JPH05228596A - Method for evaluating powder for continuous casting of low-carbon steel - Google Patents

Method for evaluating powder for continuous casting of low-carbon steel

Info

Publication number
JPH05228596A
JPH05228596A JP3464792A JP3464792A JPH05228596A JP H05228596 A JPH05228596 A JP H05228596A JP 3464792 A JP3464792 A JP 3464792A JP 3464792 A JP3464792 A JP 3464792A JP H05228596 A JPH05228596 A JP H05228596A
Authority
JP
Japan
Prior art keywords
powder
temp
molten
mold
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3464792A
Other languages
Japanese (ja)
Other versions
JP2637004B2 (en
Inventor
Atsushi Fukuda
淳 福田
Fukuyoshi Yamaguchi
福吉 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4034647A priority Critical patent/JP2637004B2/en
Publication of JPH05228596A publication Critical patent/JPH05228596A/en
Application granted granted Critical
Publication of JP2637004B2 publication Critical patent/JP2637004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To provide the index to elucidate the correlative relation with the heat extraction strength in a casting mold by determining the temp. at the boundary between the crystal phase and liquid phase of powder. CONSTITUTION:The selection of the powder at the time of continuously casting the low-carbon having 0.01 to 0.08wt.% carbon content affects the generation of the longitudinal crack on one surface of an ingot. The heat by a heating element 12 is regulated and supplied to a furnace 11 having a temp. gradient and the powder crystal phase 15 and molten powder 16 are made to coexist affinely in a crucible 14. The boundary surface temp. of the powder crystal phase 14 and the molten powder 16 is then determined. The boundary temp. indicates the temp. at the boundary of the solid phase and molten part of the powder film existing at the time of actual casting. The temp. of the plate in the casting mold is gentler as the above-mentioned temp. is higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭素含有量が0.01〜
0.08重量%(以下%と略する)のいわゆる低炭素鋼
に使用する連続鋳造用パウダーの評価方法に関するもの
であって、見通しよく鋳片表面に縦割れのない鋳片を得
るための連続鋳造用パウダー(以下パウダーと略する)
を設計するためのものである。
The present invention has a carbon content of 0.01 to
The present invention relates to an evaluation method of 0.08% by weight (hereinafter abbreviated as "%") so-called low-carbon steel powder for continuous casting, which is a continuous method for obtaining a slab with no vertical cracks on the surface of the slab. Powder for casting (hereinafter abbreviated as powder)
For designing.

【0002】[0002]

【従来の技術】炭素含有量が0.01〜0.08重量%の
低炭素鋼は、自動車用板材などとして使用されるため鋳
片の表面品質に対する要求が高い上、その連続鋳造は通
常極めて高い生産性を要求されるため、いわゆる中炭素
鋼程敏感ではないものの、度々鋳片の表面縦割れやブレ
ークアウトが発生する。
2. Description of the Related Art Low carbon steel having a carbon content of 0.01 to 0.08% by weight is used as a plate material for automobiles, and therefore has a high demand for the surface quality of a slab, and its continuous casting is usually extremely difficult. Since high productivity is required, it is not as sensitive as so-called medium carbon steel, but surface slab cracks and breakouts often occur.

【0003】このような表面縦割れやブレークアウトが
発生する場合には、鋳型内抜熱および潤滑状況が不適切
である。すなわち鋳型内抜熱強度が高すぎる時には凝固
シェルに生じる熱応力が大きいため、鋳型内抜熱強度が
低すぎる場合には凝固シェルが薄くその強度が低いため
であると考えられている。またパウダーの流入が阻害さ
れ、いわゆるパウダー切れが発生する場合には、凝固シ
ェルと鋳型間に多大な応力が発生し、凝固シェルは破断
に至る。
When such vertical surface cracks or breakouts occur, heat removal and lubrication in the mold are inappropriate. That is, it is considered that when the heat removal strength in the mold is too high, the thermal stress generated in the solidification shell is large, and when the heat removal heat in the mold is too low, the solidification shell is thin and its strength is low. Further, when the inflow of powder is obstructed and so-called powder breakage occurs, a large amount of stress is generated between the solidified shell and the mold, and the solidified shell is broken.

【0004】上記事態を回避するため、連続鋳造におい
て通常行われている方法は、適正なパウダーの使用であ
る。そのパウダーの選定に当たって、通常パウダーの潤
滑性の指標として用いられるのが、パウダーの粘性であ
り、そして冷却強度の指標として用いられるのが、パウ
ダーの凝固温度と呼ばれるものである。
In order to avoid the above situation, the method usually used in continuous casting is the use of proper powder. In selecting the powder, the viscosity of the powder is usually used as an index of the lubricity of the powder, and the freezing temperature of the powder is used as an index of the cooling strength.

【0005】このパウダーの凝固温度は、一定温度に保
持した坩堝中において円筒を回転するなどして粘性を求
め、測定温度に対し粘性をプロットした図において、温
度の低下にともなって急激に粘性が高くなる温度とされ
ている。この急激な粘性の変化は温度の低下に伴いパウ
ダーが結晶化し、見掛けの粘性が高くなるためであると
考えられており、この凝固温度が高い場合にはパウダー
フィルム内の結晶相(固着相)厚みが厚いため鋳型−凝
固シェル間の熱抵抗が大きくなり、緩冷却が実現される
とされている。
The solidification temperature of this powder is obtained by determining the viscosity by rotating a cylinder in a crucible held at a constant temperature, and in the figure plotting the viscosity against the measured temperature, the viscosity rapidly increases as the temperature decreases. It is said that the temperature will rise. It is thought that this rapid change in viscosity is due to the fact that the powder crystallizes as the temperature decreases and the apparent viscosity increases, and when this solidification temperature is high, the crystalline phase (fixed phase) in the powder film It is said that because of the large thickness, the thermal resistance between the mold and the solidified shell becomes large, so that slow cooling can be realized.

【0006】[0006]

【発明が解決しようとする課題】従来技術による鋳型内
抜熱の指標、凝固温度は、たとえば中炭素鋼用に使用さ
れる緩冷却指向の高凝固温度パウダーと、低炭素鋼用の
強冷却指向のパウダーといった、大きく抜熱強度の異な
るパウダーを比較する上では有用であった。しかしなが
ら最近の鋳片表面疵の厳格化に伴い、抜熱強度の場所的
・時間的ばらつきの最小化、あるいは精度のよい抜熱強
度のコントロールを行って行く必要のある現在では、指
標の精度が低く不十分である。この理由は粘性の変化に
より測定される凝固温度が、結晶の晶出の形態や結晶の
過冷能を再現できないからであり、このため必ずしも鋳
型内抜熱強度に大きな影響を与える、固着相の厚みを表
していないためである。
The indicators of the heat removal in the mold and the solidification temperature according to the prior art are, for example, a high solidification temperature powder for moderate cooling used for medium carbon steel and a strong solidification temperature for low carbon steel. It was useful for comparing powders with different heat removal strengths, such as the powders of. However, with the recent tightening of slab surface flaws, it is necessary to minimize the spatial and temporal variations in heat removal strength, or to control heat removal strength with high accuracy. Low and insufficient. The reason for this is that the solidification temperature, which is measured by the change in viscosity, cannot reproduce the morphology of crystal crystallization and the supercooling ability of the crystal, and therefore it does not necessarily affect the heat removal strength in the mold. This is because the thickness is not shown.

【0007】さらにまた、低炭材のほとんどは転炉精錬
後にアルミニウムにより脱酸される、いわゆる低炭アル
ミキルド鋼であるため、湯面において溶鋼中のアルミニ
ウムがパウダー中のSiO2分を還元したり、浮上した
Al23介在物がパウダー中に取り込まれたりすること
によりパウダー成分が大きく変化する。このため同じよ
うな成分を持ち、かつ同じ凝固温度を持つパウダーを、
同一の鋳造条件において鋳造した場合において、必ずし
も同等の鋳型内抜熱強度が得られない場合が多い。
Furthermore, most of the low carbon materials are so-called low carbon aluminum killed steels which are deoxidized by aluminum after converter refining, so that aluminum in the molten steel reduces SiO 2 content in the powder at the molten metal surface. However, the powder components are largely changed by the inclusion of the floating Al 2 O 3 inclusions in the powder. For this reason, powders with similar ingredients and with the same solidification temperature,
In the case of casting under the same casting conditions, it is often the case that the same heat removal strength in the mold cannot always be obtained.

【0008】結局このような理由から、パウダーの設計
・開発による鋳型内抜熱強度の合わせ込みは、ベースと
なるパウダーの化学成分を少量ずつ変化させ、実際に適
応してみるといった、いわゆる試行錯誤的なアプローチ
が主体であり、極めて効率が悪かった。また、試験時の
不測の事故を回避するという観点から、大きな成分変更
を伴うパウダーの変更試験は忌避されることが多く、思
い切ったパウダー変更ができないことが多かった。
For this reason, after all, by adjusting the heat removal strength in the mold by designing and developing the powder, the chemical composition of the powder as the base is changed little by little, and it is actually applied. Was the main approach, and was extremely inefficient. Further, from the viewpoint of avoiding unexpected accidents at the time of testing, powder change tests involving major component changes are often avoided, and it is often impossible to make drastic changes to powder.

【0009】これに対し本発明は、鋳造中に得られると
考えられる凝固シェルと鋳型間に形成されるパウダーフ
ィルム中の固着相の厚みと、抜熱強度の大きさを指標化
することにより、連続鋳造鋳片の表面欠陥とブレークア
ウトを減少させることを目的として行う鋳型内抜熱強度
のコントロールを行うに当って、容易かつ確実に行う方
法を提供するためになされたものである。
On the other hand, according to the present invention, by indexing the thickness of the stationary phase in the powder film formed between the solidified shell and the mold, which is considered to be obtained during casting, and the magnitude of heat removal strength, It is made to provide a method for easily and surely controlling the heat removal strength in a mold for the purpose of reducing surface defects and breakout of a continuously cast slab.

【0010】[0010]

【課題を解決するための手段】本発明者らは、低炭素鋼
用のパウダーの特性値、パウダーフィルム中の結晶組
織、鋳型内抜熱強度、そして鋳片表面縦割れとの関係に
ついて研究を重ねた結果、鋳型内抜熱強度とパウダー中
の結晶と溶融パウダーの界面温度とに良い相関があると
いう知見を得、この知見に基づいて本発明をなすに至っ
た。
[Means for Solving the Problems] The present inventors have studied the relationship between the characteristic value of powder for low carbon steel, the crystal structure in the powder film, the heat removal strength in the mold, and the vertical crack of the surface of the slab. As a result of stacking, it was found that there is a good correlation between the heat removal strength in the mold and the interface temperature between the crystals in the powder and the molten powder, and the present invention was completed based on this finding.

【0011】本発明は、低炭素鋼用のパウダーの変更に
よる鋳型内抜熱強度のコントロールに際し、温度勾配を
持つ炉内において擬似的にパウダー結晶相と溶融パウダ
ーを共存せしめ、パウダー結晶相と溶融パウダー界面温
度を求め、それを評価指標として見通し良くパウダー評
価を行うことを特徴とするパウダーの設計・評価方法で
ある。
According to the present invention, when controlling the heat removal strength in the mold by changing the powder for low carbon steel, the powder crystal phase and the molten powder are made to coexist in a furnace having a temperature gradient, and the powder crystal phase and the melting powder are melted. This is a powder design / evaluation method characterized in that the powder interface temperature is obtained and the powder is evaluated with good visibility as an evaluation index.

【0012】[0012]

【作用】以下、本発明を図面に基づいて説明する。The present invention will be described below with reference to the drawings.

【0013】図1は鋳型(1)内のパウダーの状況を示
す図である。湯面上方より供給されたパウダー(2)
は、溶鋼(5)より湯面(4)において供給される熱に
より溶融し、溶融プール(3)を形成する。溶融したパ
ウダーは鋳型(1)と凝固シェル(6)間に流入し、鋳
型側が固相、凝固シェル側が液相のパウダーフィルム
(8)を生成する。なお、顆粒パウダーの一部は熱によ
り焼結し、スラグベア(7)を形成する。
FIG. 1 is a view showing the state of powder in the mold (1). Powder (2) supplied from above the bath surface
Is melted by the heat supplied from the molten steel (5) on the molten metal surface (4) to form a molten pool (3). The melted powder flows between the mold (1) and the solidification shell (6) to form a powder film (8) having a solid phase on the mold side and a liquid phase on the solidification shell side. In addition, a part of the granule powder is sintered by heat to form a slug bear (7).

【0014】図2は鋳型−凝固シェル間より採取したパ
ウダーフィルム(8)である。パウダーフィルムは前述
したとおり鋳造中は固相(固着相)と液相(溶融相)に
よって成っているが、湯面を下げて採取したため、全て
固相になっている。しかしながらメニスカス近傍部
(9)より下方の部分(10)において組織観察を行う
と、その境界を明確に知ることができる。
FIG. 2 shows a powder film (8) taken from between the mold and the solidified shell. As described above, the powder film is composed of a solid phase (fixed phase) and a liquid phase (molten phase) during casting, but since it was sampled while lowering the molten metal surface, it was all in the solid phase. However, when the tissue is observed in the portion (10) below the meniscus vicinity portion (9), the boundary can be clearly known.

【0015】固着相と溶融相との熱伝導は、固着相の方
が悪く、さらに通常固着相の厚みは溶融相よりも厚いた
め、鋳型内抜熱には固着相の厚みが支配的となる。又、
縦割れが凝固の初期段階において発生することからもわ
かる通り、メニスカス近傍の抜熱強度を制御するために
もこの部分での固着層厚みを制御することが重要であ
る。
The heat conduction between the fixed phase and the molten phase is worse in the fixed phase, and since the thickness of the fixed phase is usually thicker than that of the molten phase, the thickness of the fixed phase is dominant in heat removal in the mold. . or,
As can be seen from the fact that vertical cracks occur in the initial stage of solidification, it is important to control the thickness of the pinned layer in this portion in order to control the heat removal strength near the meniscus.

【0016】図3(a)は温度勾配を持つ炉(11)で
あって、発熱体(12)より熱を供給し、炉内において
擬似的にパウダー結晶相(15)と溶融パウダー(1
6)を坩堝(14)内において共存せしめ、パウダー結
晶相と溶融パウダー界面温度を求めるためのものであ
る。さらに図3(b)はあらかじめ測定しておいた炉内
の温度分布である。炉は所定の温度勾配になるように出
力を調整し、その中にあらかじめ溶融パウダーを鋳込ん
だ坩堝を挿入し、一定時間保持する。保持時間は炉の出
力によって異なるが、パウダーフィルムの固着相とほぼ
同じ条件を再現するには10〜30分が適当である。
FIG. 3 (a) shows a furnace (11) having a temperature gradient, in which heat is supplied from a heating element (12) and the powder crystal phase (15) and the molten powder (1) are simulated in the furnace.
6) is allowed to coexist in the crucible (14) and the interface temperature between the powder crystal phase and the molten powder is determined. Further, FIG. 3B shows a temperature distribution in the furnace which has been measured in advance. The output of the furnace is adjusted so that a predetermined temperature gradient is obtained, and a crucible in which molten powder is cast is inserted into the furnace and held for a certain period of time. The holding time varies depending on the output of the furnace, but 10 to 30 minutes is suitable for reproducing the conditions almost the same as those of the stationary phase of the powder film.

【0017】一定時間保持後に昇降装置(13)にて試
料を引き出すか、あるいは炉を持ち上げて試料を急速に
冷却する。図4は図3の温度勾配を持つ炉内に保持した
坩堝内の試料の結晶相(15)と溶融パウダー(16)
の境界部の拡大断面組織であり、結晶粒界が直線的にな
り、粗大化した結晶部分(17)と、結晶がデンドライ
ト状に成長している部分(18)に分けられ、これはパ
ウダーフィルム内に観察される組織と同じものである。
After holding for a certain period of time, the sample is pulled out by the elevating device (13) or the furnace is lifted to rapidly cool the sample. FIG. 4 shows the crystalline phase (15) and the molten powder (16) of the sample in the crucible held in the furnace having the temperature gradient of FIG.
It is an enlarged cross-sectional structure of the boundary part of the crystal grain boundary and is divided into a crystal part (17) in which the crystal grain boundaries are linear and coarse and a part (18) in which the crystal grows like a dendrite. It is the same tissue that is observed within.

【0018】通常鋼の連続鋳造においては、C,SiO
2,Al23,CaO,Na2O,F等を主成分としたパ
ウダーを使用する。このようなパウダーにおいては結晶
部分はカスピダインと呼ばれるCaO、SiO2、Fを
主成分とするものであり、さらにその結晶粒間にはAl
23,Na2O,SiO2を主成分とする相が存在する。
In continuous casting of ordinary steel, C, SiO
A powder containing 2 , Al 2 O 3 , CaO, Na 2 O, F, etc. as a main component is used. In such powder, the crystal part is mainly composed of CaO, SiO 2 , and F, which is called caspodyne, and further, Al is present between the crystal grains.
There is a phase containing 2 O 3 , Na 2 O, and SiO 2 as main components.

【0019】パウダーフィルム中の結晶は溶融パウダー
から結晶化したものであり、さらに結晶間を埋める相は
パウダーの結晶化に伴い起きた溶質の再分配によるもの
である。結晶粒の大きさの差は、結晶化の際の冷却速度
と高温での保持時間の差に起因するものである。すなわ
ち結晶粒が大きく、粒界が直線的になっている部分は、
結晶化したのちに高温状態にさらされることによってお
こる粗大化に起因するものであり、一方デンドライト状
に成長した部分は冷却速度が大きかったことに起因する
もので、これはこの部分が上記の昇降装置の操作あるい
は炉体の引上げによって急速に冷され固まった部分であ
る。
The crystals in the powder film are those crystallized from the molten powder, and the phase filling the spaces between the crystals is due to the redistribution of the solute that accompanies the crystallization of the powder. The difference in crystal grain size is due to the difference between the cooling rate during crystallization and the holding time at high temperature. That is, the part where the crystal grain is large and the grain boundary is linear is
This is due to the coarsening that occurs after being crystallized and then exposed to high temperature conditions, while the portion that grew in the dendrite shape was due to the high cooling rate. It is a part that is rapidly cooled and solidified by the operation of the equipment or the pulling up of the furnace body.

【0020】すなわちその二つの領域の間(19)が結
晶と液相の界面であり、試料内の界面の位置および炉内
の温度分布から結晶と液相の界面温度を知ることが可能
となる。この界面温度は、実際の鋳造時に存在するパウ
ダーフィルムの固着相と溶融部分との界面の温度を表し
ているため、この温度が高い程鋳型内抜熱は緩くなる。
この指標をもとにパウダーを評価しながらパウダー設計
を行うことにより、鋳片表面に縦割れ発生が著しく少な
い鋳片を製造することが可能なパウダーを効率よく設計
することが可能となる。
That is, the interface (19) between the two regions is the interface between the crystal and the liquid phase, and the interface temperature between the crystal and the liquid phase can be known from the position of the interface in the sample and the temperature distribution in the furnace. . Since this interface temperature represents the temperature of the interface between the fixed phase and the molten portion of the powder film that actually exists during casting, the higher this temperature, the slower the heat removal in the mold.
By designing the powder while evaluating the powder based on this index, it becomes possible to efficiently design the powder capable of producing a slab with significantly less vertical cracking on the slab surface.

【0021】[0021]

【実施例】本発明に係る実施例を以下に説明する。実施
例および従来例に用いる低炭素鋼の成分を表1に示し、
実施例および従来例に用いた主なパウダーの成分を表2
に示す。以上の低炭素鋼およびパウダーの成分を用い、
次の条件で実際の連続鋳造機において鋳造を行った。鋳
型振動条件:ストローク6.8mm、オシレーションサ
イクル=55×Vc+50、引き抜き速度:0.9〜2.
0m/min、鋳片寸法:厚み240mm、幅1000
〜2200mm、タンディッシュ内溶鋼加熱度 10〜
30℃。
EXAMPLES Examples according to the present invention will be described below. Table 1 shows the components of the low carbon steels used in Examples and Conventional Examples,
Table 2 shows the components of the main powders used in Examples and Conventional Examples.
Shown in. Using the above low carbon steel and powder components,
Casting was performed in an actual continuous casting machine under the following conditions. Mold vibration condition: stroke 6.8 mm, oscillation cycle = 55 × Vc + 50, drawing speed: 0.9-2.
0 m / min, slab size: thickness 240 mm, width 1000
~ 2200mm, Tundish molten steel heating degree 10
30 ° C.

【0022】以上の条件で試験鋳造を行い、パウダーの
選定を行った。なお使用したパウダーの1300℃にお
ける粘性は2.0〜2.5poise,凝固温度は103
0〜1170℃であった。その際の界面温度と縦割れ発
生指数との関係を図5に示す。界面温度が1100℃よ
りも低い場合(△)には割れの発生が多くなっている
が、これはパウダーフィルム中固着層が薄く、抜熱が高
かったため微細な縦割れや横割れが発生したものであ
り、また界面温度が1200℃より高い場合には抜熱強
度が低すぎたために凝固シェル強度が不足したために縦
割れが発生したものである。
Test casting was performed under the above conditions to select the powder. The powder used had a viscosity at 1300 ° C of 2.0-2.5 poise and a solidification temperature of 103.
It was 0-1170 degreeC. FIG. 5 shows the relationship between the interface temperature and the vertical cracking occurrence index at that time. When the interface temperature is lower than 1100 ° C (△), cracks are more frequently generated, but this is because the fixing layer is thin in the powder film and the heat removal was high, resulting in fine vertical cracks and horizontal cracks. Further, when the interface temperature is higher than 1200 ° C., the heat removal strength was too low and the solidified shell strength was insufficient, causing vertical cracking.

【0023】この図から、表面割れを抑制するためには
約1100〜1200℃の界面温度を持つパウダーが適
切である。本実施例においては表面のピンホール、ブロ
ーホールの発生状況に鑑み図中(◎)のパウダーに変更
したが、(○)の旧パウダー使用時に比べ明らかに縦割
れの発生を抑制することができている。また、ブレーク
アウトの発生をも抑制することができた。
From this figure, a powder having an interface temperature of about 1100 to 1200 ° C. is suitable for suppressing surface cracking. In this embodiment, the powder is changed to (◎) in the figure in consideration of the occurrence of pinholes and blowholes on the surface, but the generation of vertical cracks can be clearly suppressed compared to when the old powder (○) is used. ing. Moreover, the occurrence of breakout could be suppressed.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】本発明による、モールドパウダーの評価
方法を使用することによって、鋳型内抜熱を適切にし、
鋳片表面に縦割れ発生が著しく少ない鋳片を製造可能な
パウダーを効率よく設計することが可能となる。
EFFECTS OF THE INVENTION By using the method for evaluating a mold powder according to the present invention, heat removal in a mold is made appropriate,
It becomes possible to efficiently design a powder capable of producing a slab with significantly less vertical cracking on the slab surface.

【0027】さらに図5のような、表面縦割れと界面温
度の関係が明らかになっていると、今まで全く使用した
経験のない成分系のパウダーについても、予め本発明方
法に従いオフラインにおいてそのパフォーマンスを知る
ことができる。また、予めパウダーと溶鋼の反応性をし
ることができれば、さらに精度の良い予測が可能とな
る。このため安定鋳造を阻害したり、縦割れが多発する
ような危険な実湯試験を回避することが可能となる。
Further, as shown in FIG. 5, when the relationship between the surface vertical crack and the interface temperature is clarified, the performance of the powder of the component system which has never been used up to now according to the method of the present invention is offline. You can know. Further, if the reactivity between the powder and the molten steel can be known in advance, more accurate prediction can be performed. For this reason, it becomes possible to prevent stable casting and to avoid a dangerous actual molten metal test in which vertical cracks frequently occur.

【図面の簡単な説明】[Brief description of drawings]

図1は、鋳造中連鋳鋳型内の、湯面、顆粒パウダー、凝
固シェル及びパウダーフィルムの状況を示す模式図、図
2はパウダーフィルムの全体図、図3(a)はパウダー
フィルム中の固着層厚みを指標化するのに使用する炉の
模式図、図3(b)は炉内の温度分布の図、図4は固相
−液相の界面近傍の組織図、図5は界面温度と縦割れ発
生指数との関係を示す特性図、である。
Fig. 1 is a schematic diagram showing the state of the molten metal surface, granule powder, solidified shell and powder film in the continuous casting mold during casting, Fig. 2 is an overall view of the powder film, and Fig. 3 (a) is the sticking in the powder film. A schematic diagram of a furnace used for indexing the layer thickness, FIG. 3 (b) is a diagram of temperature distribution in the furnace, FIG. 4 is a structural diagram near the solid-liquid interface, and FIG. 5 is an interface temperature. It is a characteristic view showing a relation with a vertical crack occurrence index.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】炭素含有量が0.01〜0.08重量%の低
炭素鋼に使用する連続鋳造用パウダーの設計に際し、パ
ウダー結晶相と液相界面の温度を求めることにより鋳型
内抜熱強度の指標とすることを特徴とする低炭素鋼連続
鋳造用パウダーの評価方法。
Claim: What is claimed is: 1. When designing a powder for continuous casting used for low carbon steel having a carbon content of 0.01 to 0.08% by weight, heat removal in a mold by determining the temperature of the powder crystal phase and liquid phase interface. A method for evaluating powder for continuous casting of low-carbon steel, which is characterized by using it as an index of strength.
JP4034647A 1992-02-21 1992-02-21 Evaluation method of powder for continuous casting of low carbon steel Expired - Lifetime JP2637004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4034647A JP2637004B2 (en) 1992-02-21 1992-02-21 Evaluation method of powder for continuous casting of low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4034647A JP2637004B2 (en) 1992-02-21 1992-02-21 Evaluation method of powder for continuous casting of low carbon steel

Publications (2)

Publication Number Publication Date
JPH05228596A true JPH05228596A (en) 1993-09-07
JP2637004B2 JP2637004B2 (en) 1997-08-06

Family

ID=12420236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4034647A Expired - Lifetime JP2637004B2 (en) 1992-02-21 1992-02-21 Evaluation method of powder for continuous casting of low carbon steel

Country Status (1)

Country Link
JP (1) JP2637004B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094150A (en) * 2001-09-19 2003-04-02 Nippon Yakin Kogyo Co Ltd CONTINUOUS CASTING POWDER AND CONTINUOUS CASTING METHOD FOR Ti AND Al STEEL
JP2008212972A (en) * 2007-03-02 2008-09-18 Jfe Steel Kk METHOD FOR MANUFACTURING CAST SLAB OF HIGH Ni STEEL

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63214653A (en) * 1987-03-02 1988-09-07 Sumitomo Metal Ind Ltd Method for determining crystallization temperature of high-temperature melt

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63214653A (en) * 1987-03-02 1988-09-07 Sumitomo Metal Ind Ltd Method for determining crystallization temperature of high-temperature melt

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094150A (en) * 2001-09-19 2003-04-02 Nippon Yakin Kogyo Co Ltd CONTINUOUS CASTING POWDER AND CONTINUOUS CASTING METHOD FOR Ti AND Al STEEL
JP2008212972A (en) * 2007-03-02 2008-09-18 Jfe Steel Kk METHOD FOR MANUFACTURING CAST SLAB OF HIGH Ni STEEL

Also Published As

Publication number Publication date
JP2637004B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
US4667725A (en) Method for producing cast-iron, and in particular cast-iron which contains vermicular graphite
Warrington et al. Development of a new hot-cracking test for aluminium alloys
JPH08252654A (en) Method for casting metal and method for continuously casting metal strip
US4213497A (en) Method for casting directionally solidified articles
US3939895A (en) Method for casting directionally solidified articles
JP4430638B2 (en) Mold powder for continuous casting of high aluminum steel
US3630267A (en) Method of controlling the temperature of molten ferrous metal
Timelli et al. Effect of superheat and oxide inclusions on the fluidity of A356 alloy
JP2637004B2 (en) Evaluation method of powder for continuous casting of low carbon steel
Woulds et al. Development of a conventional fine grain casting process
JP2637005B2 (en) Evaluation method of powder for continuous casting of medium carbon steel
JP3317258B2 (en) Mold powder for continuous casting of high Mn round section slabs
KR960000325B1 (en) Mold flux of continuous casting
JP4451798B2 (en) Continuous casting method
Radhakrishna et al. Dendrite arm spacing and mechanical properties of aluminium alloy castings
RU2528569C2 (en) Determination of amount of modifying agent to be added to iron melt
TWI792485B (en) continuous casting method for steel
JP2003094151A (en) POWDER FOR CONTINUOUS CASTING FOR Ni-GROUP ALLOY AND METHOD FOR CONTINUOUS CASTING
US20080060779A1 (en) Sod, slurry-on-demand, casting method and charge
JP3330496B2 (en) Measuring method of molten steel flow
NURI et al. Solidification macrostructure of ingots and continuously cast slabs treated with rare earth metal
JP2002011558A (en) Method for continuously casting steel
Siddiqui et al. Feeding Behavior during Solidification of Binary Alloy Ingots
JPH0712531B2 (en) Method for preventing restraint breakout during continuous casting
Anyalebechi Effects of mold material and casting speed on shell morphology and attendant subsurface microstructure of aluminum alloy 3003

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970304