount). First, with respect to a model (Fig. 1) in which two parts having different contractions, that is, a rib (i = 1) and a main body (i = 2) are vertically joined in the longitudinal direction, Consider a force W (y) that is proportional to some strain. W
Since (y) is the derivative of shearing force, the distribution of strain magnitude can be expressed by the exponential function a i * exp (−k i y) (1) of y. k i can be determined from the longitudinal elastic modulus of the plastics material E i, shear modulus G, and the length dimension L. SQRT (N) means the square root of N. k i = SQRT (8E i / GL 2 ) (2).

【0016】ai は,結合面(y=0)における歪みで
あり,リブと本体のそれぞれについてW(y)の積分か
ら計算される接合面における剪断力が等しいという条件
からa1 ,a2 が関係づけられる。一方a1 +a2 =d
Sは,リブの収縮率と本体の収縮率の差である。この2
つの関係からa1 ,a2 を解くことができる. a2 =dS/(1+(E2*k1*(1-EXP(-k2*H2)))/(k2*E1*(1-EXP(-k1*H1)))) (3) a1 =dS−a2 (4)。
A i is a strain at the joint surface (y = 0), and a 1 and a 2 are obtained from the condition that the shearing force at the joint surface calculated from the integral of W (y) is equal for the rib and the main body. Are related. On the other hand, a 1 + a 2 = d
S is the difference between the rib shrinkage and the body shrinkage. This 2
It is possible to solve a 1 and a 2 from one relationship. a 2 = dS / (1+ (E2 * k1 * (1-EXP (-k2 * H2))) / (k2 * E1 * (1-EXP (-k1 * H1)))) (3) a 1 = dS-a 2 (4).

【0017】次に,単位構造接合面の両端に働く曲げモ
ーメントは,リブ(i=1)と本体(i=2)それぞれの部分の
高さにわたってyW(y)を積分した値,M1 とM2
和であり,式 Mi =(ai i /ki 2 )(1−(ki i+1)exp(−ki i )(5) M=M1 +M2 (6) により算出することができる。
Next, the bending moment acting on both ends of the unit structure joint surface is M 1 as a value obtained by integrating yW (y) over the heights of the rib (i = 1) and the main body (i = 2). It is the sum of M 2 and the equation M i = (a i E i / k i 2 ) (1- (k i H i + 1) exp (−k i H i ) (5) M = M 1 + M 2 (6 ) Can be calculated.

【0018】梁状の構造の両端でMとなり,長さ方向座
標zの2次関数 m(z)=M−4M(L−z)z/L2 (7) を仮定し,反り量Dのzについての2次微分が−m
(z)/EIであるという一般式を用いると,梁の中央
における最大反り量Dは,全長Lと両端曲げモーメント
Mとから次の式で求めることができる. D=5ML2 /48EI (8)。
Assuming a quadratic function m (z) = M-4M (Lz) z / L 2 (7) of the longitudinal coordinate z which is M at both ends of the beam-shaped structure, The second derivative with respect to z is -m
Using the general formula of (z) / EI, the maximum warp amount D at the center of the beam can be calculated from the total length L and the bending moments M at both ends by the following formula. D = 5ML 2 / 48EI (8 ).

【0019】ここで,EIは縦弾性率Ei と断面2次モ
ーメントIi との積である. EI=E1 1 +E2 2 (9) リブと本体の収縮差に基づく応力は接合面に生じている
ので,便宜的にIi は接合部の幅について計算する. I1 =((H1 −η)3 +η3 )/3 (10) I2 =((H1 +H2 −η)3 −(H1 −η)3 )/3 (11) 但しηは,高さ方向の中立線の位置であり次の式により
計算する. η=(E1 1 2 +E2 2 2 )/(2*(E1 1 +E2 2 )) (12) このように本体で接合部より外側にある部分の影響を無
視しても,実施例のように実用的にさしつかえない結果
が得られた。
Here, EI is the product of the longitudinal elastic modulus E i and the second moment of area I i . EI = E 1 I 1 + E 2 I 2 (9) Since the stress due to the shrinkage difference between the rib and the main body is generated in the joint surface, I i is calculated for the width of the joint for convenience. I 1 = ((H 1 −η) 3 + η 3 ) / 3 (10) I 2 = ((H 1 + H 2 −η) 3 − (H 1 −η) 3 ) / 3 (11) where η is It is the position of the neutral line in the height direction and is calculated by the following formula. η = (E 1 H 1 2 + E 2 H 2 2 ) / (2 * (E 1 H 1 + E 2 H 2 )) (12) Ignoring the influence of the part outside the joint in this way, However, as in the case of the example, a result which is not practically acceptable was obtained.

【0020】以下の実施例を含めて,寸法に関して各部
分を示す記号は次の通りで,単位はすべてmmである(図
1参照). R:リブの厚さ H1 :リブの高さ S:本体の厚さ H2 :本体の高さ W:本体の幅 H :単位構造の全高(H1 +H2 ) L:単位構造の長さ 本体の厚さとは方形断面の場合,小さいほうの辺の寸法
である.但し,図2に示す溝形断面の場合は,側板の厚
さをR,底板の厚さをSで表した。従ってR>Sの場合
もある。
The symbols indicating the respective parts in the dimensions including the following examples are as follows, and the units are all mm (see FIG. 1). R: the rib thickness H 1: rib height S: thickness of the main body H 2: body height W: length of the unit structure: the unit structure overall height (H 1 + H 2) L : Width H of the main body The body thickness is the dimension of the smaller side in the case of a rectangular cross section. However, in the case of the groove-shaped cross section shown in FIG. 2, the thickness of the side plate is represented by R and the thickness of the bottom plate is represented by S. Therefore, there are cases where R> S.

【0021】実施例で用いたプラスチックスはガラス繊
維強化液晶ポリマーであり,射出成形における配向性の
影響が著しく,精密部品において反りが問題になりやす
い材料である。配向した材料の縦弾性率140000,直角方
向の縦弾性率 70000,剪断弾性率G=20000 (弾性率の
単位は kgf/cm2 ),収縮率(平行方向)0.001 ,収縮
率(直角方向)0.006 である。従って,リブと本体の配
向方向が直角な場合,接合面における収縮率の差は0.00
5 であり,この場合歪みが最大(歪み率n=1)とな
る。リブと本体に配向方向の違いがなければ接合面での
収縮率の差がなく,歪み率n=0である。一般的に言え
ばこの材料の歪みは,最大の収縮率差に歪み率を乗じた
値,dS=0.005 nと見ることができる。
The plastics used in the examples are glass fiber reinforced liquid crystal polymers, which are significantly affected by the orientation in injection molding and warp is likely to be a problem in precision parts. Longitudinal elastic modulus of the oriented material 140,000, perpendicular direction of the longitudinal elastic modulus 70000 shear modulus G = 20000 (Unit Modulus kgf / cm 2), shrinkage (parallel) 0.001, shrinkage (perpendicular) 0.006 Is. Therefore, when the rib and the body are oriented at right angles, the difference in shrinkage at the joint surface is 0.00
5, and in this case, the strain becomes maximum (strain rate n = 1). If there is no difference in the orientation direction between the rib and the main body, there is no difference in the shrinkage rate at the joint surface, and the strain rate is n = 0. Generally speaking, the strain of this material can be regarded as a value obtained by multiplying the maximum shrinkage difference by the strain rate, dS = 0.005 n.

【0022】歪み率は,リブの配向方向を反映している
のでz方向の縦弾性率にも影響を及ぼす。この材料の場
合,本体はz方向に配向しているので縦弾性率E2 =14
0000であるが,E1 はn=0でE2 と同じ140000,n=
1では 70000であるから E1 =E2 (1−0.5n) (13) で近似することができる。
Since the strain rate reflects the orientation direction of the rib, it also affects the longitudinal elastic modulus in the z direction. In the case of this material, since the body is oriented in the z direction, the longitudinal elastic modulus E 2 = 14
0000, but E 1 is n = 0 and is the same as E 2 140000, n =
Since 1 is 70,000, it can be approximated by E 1 = E 2 (1-0.5n) (13).

【0023】[0023]

【実施例1】図2の形状をもつ溝形断面の箱の基準構造
設計がR=1,S=2,H=8,W=5,L=140 で与えられた場合,ま
ず図4を用いて歪比率を予測する。H1 =6,R/S=
1/2であるから図4Dの場合であり,横軸のS=2を
読むと,上面凹でn=0.2程度の歪比率が予測され
る.n=0.2よりE1 =126000,dS=0.001 。この
値を他の条件値と共に用いて,(2)〜(6)式から計
算するとM=723 。一方,断面2次モーメントの計算よ
りEI=835 万であるからL=140 の中央における最大反
り量Dは(8)式より0.177mm と計算できる。この実施
例の場合,高さ方向の単位構造は1つであるからこの値
がそのまま予測値になる。実測値は0.19mmであっ
た.そこで,S=3mmに変更するとR/S=1/3 と変るので
歪比率が小さくなり,Sと共に反りが小さくなる傾向と
あいまって,底板を厚くすることは有効な対策であるこ
とが予測される。図4Bからn=0.05を求め,S=3 につ
いて再計算するとM=227 と大幅に小さくなり,D=0.04
7mm となる。反り量の実測値は0.04mmで,実用上問
題のないレベルになった。
[Embodiment 1] When the reference structural design of a box having a groove cross section having the shape of FIG. 2 is given by R = 1, S = 2, H = 8, W = 5, L = 140, first, FIG. Use to predict the strain ratio. H 1 = 6, R / S =
This is the case of FIG. 4D because it is 1/2, and when S = 2 on the horizontal axis is read, a strain ratio of about n = 0.2 is predicted for the concave surface. From n = 0.2, E 1 = 126000, dS = 0.001. Using this value together with other condition values, calculation from equations (2) to (6) yields M = 723. On the other hand, since the EI = 8.35 million from the calculation of the second moment of area, the maximum warpage amount D at the center of L = 140 can be calculated from equation (8) to be 0.177 mm. In the case of this embodiment, since there is one unit structure in the height direction, this value becomes the predicted value as it is. The measured value was 0.19 mm. Therefore, changing to S = 3mm changes to R / S = 1/3, so the strain ratio decreases, and together with the tendency for warpage to decrease with S, thickening the bottom plate is expected to be an effective measure. It Obtaining n = 0.05 from Fig. 4B and recalculating for S = 3, it is significantly reduced to M = 227 and D = 0.04.
It will be 7 mm. The actual value of the amount of warpage was 0.04 mm, which was a level with no practical problems.

【0024】[0024]

【実施例2】この実施例の対象物品は,図5(側面
図),図6(図5のAA断面図)で示される形状をもつ
コネクター基板であり,図1のL字断面の梁を左右対称
に結合したものであると考えることができる。基準構造
設計の値は,R=0.4,S=1.2,H=7.3,H
1 =4.5,L=80であり,図4Bより歪比率はほぼ
最大値(n=1)となる(上面凹).n=1よりE1
70000 ,dS=0.005 。この値を他の条件値と共に用い
て計算するとM=2646。一方,断面2次モーメントの計
算よりEI=751 万であるからL=80の中央における最大
反り量Dは(8)式より0.235mm と計算できる。計算の
条件が近似的であるため(両端を度外視)実測値0.3
5mmよりも0.14mm小さい.この例の場合,外形寸法から
許されるSの最大値は1.8mm 程度であり,この範囲でS
を増加させた場合n=0.7 程度まで減少するが,D=0.18
6mm で反り量は十分に小さくはならない。
Embodiment 2 The target article of this embodiment is a connector substrate having a shape shown in FIG. 5 (side view) and FIG. 6 (AA cross-sectional view of FIG. 5). It can be considered that they are connected symmetrically. The values of the standard structure design are R = 0.4, S = 1.2, H = 7.3, H
1 = 4.5 and L = 80, and the strain ratio is almost the maximum value (n = 1) from FIG. 4B (top concave). From n = 1, E 1 =
70000, dS = 0.005. Calculation using this value together with other condition values gives M = 2646. On the other hand, from the calculation of the moment of inertia of area, since EI = 75,100, the maximum warp amount D at the center of L = 80 can be calculated from equation (8) to be 0.235 mm. Since the calculation conditions are approximate (excluding both ends), the measured value is 0.3
0.14mm smaller than 5mm. In the case of this example, the maximum value of S allowed from the external dimensions is about 1.8 mm, and S is within this range.
When is increased, it decreases to about n = 0.7, but D = 0.18
At 6 mm, the amount of warp does not become small enough.

【0025】そこで,この場合の対策は肉抜きによるこ
とにする。本体板側面の上から1.3mmのところに深さ
0.8mmの肉抜きをした対策後の断面形状を図7に示
す。この場合,中央の本体と上又は下のリブとを組み合
わせた2つの単位構造に分けて考える.上側のリブによ
る反り量を予測すると,R=0.4,S=1.2,H1
=4.5は変らないからn=1,従ってH=5.8(H
1 +H2 ),H2 =1.3より,D=0.338 mmの上面凹の
反りが予測される。一方,肉抜きにより形成された逆方
向(肉抜き側,即ち下面が凹)の単位構造に関する反り
はR=0.4(1.2−0.8),S=1.2,H1
1.5(2.8−1.3)よりn=0.5(図4A)で
ありH=2.8,H2 =1.3より,D=0.413mm とな
る。逆方向に加えられた反りの計算値は上面凹の反りの
計算値を打ち消し,肉抜きによる対策は有効であると判
断されるが,前記のように対策前の実測値が計算値より
大きいことを考慮すると,上面凹の反りが多少残ること
も予測される。実測値0.1mm上面凹。
Therefore, the countermeasure in this case is to remove the meat. Fig. 7 shows the cross-sectional shape after taking countermeasures by removing a 0.8 mm deep hole 1.3 mm above the side surface of the body plate. In this case, we consider two unit structures that combine the central body and the upper or lower ribs. Predicting the amount of warpage due to the upper rib, R = 0.4, S = 1.2, H 1
= 4.5 does not change, so n = 1, therefore H = 5.8 (H
1 + H 2 ), H 2 = 1.3, a warp of D = 0.338 mm concave on the upper surface is predicted. On the other hand, the warp related to the unit structure in the opposite direction (thickened side, that is, the lower surface is concave) formed by lightening is R = 0.4 (1.2−0.8), S = 1.2, H 1 =
From 1.5 (2.8-1.3), n = 0.5 (FIG. 4A), and from H = 2.8 and H 2 = 1.3, D = 0.413 mm. The calculated value of the warp applied in the opposite direction cancels the calculated value of the warp of the upper surface concave, and it is judged that the countermeasure by lightening is effective, but as described above, the measured value before the countermeasure is larger than the calculated value. Considering the above, it is expected that some warpage of the concave surface will remain. Measured value 0.1 mm concave on the upper surface.

【0026】[0026]

【実施例3】この実施例の対象物品は,図8(側面
図),図9(図8のAA断面図)で示される形状をもつ
コネクター基板であり,図1のL字断面をもつ側壁を左
右に2つ,隔壁により結合したものであると考えること
ができる。側壁部分の基準構造設計値は,R=0.5,
S=1.5,H=3.5,H1 =2,L=80である。
図4Aからn=0.5であるが,隔壁の存在を考慮する
とnは更に大きい可能性がある。n=0.5の場合L=
80mmで0.33mmの下面凹の反りになる。n=1で計
算すると0.53mmである。実測値は1.0mm(下側リ
ブの溝は計算に入れていない)であった.これに対して
は,上面の溝切り(深さ0.7,幅0.3)により上面
凹の反り因子を付加する対策を行なった(図10)。こ
の場合も2つの単位構造に分けて反りを推測し,重ね合
わせる。本体と下側リブによる反り因子は,本体の高さ
2 が0.8mmに減少するので下側凹の反り量はD=0.72
5 と増加するが,上側も溝の影響で収縮するので(H1
=0.7 ,n=0.4よりD=0.655 と計算),前者の反り
をほぼ打ち消す。実測値0.02mm。
[Third Embodiment] A target article of this embodiment is a connector substrate having a shape shown in FIG. 8 (side view) and FIG. 9 (AA sectional view of FIG. 8), and a side wall having an L-shaped section of FIG. It can be considered that the two are connected to each other by a partition wall. The standard structure design value of the side wall is R = 0.5,
S = 1.5, H = 3.5, is H 1 = 2, L = 80 .
Although n = 0.5 from FIG. 4A, n may be larger in consideration of the presence of partition walls. When n = 0.5 L =
At 80 mm, the warp of the bottom surface is 0.33 mm. When calculated with n = 1, it is 0.53 mm. The measured value was 1.0 mm (the groove of the lower rib was not included in the calculation). In order to deal with this, a measure was taken to add a warpage factor for the upper surface recess by grooving the upper surface (depth 0.7, width 0.3) (FIG. 10). In this case as well, the warp is divided into two unit structures and the warp is superposed. As for the warpage factor due to the main body and the lower rib, the height H 2 of the main body is reduced to 0.8 mm, so the warp amount of the lower concave is D = 0.72.
However, since the upper side also contracts due to the influence of the groove (H 1
= 0.7, n = 0.4, calculated as D = 0.655), and the former warpage is almost cancelled. Measured value 0.02 mm.

【0027】[0027]

【反り量に及ぼす諸因子の影響】図11は,反り量Dに
及ぼす歪み率nの影響を例示したものである。寸法はH
=8mm,12mmの2ケース,L=80mm,R/S=1/
3でE2 ,Gは例1〜3と同じ値をとりE1 は(13)
式による。この図のように,反り量Dは,n=0.5く
らい迄は歪み率nにほぼ比例する.図12は,反り量D
に及ぼす長さLの影響を例示したものである。歪み率n
=0.5で,長さ以外の寸法と弾性率は図11の場合と
同様である。両対数グラフの勾配から,DはLの2.5
乗にほぼ比例して変化することがわかる。
[Influence of Various Factors on Warp Amount] FIG. 11 exemplifies the influence of the strain rate n on the warp amount D. Dimension is H
= 2 mm of 8 mm and 12 mm, L = 80 mm, R / S = 1 /
3, E 2 and G have the same values as in Examples 1 to 3, and E 1 is (13)
According to the formula. As shown in this figure, the warp amount D is almost proportional to the strain rate n until n = 0.5. FIG. 12 shows the warp amount D
It illustrates the effect of the length L on the. Distortion rate n
= 0.5, the dimensions other than the length and the elastic modulus are the same as in the case of FIG. From the gradient of the log-log graph, D is 2.5 of L
It can be seen that it changes almost in proportion to the power.

【0028】図13は,反り量Dに及ぼすリブ及び本体
の高さ(H1 ,H2 )の影響を例示したものである。全
高H=8mm,12mmの2ケース,L=80mmで,H1
2以外の寸法と歪み率,弾性率は図12の場合と同様
である。H1 ,H2 のいずれかが0に近い場合(グラフ
の両端)を除いてDに及ぼすH1 ,H2 の影響は比較的
ゆるやかである。当然,反り量Dは全高Hの低い方が大
きい.図14は,反り量Dに及ぼす縦弾性率の大きさの
影響を例示したものである。E2 =6万〜14万で,E
1 はn=0.5の場合について(13)式により求めた
値である。L=80mm(H=6,8の2ケース),L=
120mm(H=12mm)について示したが,いずれのケ
ースにおいてもEのDに及ぼす影響は小さいことがわか
る。従って,これまでの説明に用いたものと異なる縦弾
性率をもつプラスチックス材料を用いた場合にも,ほぼ
同じ結果が得られることがわかる。
FIG. 13 exemplifies the influence of the heights (H 1 , H 2 ) of the rib and the main body on the warpage amount D. Total height H = 8 mm, 2 cases of 12 mm, L = 80 mm, H 1 ,
The dimensions other than H 2 , the strain rate, and the elastic modulus are the same as in the case of FIG. The effect of H 1 and H 2 on D is relatively gentle except when either H 1 or H 2 is close to 0 (both ends of the graph). Naturally, the warp amount D is larger when the total height H is lower. FIG. 14 illustrates the influence of the magnitude of the longitudinal elastic modulus on the warp amount D. E 2 = 60,000 to 140,000, E
1 is a value obtained by the equation (13) when n = 0.5. L = 80 mm (2 cases of H = 6 and 8), L =
Although 120 mm (H = 12 mm) is shown, it can be seen that the influence of E on D is small in any case. Therefore, it can be seen that almost the same results can be obtained when a plastic material having a longitudinal elastic modulus different from that used in the above description is used.

【0029】[0029]

【図解法1】以上,式(8)を用いてDを算出する方法
を説明した。この方法は広範囲のケースに適用すること
ができるが,計算がやや複雑である。そこで,最も基本
的な図1,図2のケースにつきパラメーターを主要な2
種類の板厚だけに絞って(即ち,溝切りの影響がなく,
歪み率等は一般的な寸法から見当をつけ,許容反り量も
0.05mmに固定して)簡略化した判定図が図15〜1
8である。図15,図16は,図1のように厚い本体板
の上にリブが接合する場合に適用され,図17,図18
は,図2のように2枚の側板と底板と接合する溝形断面
に適用される。長さに応じて多数の図を示せば正確にな
るが,長さ100mm迄の場合(図15,図17),長さ
200mm迄の場合(図16,図18)に簡略化して示し
た。
[Illustrative Method 1] The method of calculating D using the equation (8) has been described above. This method can be applied to a wide range of cases, but the calculation is rather complicated. Therefore, in the most basic case of FIG. 1 and FIG.
Constrain only the plate thickness of the type (that is, there is no influence of grooving,
15 to 1 are simplified judgment diagrams in which the distortion rate is estimated from general dimensions and the allowable warpage is fixed at 0.05 mm.
8 15 and 16 are applied when the ribs are joined on the thick body plate as shown in FIG.
Is applied to a groove-shaped cross section that joins two side plates and a bottom plate as shown in FIG. It will be accurate if many figures are shown according to the length, but it is shown in a simplified manner when the length is up to 100 mm (FIGS. 15 and 17) and when the length is up to 200 mm (FIGS. 16 and 18).

【0030】これらの図を用いる図解法によれば,もと
の設計(基準構造設計)の板厚の関係(RとSとの関
係)が反り量0.05mm未満の適性範囲内にあるか否か
の判定は極めて簡単である。適性範囲から外れているこ
とがわかった場合,底板厚の変更だけで必要な打ち消し
変形因子を付加することができるか否かの見当もつけや
すい.図18に書き入れた矢印は,実施例1において底
板厚の変更(黒丸→白丸)によりR(側面板厚)とS
(底板厚)との関係が,不適正領域から適正領域へ移っ
たことを示している。図15に書き入れた矢印は,実施
例2においてはS(本体板厚)を変化させてもR(リブ
板厚)とSとの関係を適正領域にすることが困難な状況
であることを示している。
According to the graphical method using these figures, whether the relation of the plate thickness of the original design (reference structure design) (relationship between R and S) is within the proper range of the warp amount of less than 0.05 mm. Determining whether or not is extremely easy. If it is found that it is out of the appropriate range, it is easy to know whether it is possible to add the necessary cancellation deformation factor only by changing the bottom plate thickness. The arrows entered in FIG. 18 indicate R (side plate thickness) and S by changing the bottom plate thickness (black circle → white circle) in the first embodiment.
It shows that the relationship with (bottom plate thickness) has moved from the improper region to the proper region. The arrows in FIG. 15 indicate that, in the second embodiment, it is difficult to set the relationship between R (rib plate thickness) and S to a proper range even if S (main body plate thickness) is changed. ing.

【0031】[0031]

【打ち消し変形因子の付加】実施例2に見られるよう
に,外形寸法に影響しない肉厚変更だけで反り量のバラ
ンスがとれるとは限らず,その場合,肉抜き(例2,図
20),溝切り(例3,図19)等の手段で所望の打ち
消し変形因子を付加することが有用である.肉抜き,溝
切りによる変形対策は,ある程度の長さにわたって形成
する必要がある。特に短い長さのところに溝切りを施す
と,剛性を損なう結果になるおそれが大きいので,肉抜
きの方が好ましい。例えば,コネクター嵌合部の連結部
が肉厚になるための対策は,断面形状からして下面が凸
になる変形を打ち消すため,下面側から行なうことにな
る。その際,溝切りにすると基台の剛性を損なう結果と
なり,不適当である。この場合,嵌合部の連結部下側か
ら肉抜きを施せば下面が凹になる反り因子となり,基準
構造設計による反り因子を打ち消してバランスを取るこ
とができる.溝のピッチpは深さdの3倍程度のとき,
溝切りの効果が大きい(図19)。3倍以下でも溝の数
が増えるからある程度の効果は期待できるが,強度低下
等の不利はある。溝幅qは小さい方がよく,V形溝は効
果的である。肉抜きの場合,図20のtは,H−d以下
にする。この場合もピッチは深さの3倍程度のときに効
果が大きい。
[Addition of Negative Deformation Factor] As seen in the second embodiment, it is not always possible to balance the warp amount only by changing the wall thickness that does not affect the outer dimensions. In that case, the lightening (Example 2, FIG. 20), It is useful to add a desired canceling deformation factor by means such as grooving (Example 3, Fig. 19). As a countermeasure against deformation by lightening or grooving, it is necessary to form over a certain length. Especially, if a groove is cut at a short length, the rigidity may be deteriorated. For example, as a countermeasure for increasing the thickness of the connecting portion of the connector fitting portion, the deformation in which the lower surface is convex in view of the cross-sectional shape is canceled, and therefore, it is performed from the lower surface side. In that case, groove cutting will result in a loss of rigidity of the base, which is inappropriate. In this case, if the thinning is applied from the lower side of the connecting part of the fitting part, it becomes a warpage factor that the bottom surface becomes concave, and it is possible to cancel the warpage factor due to the standard structure design and balance. When the groove pitch p is about three times the depth d,
The effect of grooving is great (Fig. 19). Even if it is three times or less, some effects can be expected because the number of grooves increases, but there is a disadvantage such as strength reduction. The groove width q is preferably small, and the V-shaped groove is effective. In the case of removing meat, t in FIG. 20 is set to Hd or less. Also in this case, the effect is great when the pitch is about three times the depth.

【0032】[0032]

【図解法2】図21〜図28は,反り量Dが,通常の精
密部品で問題となる程度の値となる長さの限界Lを縦軸
として,横軸He に対して示した歪み率と寸法の関係図
である。ここでHe は,図1の本体高さH2 (図2の場
合は底面厚さS)であるが,溝切りを施した場合はH2
と異なる相当高さになるのでHe として示した.図21
〜図28は,4水準の歪み比率を前提として,通常レベ
ルの許容値D=0.05mmとその倍の0.1mmの2水準
について,全体の高さHをパラメータとして図示してい
る。既に説明したように,歪み比率は図4のように実測
で求めたデータに基づいて定めることができ,また樹脂
の流れの状態を加味して予測することもできる.図21
〜図28を用いると,式(8)による計算の代りに,図
解法により単位構造ごとの射出成形品の反り量を予測す
ることができる。その知見に基づいて物品全体の反り量
をバランスさせることはこれまでの方法と同様である.
実施例4〜6は,それぞれ実施例1〜3に対応する図解
法である。
[Method 2] FIGS. 21 to 28 show the distortion rate shown with respect to the horizontal axis He, where the vertical axis is the limit L of the length at which the warp amount D becomes a value that causes a problem in ordinary precision parts. FIG. Here, He is the body height H 2 in FIG. 1 (bottom surface thickness S in FIG. 2), but H 2 in the case of grooving
Since it has a considerable height different from that, it is shown as He. Figure 21
28. FIG. 28 shows the total height H as a parameter for two levels of the allowable value D = 0.05 mm of the normal level and 0.1 mm, which is twice the allowable value, assuming the distortion ratio of four levels. As already explained, the strain ratio can be determined based on the data obtained by actual measurement as shown in Fig. 4, and can also be predicted by taking into consideration the state of resin flow. Figure 21
28. By using FIG. 28, it is possible to predict the warp amount of the injection-molded product for each unit structure by a graphic method instead of the calculation by the formula (8). Balancing the amount of warpage of the entire article based on that knowledge is the same as in previous methods.
Examples 4 to 6 are illustration methods corresponding to Examples 1 to 3, respectively.

【0033】[0033]

【実施例4】対象物の寸法及び歪み比率nについては実
施例1と同じである。図28においてL= 130mmでD=
0.1mmになるので,nが1.6倍(0.2/0.125 )
でLも長いこの例では,反り量Dが0.2mm近くと過大
になることが予想される。He =3mmに変更した場合,
歪み比率nは著しく減少する(図4B,実施例1と同
じ)。n=0.1以下の場合の図は示されていないが,
図28(n=1/8)に基づき,図11に示されたnの
影響を考慮して推測すれば,L= 140mmでもD=0.0
5mm以下に改善されると考えることができる。
Fourth Embodiment The size and strain ratio n of the object are the same as in the first embodiment. In FIG. 28, L = 130 mm and D =
Since it is 0.1 mm, n is 1.6 times (0.2 / 0.125)
In this example, where L is also long, the warpage amount D is expected to be too large, near 0.2 mm. When changing to He = 3mm,
The strain ratio n is significantly reduced (FIG. 4B, the same as Example 1). Although the figure for n = 0.1 or less is not shown,
If it is estimated based on FIG. 28 (n = 1/8) in consideration of the influence of n shown in FIG. 11, D = 0.0 even when L = 140 mm.
It can be considered to be improved to 5 mm or less.

【0034】[0034]

【実施例5】対象物の寸法及び歪み比率nについては実
施例2と同じである。図22よりL=50mmでD=0.
1mmとなる。反り量DがLの2〜3乗に比例すること
(図12)を考慮するとL=80mmでD=0.26〜
0.4mmを予想する。実測値は0.35mmであった.肉
抜き対策後の予測に用いるn及び寸法の値は実施例2と
同じ考え方である。上面凹の反り因子(n=1)は図2
2を用いてL=40mmでD=0.1mm。下面凹の反り因
子(n=0.5)はL=45mmでD=0.1mm(図2
4)。トータルしてL=40mmでは上面凹の反りが0.
02〜0.03mmとなる。長さの影響を補正するとL=
80mmでは0.1mm程度の反りとなる。
Fifth Embodiment The size and strain ratio n of the object are the same as in the second embodiment. From FIG. 22, L = 50 mm and D = 0.
It will be 1 mm. Considering that the warp amount D is proportional to the second to third power of L (FIG. 12), L = 80 mm and D = 0.26 to
Expect 0.4mm. The measured value was 0.35 mm. The values of n and dimensions used for the prediction after the lightening countermeasure is the same as in Example 2. The warpage factor (n = 1) of the concave surface is shown in FIG.
Using 2, L = 40 mm and D = 0.1 mm. The warpage factor (n = 0.5) of the bottom concave is L = 45 mm and D = 0.1 mm (see FIG. 2).
4). When L = 40 mm in total, the warp of the concave surface is 0.
It becomes 02 to 0.03 mm. Correcting the effect of length, L =
A warp of about 0.1 mm occurs at 80 mm.

【0035】[0035]

【実施例6】対象物の寸法及び歪み比率nについては実
施例3と同じである。図24よりL=45mmでD=0.
1mmとなり,L=80mmの予想値はD=0.45mm。ま
た,n=1とすると図22を用いるのでL=30mmでD
=0.1mm,L=80mmの予想値はD=1.2mmとな
る。いずれも反り量DがLの2.5乗に比例するものと
して補正した。実測値1mm.上面の溝切りによる対策
は,上記のL=30mmでD=0.1mmの反りを打ち消す
ことを基準に考えた。図26から想定するとH=1.
5,He =0.8の場合,歪み比率n=0.3程度で所
望の値になる。先に記したようにピッチを溝の深さ0.
7mmの3倍,2mm程度にすると歪み比率が最大になるの
で,今回は溝のピッチをこれより小さくすべきである。
ピッチ7mmの溝切りで反りを打ち消したことは実施例3
に記した通りである。
Sixth Embodiment The size of the object and the strain ratio n are the same as in the third embodiment. From FIG. 24, L = 45 mm and D = 0.
It is 1 mm, and the expected value for L = 80 mm is D = 0.45 mm. Further, assuming that n = 1, since FIG. 22 is used, L = 30 mm and D
= 0.1mm, L = 80mm, the expected value is D = 1.2mm. In all cases, the warp amount D was corrected as being proportional to L to the 2.5th power. Measured value 1 mm. The countermeasure for grooving the upper surface was based on canceling the warp of L = 30 mm and D = 0.1 mm. Assuming from FIG. 26, H = 1.
When 5, He = 0.8, the desired value is obtained when the distortion ratio n is about 0.3. As described above, the pitch is set to the groove depth of 0.
The strain ratio will be maximized if it is set to about 3 times 7 mm or 2 mm, so this time the groove pitch should be smaller than this.
The fact that the warping was canceled by cutting the groove with a pitch of 7 mm was the same as in Example 3.
As described in.

【0036】[0036]

【発明の作用】本発明は,プラスチックス成形品を単位
構造に分けて考え,それぞれの単位構造について反り量
を予測し,単位構造の反り量を物品全体について重ね合
わせて,非対称方向のバランスを判定する.反り量の予
測は,いくつかの仮定と理論的解析から導かれた式
(8)又は図21〜28と,板厚を主体とするパラメー
ターから予測できる歪み比率nとを組み合わせて行な
う。これにより,使用者の要求に基づく外形寸法や強度
上必要な肉厚等,一般的な仕様から必須とされる構造を
備えた設計(基準構造設計)が,反り量のバランスの取
れているものか否かを判定することができる。
According to the present invention, the plastic molded article is divided into unit structures, the warp amount is predicted for each unit structure, and the warp amounts of the unit structures are overlapped for the entire article to balance in the asymmetric direction. judge. The amount of warpage is predicted by combining equation (8) or FIGS. 21 to 28 derived from some assumptions and theoretical analysis, and the strain ratio n that can be predicted from the parameter mainly including the plate thickness. As a result, the design with the structure required from general specifications such as the external dimensions based on the user's requirements and the wall thickness required for strength (standard structure design) has a well-balanced amount of warpage. Can be determined.

【0037】バランスが取れずに非対称方向の反り量が
大きいと予測される場合,使用者の要求する外形寸法に
支障のない範囲内で厚肉部,肉抜き,溝等の打ち消し因
子を付加する形状的対策を施し,非対称物品全体につい
ての反り因子をバランスさせるた設計に改める。ここ
で,反対方向の反り因子を導入にあたっては,前記単位
構造についての反り量予測技術を利用することができ
る.最も基本的な図1(本体とリブ),図2(溝形断
面)のケースについては,パラメーターを主要な2種類
の板厚だけに絞って簡略化した判定図により,基準構造
設計が反り量0.05mm未満の適性範囲内にあるか否か
を簡単に判定することができる。範囲から外れている場
合,底板厚の変更により,必要な打ち消し変形因子を付
加することができるか否かを判定することができる。
When the balance is not balanced and the amount of warpage in the asymmetrical direction is expected to be large, a canceling factor such as a thick portion, a thinned portion, or a groove is added within a range that does not hinder the external dimensions required by the user. By taking shape measures, the design will be revised to balance the warpage factors for the entire asymmetric article. Here, in introducing the warp factor in the opposite direction, the warp amount prediction technique for the unit structure can be used. For the most basic cases of Fig. 1 (main body and ribs) and Fig. 2 (groove cross section), the reference structure design shows the amount of warpage based on the simplified judgment diagram by narrowing down the parameters to only the two major plate thicknesses. It can be easily determined whether or not it is within the proper range of less than 0.05 mm. If it is out of the range, it is possible to determine whether or not the necessary cancellation deformation factor can be added by changing the bottom plate thickness.

【0038】[0038]

【発明の効果】本発明により,プラスチックスの射出成
形により細長い非対称物品を製造する際に,あらかじめ
反りに寄与する単位構造の影響を予測することが可能に
なり,その結果,反りを少なくなるような寸法への設計
変更技術が実現した。反りの少ない構造設計ができれ
ば,それに基いた金型を用いて正確な寸法の射出成形品
を製造することは,当業者の技術水準に従って行うこと
ができる。
EFFECTS OF THE INVENTION According to the present invention, it becomes possible to predict the influence of the unit structure that contributes to the warp in advance when manufacturing a slender asymmetric article by injection molding of plastics, and as a result, it is possible to reduce the warp. A technology to change the design to various dimensions has been realized. If a structural design with a small amount of warpage can be made, it is possible to manufacture an injection-molded product having a correct size by using a mold based on the structural design according to the state of the art of those skilled in the art.

【図面の簡単な説明】[Brief description of drawings]

【図1】本体とリブが接合した細長い物品のモデルを示
す斜視図
FIG. 1 is a perspective view showing a model of an elongated article in which a main body and a rib are joined.

【図2】溝形断面の細長い物品のモデルを示す斜視図FIG. 2 is a perspective view showing a model of an elongated article having a groove-shaped cross section.

【図3】リブ付き板の斜視図FIG. 3 is a perspective view of a plate with ribs.

【図4】リブ付き板の寸法と歪み比率との関係図 横軸S,縦軸n(基線より下がリブ側凹) H1 =2mm H2 =5mm R/S=1/3 図4A 図4B R/S=1/2 図4C 図4D R/S=3/4 図4E 図4F R/S=1/1 図4G 図4H R/S=2/1 図4I 図4JFIG. 4 is a diagram showing the relationship between the size of the ribbed plate and the strain ratio. The horizontal axis S, the vertical axis n (the rib side is concave below the base line) H 1 = 2 mm H 2 = 5 mm R / S = 1/3 4B R / S = 1/2 FIG. 4C FIG. 4D R / S = 3/4 FIG. 4E FIG. 4F R / S = 1/1 FIG. 4G FIG. 4H R / S = 2/1 FIG.

【図5】実施例2の基板,側面図FIG. 5 is a side view of the substrate according to the second embodiment.

【図6】実施例2の基板,対策前断面図FIG. 6 is a cross-sectional view of the substrate of the second embodiment before countermeasures.

【図7】実施例2の基板,対策後断面図FIG. 7: Substrate of Example 2, cross-sectional view after countermeasures

【図8】実施例3の基板,対策前側面図FIG. 8 is a side view of the substrate of the third embodiment before countermeasures.

【図9】実施例3の基板,断面図FIG. 9: Substrate of Example 3; cross-sectional view

【図10】実施例3の基板,対策後側面図(部分)FIG. 10 is a substrate of Example 3, a side view after countermeasures (part)

【図11】歪み比率と反り量との関係図FIG. 11 is a relationship diagram between a distortion ratio and a warp amount.

【図12】長さと反り量との関係図FIG. 12 is a relationship diagram between the length and the warp amount.

【図13】高さと反り量との関係図FIG. 13 is a relationship diagram between the height and the warp amount.

【図14】弾性率と反り量との関係図FIG. 14 is a relationship diagram between elastic modulus and warpage amount.

【図15】リブ型モデル(長さ100mm 以下)の反り判定
[Fig. 15] Warpage determination diagram of rib type model (100 mm or less in length)

【図16】リブ型モデル(長さ200mm 以下)の反り判定
[Fig. 16] Warpage determination diagram of rib type model (length 200 mm or less)

【図17】溝形断面モデル(長さ100mm 以下)の反り判
定図
[Fig. 17] Warpage determination diagram for a grooved cross-section model (100 mm or less in length)

【図18】溝形断面モデル(長さ200mm 以下)の反り判
定図
[Fig. 18] Warpage determination diagram for a grooved section model (length 200 mm or less)

【図19】溝切りを説明する部分側面図FIG. 19 is a partial side view illustrating groove cutting.

【図20】肉抜きを説明する部分斜視図図21〜図2
8:歪み率と寸法の関係図
FIG. 20 is a partial perspective view illustrating lightening, FIGS.
8: Relationship between strain rate and size

【図21】歪み比率n=1/1,反り0.05mmFIG. 21: Strain ratio n = 1/1, warpage 0.05 mm

【図22】歪み比率n=1/1,反り0.10mmFIG. 22: Strain ratio n = 1/1, warpage 0.10 mm

【図23】歪み比率n=1/2,反り0.05mmFIG. 23: Strain ratio n = 1/2, warpage 0.05 mm

【図24】歪み比率n=1/2,反り0.10mmFIG. 24: Strain ratio n = 1/2, warpage 0.10 mm

【図25】歪み比率n=1/4,反り0.05mmFIG. 25: Strain ratio n = 1/4, warpage 0.05 mm

【図26】歪み比率n=1/4,反り0.10mmFIG. 26: Strain ratio n = 1/4, warpage 0.10 mm

【図27】歪み比率n=1/8,反り0.05mmFIG. 27: Strain ratio n = 1/8, warpage 0.05 mm

【図28】歪み比率n=1/8,反り0.10mmFIG. 28: Strain ratio n = 1/8, warpage 0.10 mm

【符号の説明】[Explanation of symbols]

R:リブの厚さ H1 :リブの高さ S:本体の厚さ H2 :本体の高さ W:本体の幅 H :単位構造の全高
(H1 +H2 ) L:板の長さ
R: Rib thickness H 1 : Rib height S: Body thickness H 2 : Body height W: Body width H: Overall height of unit structure (H 1 + H 2 ) L: Plate length

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】プラスチックスの射出成形により,細長い
非対称断面物品を製造する方法において,(1)物品を
長さ方向で接合するリブと本体とよりなる構造単位で考
え,(2)主たるパラメータとしてリブと本体との寸法
を用いて単位構造の反り量を算定し,(3)単位構造の
反り量から全体のバランスを判定するという判定方法に
より反りが予測されるような基準構造設計に,厚肉部,
肉抜き,溝等の打ち消し変形因子を付加する形状的対策
を施して,非対称物品全体についての反り量をバランス
させた設計とすることを特徴とする細長い物品の製造方
1. A method for producing an article having an elongated asymmetric cross section by injection molding of plastics, wherein (1) a structural unit consisting of a rib and a body for joining the articles in the longitudinal direction is considered, and (2) as a main parameter. The warp amount of the unit structure is calculated using the dimensions of the rib and the main body, and (3) the reference structure design that predicts the warp by the judgment method of judging the overall balance from the warp amount of the unit structure. Meat part,
A method for manufacturing a slender article, characterized in that the shape of the slender article is designed so as to balance the warpage amount of the entire asymmetric article by taking geometrical measures such as lightening, a groove and the like to add a canceling deformation factor.
【請求項2】長さ方向で接合するリブと本体とよりなる
構造単位を持つ細長いプラスチックス製非対称断面物品
を射出成形により製造する際に,リブの厚さR,本体の
厚さS,及びリブの高さH1 に基づいて予測できる歪み
率nと,プラスチックス材料の弾性率及びリブと本体の
寸法を用いて単位構造両端の曲げモーメントMを求め,
式 D=5ML2 /48EI (Lは単位構造の全長,EIは本体及びリブに関する縦
弾性率と断面2次モーメントの積の和である)から単位
構造の反り量を算出し,厚肉部,肉抜き,溝等の因子を
含めて非対称物品全体構造についての反り量のバランス
をとった設計とすることを特徴とする細長い物品の製造
方法
2. A rib thickness R, a body thickness S, and a rib thickness S when a long plastic asymmetric cross-section article having a structural unit consisting of a rib and a body joined in the longitudinal direction is manufactured by injection molding. Strain rate n that can be predicted based on the height H 1 of the rib, elastic modulus of the plastics material, and the dimensions of the rib and the main body are used to find the bending moment M at both ends of the unit structure.
The warp amount of the unit structure is calculated from the formula D = 5ML 2 / 48EI (L is the total length of the unit structure, EI is the sum of the product of the longitudinal elastic modulus and the second moment of area of the main body and the rib), and the thick portion, A method of manufacturing a slender article, characterized in that the design is such that the amount of warpage is balanced for the entire structure of the asymmetric article including factors such as lightening and grooves.
【請求項3】リブ(i=1)と本体(i=2)の両端曲げモーメ
ントをそれぞれ式 Mi =(ai i /ki 2 )(1−(ki i +1)exp(−ki i )) によって求め,M=M1 +M2 により単位構造両端の曲
げモーメントを予測することを特徴とする請求項2記載
の方法 但しki 及びai は,高さ方向(y方向)の歪みの大き
さの分布関数を式 ai *exp(−ki y) (*は乗法記号,exp は指数関数記号)で表したときの
定数である.
3. The bending moments at both ends of the rib (i = 1) and the main body (i = 2) are expressed by the equations M i = (a i E i / k i 2 ) (1- (k i H i +1) exp ( determined by -k i H i)), M = M 1 + a method where k i and a i of claim 2, wherein the predicting the bending moment of the unit structure across the M 2 has a height direction (y It is a constant when the distribution function of the magnitude of the strain of (direction) is expressed by the expression a i * exp (−k i y) (* is a multiplicative symbol, exp is an exponential symbol).
【請求項4】細長いプラスチックス製非対称断面物品を
射出成形により製造する際に,リブと本体との肉厚関係
又は側面板と底面板との肉厚関係の適正領域及び不適正
領域を表わす判定図を用い,図解法により不適正な領域
にある基準構造設計の肉厚を適正領域にある肉厚に変更
するすることを特徴とする細長い物品の製造方法
4. A method of determining an appropriate region and an unsuitable region of a wall thickness relationship between a rib and a main body or a side wall plate and a bottom plate when manufacturing an elongated plastic asymmetric cross-section article by injection molding. A method for manufacturing an elongated article, characterized in that the thickness of a reference structure design in an inappropriate region is changed to a thickness in an appropriate region by a graphical method using a drawing
【請求項5】長さ方向で接合するリブと本体とよりなる
構造単位を持つ細長いプラスチックス製非対称断面物品
を射出成形により製造する際に,歪み率nと,リブ及び
本体の寸法に基づき図解法により反り量を予測し,その
知見に基づいて物品全体の反り量をバランスさせること
を特徴とする細長い物品の製造方法
5. A method for illustrating a strain rate n and dimensions of a rib and a main body when manufacturing an elongated plastic asymmetric cross-section article having a structural unit consisting of a rib and a main body joined in the longitudinal direction by injection molding. Method for predicting the amount of warpage by the method and balancing the amount of warpage of the entire article based on the knowledge
【請求項6】請求項1〜5記載の方法を用いることを特
徴とする電子機器用コネクター基板の製造法
6. A method of manufacturing a connector substrate for electronic equipment, which comprises using the method according to any one of claims 1 to 5.
JP4033017A 1992-02-20 1992-02-20 Manufacture of slender article Pending JPH05228956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4033017A JPH05228956A (en) 1992-02-20 1992-02-20 Manufacture of slender article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4033017A JPH05228956A (en) 1992-02-20 1992-02-20 Manufacture of slender article

Publications (1)

Publication Number Publication Date
JPH05228956A true JPH05228956A (en) 1993-09-07

Family

ID=12375042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4033017A Pending JPH05228956A (en) 1992-02-20 1992-02-20 Manufacture of slender article

Country Status (1)

Country Link
JP (1) JPH05228956A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08187312A (en) * 1995-01-10 1996-07-23 Koryo Jushi Kogyo Kk Gliding surface material for ski
JPH08267489A (en) * 1995-03-30 1996-10-15 Sanko Co Ltd Rib for synthetic resin pallet
JPH1131629A (en) * 1997-07-14 1999-02-02 Tec Corp Electromagnetic apparatus
JPH11320880A (en) * 1998-05-19 1999-11-24 Seiko Epson Corp Ink-jet type recording head
JP2001327045A (en) * 2000-05-12 2001-11-22 Yazaki Corp Wiring board
US6462477B1 (en) 2000-06-30 2002-10-08 Matsushita Electric Industrial Co., Ltd. High pressure discharge lamp
JP2004165049A (en) * 2002-11-14 2004-06-10 Japan Aviation Electronics Industry Ltd Connector for base board installation
JP2008254396A (en) * 2007-04-09 2008-10-23 Denso Corp Method for predicting deformation quantity due to contraction of molded article, and device for same
JP2012155919A (en) * 2011-01-25 2012-08-16 Yazaki Corp Connector and connector manufacturing method
JP2018089900A (en) * 2016-12-06 2018-06-14 コニカミノルタ株式会社 Optical writing device and image forming device
JP2018136888A (en) * 2017-02-24 2018-08-30 沖電気工業株式会社 Paper sheet discrimination device and automatic transaction device having the paper sheet discrimination device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08187312A (en) * 1995-01-10 1996-07-23 Koryo Jushi Kogyo Kk Gliding surface material for ski
JPH08267489A (en) * 1995-03-30 1996-10-15 Sanko Co Ltd Rib for synthetic resin pallet
JPH1131629A (en) * 1997-07-14 1999-02-02 Tec Corp Electromagnetic apparatus
JPH11320880A (en) * 1998-05-19 1999-11-24 Seiko Epson Corp Ink-jet type recording head
JP2001327045A (en) * 2000-05-12 2001-11-22 Yazaki Corp Wiring board
US6462477B1 (en) 2000-06-30 2002-10-08 Matsushita Electric Industrial Co., Ltd. High pressure discharge lamp
JP2004165049A (en) * 2002-11-14 2004-06-10 Japan Aviation Electronics Industry Ltd Connector for base board installation
US6913488B2 (en) 2002-11-14 2005-07-05 Japan Aviation Electronics Industry, Limited Electrical connector
JP2008254396A (en) * 2007-04-09 2008-10-23 Denso Corp Method for predicting deformation quantity due to contraction of molded article, and device for same
JP2012155919A (en) * 2011-01-25 2012-08-16 Yazaki Corp Connector and connector manufacturing method
JP2018089900A (en) * 2016-12-06 2018-06-14 コニカミノルタ株式会社 Optical writing device and image forming device
JP2018136888A (en) * 2017-02-24 2018-08-30 沖電気工業株式会社 Paper sheet discrimination device and automatic transaction device having the paper sheet discrimination device

Similar Documents

Publication Publication Date Title
JPH05228956A (en) Manufacture of slender article
KR100369572B1 (en) An apparatus and method for analyzing an injection molding process, and a method for producing an injection molded product
CN106869402A (en) Assembly concrete component and its manufacture method
Pageau et al. Enrichment of finite elements with numerical solutions for singular stress fields
BR112016001668B1 (en) bar-shaped force transducer with simplified adjustment
JP2011022125A (en) Method of measuring local stress, method of deriving stress-strain curve in resin material, and method of predicting lifetime of resin molding
US7894931B2 (en) Method and apparatus for prediction of amount of deformation due to shrinkage of molded article
US10663359B2 (en) Polymer measuring beam
CN107782366A (en) Fusion sediment(FDM)Formula 3D printer printed product evaluation method
JP5126004B2 (en) Multi-layer channel member and ultrasonic fluid measuring device using the same
US9408309B2 (en) Electronic component mounting structure
CN108692708B (en) Groove-jointed level with full-width connector
JP6645176B2 (en) Terminal block
JP2002370268A (en) Cylindrical molding and method for deciding shape of cylindrical molding
JP5125996B2 (en) Multi-layer channel member and ultrasonic fluid measuring device using the same
JP7317897B2 (en) Low warpage injection molded housing parts and electrical connectors containing such housing parts
CN106091964A (en) A kind of pull bar interlinked mechanism connector strain measurement method
CN218766481U (en) Mould of sealed crack resistance ability that splits of simulation car
JP4014466B2 (en) Ferrule for multi-fiber optical fiber connector and manufacturing apparatus thereof
ES2915061T3 (en) Polymeric measuring plate of a weighing platform and a method of manufacturing a polymeric measuring plate of a weighing platform
JP3889587B2 (en) Method for predicting shrinkage of resin molded products
WO2024089807A1 (en) Molding die for composite material and method for producing composite material
JP7347715B1 (en) Dimensional quality evaluation method and evaluation system for additively manufactured objects
JP2002219739A (en) Method for estimating amount of change in shape of injection-molded article
CN208736287U (en) A kind of porous part special gauge component