JPH05228219A - Cancer treating thermo-element composition - Google Patents
Cancer treating thermo-element compositionInfo
- Publication number
- JPH05228219A JPH05228219A JP7297492A JP7297492A JPH05228219A JP H05228219 A JPH05228219 A JP H05228219A JP 7297492 A JP7297492 A JP 7297492A JP 7297492 A JP7297492 A JP 7297492A JP H05228219 A JPH05228219 A JP H05228219A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- cancer
- element composition
- coated
- anticancer agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrotherapy Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、癌治療用温熱素子組成
物に関するものであり、詳しくは癌などの悪性腫瘍治療
法の1種であるハイパーサーミア(温熱療法)における
磁気誘導方式において、局部加熱用インプラント材料と
して使用でき、且つ抗癌剤放出による癌化学療法との併
用ができる癌治療用温熱素子組成物に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal element composition for treating cancer, and more specifically, it is a magnetic induction method in hyperthermia (hyperthermia), which is one of the methods for treating malignant tumors such as cancer, and locally heats it. The present invention relates to a thermal element composition for cancer treatment, which can be used as an implant material for cancer and can be used in combination with cancer chemotherapy by releasing an anticancer agent.
【0002】[0002]
【従来の技術】癌化学療法における薬剤投与方法は、注
射器での静脈注入による全身への投与が普通である。し
かし、投与する薬剤の毒性による副作用が問題となって
いる。即ち、抗癌剤は、その由来と作用の如何に関わら
ず、腫瘍細胞と正常細胞のそれぞれに対する毒性発揮値
が近似しているためである。従って、いかに抗癌剤を癌
細胞に選択的に集中させ、長時間作用させるかという事
が課題となっている。2. Description of the Related Art The usual method of drug administration in cancer chemotherapy is systemic administration by intravenous injection using a syringe. However, side effects due to toxicity of the drug to be administered have become a problem. That is, the anti-cancer agent has similar toxicity exertion values to tumor cells and normal cells regardless of their origin and action. Therefore, how to selectively concentrate the anti-cancer agent on the cancer cells and make it act for a long time is a problem.
【0003】上記課題解決の方法として、マイクロカプ
セル、マイクロスフィアの研究が行われている。マイク
ロカプセルは、抗癌剤をカプセル中に入れ、カプセルの
外壁を通して抗癌剤が生体内に徐放出来る機構を持つも
のである。また、マイクロカプセル自身には腫瘍指向性
が無いため、腫瘍支配動脈への選択的注入による化学塞
栓療法の応用が主である。しかし、マイクロカプセルに
おける抗癌剤投与の制御は、その外壁構成物質の物理・
化学的性質と構造によって決定され易く、人為的な投与
制御が出来ないという欠点を持っている。As a method for solving the above problems, research on microcapsules and microspheres has been conducted. The microcapsule has a mechanism in which an anticancer agent is put in the capsule and the anticancer agent can be gradually released into the living body through the outer wall of the capsule. In addition, since the microcapsules themselves have no tumor tropism, chemoembolization therapy by selective injection into the tumor-dominant artery is mainly applied. However, the control of anticancer drug administration in microcapsules depends on the physical and physical properties of the outer wall constituents.
It has the drawback that it is easily determined by its chemical properties and structure, and that it cannot be controlled artificially.
【0004】マイクロスフィアは、血液循環系造影剤と
して使用されているアルブミン小球体に抗癌剤を含有分
散させた粒子である。しかし、アルブミン小球体は、水
溶液中で膨潤または溶解する事もあるので含有薬物の放
出挙動は複雑なものとなり、人為的放出制御をする事は
難しい。Microspheres are particles in which an anticancer agent is dispersed in albumin microspheres used as a blood circulation system contrast agent. However, since albumin microspheres may swell or dissolve in an aqueous solution, the release behavior of the contained drug becomes complicated, and it is difficult to control artificial release.
【0005】何らかの方法で人為的に、抗癌剤を放出す
る機構として、磁性材料を応用した薬剤放出素子が実用
新案平2−35750に公開されている。この素子は、
フェライト焼結体のため生体内に埋め込むためには切開
手術を必要とする。更に、薬剤放出制御は磁場印加によ
る磁性体の発熱で行っているが、フェライト焼結体のた
め磁場印加方向により焼結体の発熱が違うため実際の放
出制御は難しいと考えられる。As a mechanism for artificially releasing an anticancer agent by some method, a drug releasing element to which a magnetic material is applied has been disclosed in Utility Model No. 2-35750. This element is
Since it is a ferrite sintered body, an incision operation is required to implant it in the living body. Further, the drug release control is performed by the heat generation of the magnetic body by applying a magnetic field, but since it is a ferrite sintered body, the heat generation of the sintered body differs depending on the magnetic field application direction, so it is considered that actual release control is difficult.
【0006】近年、癌の化学療法と温熱療法との併用に
よる癌治療効果が判明してきている。併用による癌細胞
の致死効果増強の理由として、温熱による高感受性癌細
胞周期(細胞齢)と抗癌剤による高感受性癌細胞周期の
差異による補償作用、抗癌剤効果低下時の加温による癌
再発防止、及び加温による抗癌剤の癌細胞膜透過性が増
すことが挙げられる。[0006] In recent years, the therapeutic effect of cancer by the combined use of chemotherapy for cancer and hyperthermia has been revealed. As a reason for enhancing the lethal effect of cancer cells by the combined use, a compensatory effect due to the difference between the hypersensitive cancer cell cycle (cell age) by hyperthermia and the hypersensitive cancer cell cycle by anticancer agents, the prevention of cancer recurrence by heating when the anticancer agent effects decrease, and It can be mentioned that the cancer cell membrane permeability of the anticancer agent is increased by heating.
【0007】局所温熱療法は、一般に電磁波を利用する
ことが多く、高周波化すれば局所加温は可能であるもの
の深部加温が困難になり、低周波化すれば深部加温は容
易になるが加温範囲が広くなるという本質的な問題を有
している。また、生体内部の温度を測定して、その測定
温度によって電磁波出力にフィードバック制御をしなけ
れば生体の加温箇所の温度が上昇し過ぎるため生体に害
を及ぼす可能性がある。[0007] In general, local hyperthermia often uses electromagnetic waves. If the frequency is increased, local heating is possible but deep heating becomes difficult, and if the frequency is lowered, deep heating is facilitated. It has an essential problem of widening the heating range. If the temperature inside the living body is not measured and the measured temperature is not used for feedback control of the electromagnetic wave output, the temperature of the heated portion of the living body rises excessively, which may be harmful to the living body.
【0008】これらの電磁波を応用した温熱療法の問題
点をカバーすべく近年開発されつつあるのが、ソフトヒ
ーティング法と呼ばれる方法である。この方法では感温
性磁性材料を生体内の腫瘍部に埋め込み、高周波磁界で
励磁することによって発生するヒステリシス損失等を発
熱源として利用し加温するものである。この方法によれ
ば、治療温度は、感温素子のキュリー温度により決まる
ため電磁波出力の調整をする必要がないことを特徴とし
ている。A method called soft heating method is being developed in recent years to cover the problems of hyperthermia applying these electromagnetic waves. In this method, a temperature-sensitive magnetic material is embedded in a tumor part in a living body, and a hysteresis loss or the like generated by exciting with a high-frequency magnetic field is used as a heat source to heat. According to this method, since the treatment temperature is determined by the Curie temperature of the temperature sensitive element, it is not necessary to adjust the electromagnetic wave output.
【0009】[0009]
【本発明が解決しようとする課題】上記より本発明が解
決しようとする課題は、抗癌剤の局所的投与を人為的に
制御し、生体内への埋め込みはできるだけ患者にダメー
ジを与えないように、カテーテルや留置針で注入でき、
且つ、電磁波出力調整と温度計測の必要がないソフトヒ
ーティング法による局所加熱を行い、癌化学療法と温熱
療法の併用治療を1種の素子で行おうとするものであ
る。From the above, the problem to be solved by the present invention is to artificially control the local administration of an anticancer agent so that implantation in a living body does not damage the patient as much as possible. Can be injected with a catheter or indwelling needle,
Moreover, the local heating is performed by the soft heating method which does not require the adjustment of the electromagnetic wave output and the temperature measurement, and the combined treatment of the cancer chemotherapy and the hyperthermia is intended to be performed by one type of element.
【0010】従って、本発明の目的は、磁気誘導方式に
おけるソフトヒーティング法において、局部加熱用イン
プラント材料として使用でき、且つ抗癌剤の人為的放出
制御による癌化学療法との併用ができる癌治療用温熱素
子を提供することである。Therefore, an object of the present invention is to provide a hyperthermia for cancer treatment which can be used as an implant material for local heating in the soft heating method in the magnetic induction system and can be used in combination with cancer chemotherapy by artificial release control of an anticancer agent. It is to provide an element.
【0011】[0011]
【課題を解決するための手段】上記の課題を解決するた
め種々検討した結果、42℃乃至90℃のキュリー温度
を有し、粉末形状が円板状の磁性粉末の表面に0.5 〜3
μm の厚さに導電性金属膜を被覆し、その上に、抗癌剤
を被覆又は付着させ、更にその上に感温性高分子を被覆
した感温性磁性粉末を作成し、生理食塩水中において2
00KHz ・3400A/m の高周波交番磁界を印加した
時、その感温性磁性粉末が加熱され、感温性高分子膜が
溶融し、抗癌剤の放出制御が人為的にでき、感温性高分
子膜及び抗癌剤が溶融、分散した後、残留した感温性磁
性材料により温熱療法が可能であることを確認し本発明
を完成した。As a result of various studies for solving the above problems, as a result, a magnetic powder having a disk-like magnetic powder having a Curie temperature of 42 ° C. to 90 ° C. and a powder shape of 0.5 to 3 is formed.
A conductive metal film is coated to a thickness of μm, an anticancer agent is coated or adhered on it, and a temperature-sensitive polymer is further coated thereon to prepare a temperature-sensitive magnetic powder.
When a high frequency alternating magnetic field of 00KHz · 3400A / m is applied, the temperature-sensitive magnetic powder is heated, the temperature-sensitive polymer film is melted, and the release of the anticancer drug can be artificially controlled. After melting and dispersing the anticancer agent, it was confirmed that hyperthermia can be performed by the residual temperature-sensitive magnetic material, and the present invention was completed.
【0012】本発明において、感温性磁性粉末のキュリ
ー温度は、42〜90℃の範囲で、高分子膜の融点以上
である必要がある。42〜90℃の範囲のキュリー温度
を持つ磁性材料としては特開平2−47243号公報及
び特開平2−61036号公報に記載されている感温性
アモルファス合金やFe−Pt合金等がある。キュリー温度
が42℃未満では、温熱療法として有効な治療温度域ま
で加温できず、90℃を越えると温熱療法の治療温度域
をオーバーして過熱となるためである。好ましいキュリ
ー温度範囲は、45〜55℃である。本発明素子の具体
的な生体内への注入は、素子粒径を100μm 以下とす
ることでカテーテル等により可能となる。更に、感温性
磁性材料は円板状であり、直径と厚さのアスペクト比が
3〜10である必要がある。アスペクト比が3または直
径が30μm 以下であると磁束の集束が充分でなく発熱
しない。アスペクト比が10または直径が100μm を
越えると粉末としての流動性が極端に悪くなり注入が困
難となる。好ましい範囲はアスペクト比が5〜8、直径
が40〜60μm である。In the present invention, the Curie temperature of the temperature-sensitive magnetic powder must be in the range of 42 to 90 ° C. and above the melting point of the polymer film. Examples of magnetic materials having a Curie temperature in the range of 42 to 90 ° C. include temperature-sensitive amorphous alloys and Fe—Pt alloys described in JP-A-2-47243 and JP-A-2-61036. This is because if the Curie temperature is less than 42 ° C., it is not possible to heat the treatment temperature range effective as hyperthermia, and if it exceeds 90 ° C., the treatment temperature range of hyperthermia is exceeded and overheating occurs. The preferred Curie temperature range is 45-55 ° C. The device of the present invention can be specifically injected into a living body by a catheter or the like by setting the device particle size to 100 μm or less. Further, the temperature-sensitive magnetic material must be disk-shaped and have an aspect ratio of diameter to thickness of 3 to 10. When the aspect ratio is 3 or the diameter is 30 μm or less, the magnetic flux is not sufficiently focused and heat is not generated. If the aspect ratio exceeds 10 or the diameter exceeds 100 μm, the fluidity of the powder becomes extremely poor, and injection becomes difficult. A preferable range is an aspect ratio of 5 to 8 and a diameter of 40 to 60 μm.
【0013】磁性材料を被覆する導電性金属はその皮膜
厚さが0.5〜3μm である必要がある。0.5μm 以下で
あると導電性金属の抵抗が高すぎて渦電流が生じない。
一方、3μm を越えると磁性材料による温度制御が出来
なくなる。好ましい範囲は1〜2μm である。The conductive metal coating the magnetic material must have a coating thickness of 0.5 to 3 μm. When the thickness is 0.5 μm or less, the resistance of the conductive metal is too high and eddy current does not occur.
On the other hand, if it exceeds 3 μm, the temperature cannot be controlled by the magnetic material. The preferred range is 1-2 μm.
【0014】抗癌剤は、感温性磁性粉末表面全面に被覆
する必要はなく、点在的な被覆でも良い。抗癌剤は、注
入する本発明素子の量から必要な添加量を求め被覆する
事が出来る。被覆方法については、化学的、物理化学
的、及び物理的方法があるが、簡便な方法として、機械
的に造粒することによって磁性体表面に抗癌剤を被覆す
る事ができる。The anticancer agent need not be coated on the entire surface of the temperature-sensitive magnetic powder, but may be a scattered coating. The anticancer agent can be coated by determining the required addition amount from the amount of the element of the present invention to be injected. The coating method includes chemical, physicochemical, and physical methods. As a simple method, the surface of the magnetic substance can be coated with the anticancer agent by mechanical granulation.
【0015】感温性高分子膜の融点は40℃以下である
と生体に注入した時に、高周波磁界を印加しなくても高
分子膜が溶融してしまう可能性があり、70℃以上であ
ると感温性磁性粉末が発熱しても高分子膜が十分溶融し
ないので感温性高分子膜は40〜70℃で溶融する必要
がある。好ましい溶融温度範囲は42〜50℃である。
この範囲の溶融温度をもつ高分子としては座薬に含まれ
るワックスやポリアクリルアマイドとブチルメタクリレ
ートの重合体その他、生体に無害な低融点高分子の複合
体が考えられる。When the temperature-sensitive polymer film has a melting point of 40 ° C. or lower, it may melt when injected into a living body without applying a high frequency magnetic field, and is 70 ° C. or higher. Since the polymer film does not melt sufficiently even when the temperature-sensitive magnetic powder generates heat, the temperature-sensitive polymer film needs to be melted at 40 to 70 ° C. A preferable melting temperature range is 42 to 50 ° C.
As a polymer having a melting temperature in this range, a wax contained in a suppository, a polymer of polyacrylic amide and butyl methacrylate, or a complex of a low-melting polymer harmless to the living body is considered.
【0016】[0016]
【実施例】キュリー温度が50℃の酸化物磁性粉末に導
電性金属膜及び抗癌剤を被覆し、更にその上に43℃で
溶融する座薬用感温性高分子複合体を被覆した本発明素
子組成物の概略図を図1に示す。1が円板状の感温性磁
性粉末であり、2が導電性金属膜、4が感温性高分子で
ある。3は抗癌剤であるが、磁性粉末表面全面に被覆さ
れている必要はない。更に、図2は感温性高分子膜が2
重(3重以上でも可能)に被覆されており、磁性粉末に
近い高分子膜は高い溶融温度を持ち外側に近いほど溶融
温度が低くなっている。これにより、磁性粉末が発熱し
たときに外側の高分子膜から選択的に溶融して、薬剤の
放出制御が人為的な交番磁界の印加により行うことが出
来る。更に、図3には高分子膜が溶融、分散した後、生
理食塩水中において周波数200KHz 、磁界強度340
0A/m の高周波磁界を印加した時の昇温特性である。3
分以内で温熱療法の治療温度に到達していることが分か
る。EXAMPLE A device composition of the present invention in which an oxide magnetic powder having a Curie temperature of 50 ° C. is coated with a conductive metal film and an anticancer agent, and a suppository temperature-sensitive polymer composite which melts at 43 ° C. is further coated thereon. A schematic diagram of the product is shown in FIG. Reference numeral 1 is a disc-shaped temperature-sensitive magnetic powder, 2 is a conductive metal film, and 4 is a temperature-sensitive polymer. Although 3 is an anticancer agent, it is not necessary to cover the entire surface of the magnetic powder. Further, FIG. 2 shows that the temperature-sensitive polymer film is 2
The polymer film that is heavily (three or more layers can be coated) has a high melting temperature close to that of the magnetic powder, and the melting temperature becomes lower toward the outside. With this, when the magnetic powder generates heat, it is selectively melted from the outer polymer film, and the drug release can be controlled by artificially applying an alternating magnetic field. Further, in FIG. 3, after the polymer film was melted and dispersed, the frequency was 200 KHz and the magnetic field strength was 340 in physiological saline.
It is a temperature rise characteristic when a high frequency magnetic field of 0 A / m is applied. Three
It can be seen that the treatment temperature of hyperthermia is reached within minutes.
【0017】本発明の癌治療用温熱素子組成物は、生体
内への留置が切開手術すること無しで、注射器等により
注入することが可能である。The thermal element composition for cancer treatment of the present invention can be injected with a syringe or the like without being placed in a living body without performing an incision operation.
【0018】[0018]
【発明の効果】本発明による癌治療用温熱素子組成物を
使用することにより、癌細胞への抗癌剤放出制御を人為
的且つ効果的に行うことができ、更に抗癌剤放出後の残
留磁性粉末の自己温度制御による温熱治療ができる。EFFECTS OF THE INVENTION By using the thermogenic composition for treating cancer according to the present invention, it is possible to artificially and effectively control the release of the anticancer drug to the cancer cells, and further, to suppress the self-retention of the residual magnetic powder after the release of the anticancer drug. Heat treatment with temperature control is possible.
【図1】本発明による癌治療用温熱素子組成物の1例を
示した概略図である。FIG. 1 is a schematic view showing an example of a thermal element composition for treating cancer according to the present invention.
【図2】本発明による癌治療用温熱素子組成物の別の例
を示した概略図である。FIG. 2 is a schematic view showing another example of the thermal element composition for cancer treatment according to the present invention.
【図3】本発明による温熱素子組成物に高周波磁界を印
加したときの昇温特性を示すグラフ図である。FIG. 3 is a graph showing temperature rising characteristics when a high frequency magnetic field is applied to the heating element composition according to the present invention.
1 酸化物磁性材料 2 導電性金属膜 3 抗癌剤 4 感温性高分子 1 Oxide magnetic material 2 Conductive metal film 3 Anticancer agent 4 Thermosensitive polymer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 皆川 栄 埼玉県熊谷市末広四丁目14番1号 株式会 社リケン熊谷事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sakae Minagawa 4-14-1, Suehiro, Kumagaya-shi, Saitama Stock company Riken Kumagaya Works
Claims (4)
る酸化物磁性材料の表面の一部又は全部を、0.5〜3μ
m の導電性金属膜で被覆し、その上に抗癌剤を被覆また
は付着させ、更にその上を40℃〜70℃で溶融する感
温性高分子で被覆したことを特徴とする癌治療用温熱素
子組成物。1. A part or all of the surface of the oxide magnetic material having a Curie temperature of 42 ° C. to 90 ° C. is 0.5 to 3 μm.
A thermal treatment element for cancer characterized by being coated with a conductive metal film of m, coated with or adhered with an anticancer agent, and further coated with a temperature-sensitive polymer that melts at 40 ° C to 70 ° C. Composition.
クト比(直径/厚さ)が3〜10、直径の範囲が30〜
100μm の円板状である請求項1の癌治療用温熱素子
組成物。2. The oxide magnetic material has an aspect ratio of thickness and diameter (diameter / thickness) of 3 to 10, and a diameter range of 30 to.
The thermal element composition for treating cancer according to claim 1, which has a disk shape of 100 μm.
ある請求項1又は2の癌治療用温熱素子組成物。3. The thermal element composition for cancer treatment according to claim 1, wherein the conductive metal film has a thickness of 1 μm −2 μm.
度範囲にある請求項1乃至3いずれか1項の癌治療用温
熱素子組成物。4. The thermal element composition for cancer treatment according to claim 1, wherein the temperature-sensitive polymer has a melting temperature range of 42 ° C. to 50 ° C.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7297492A JPH05228219A (en) | 1992-02-26 | 1992-02-26 | Cancer treating thermo-element composition |
EP19920309400 EP0543498B1 (en) | 1991-11-20 | 1992-10-15 | Injectable powder for the treatment of cancer |
DE1992625043 DE69225043T2 (en) | 1991-11-20 | 1992-10-15 | Injectable powder for cancer treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7297492A JPH05228219A (en) | 1992-02-26 | 1992-02-26 | Cancer treating thermo-element composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05228219A true JPH05228219A (en) | 1993-09-07 |
Family
ID=13504875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7297492A Pending JPH05228219A (en) | 1991-11-20 | 1992-02-26 | Cancer treating thermo-element composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05228219A (en) |
-
1992
- 1992-02-26 JP JP7297492A patent/JPH05228219A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mitsumori et al. | Development of intra-arterial hyperthermia using a dextran-magnetite complex | |
JP5465174B2 (en) | Hyperthermia device and its use with nanoparticles | |
US5429583A (en) | Cobalt palladium seeds for thermal treatment of tumors | |
US20140249351A1 (en) | Microparticles for selectively targeted hyperthermia | |
EP0543498B1 (en) | Injectable powder for the treatment of cancer | |
JP2000503879A (en) | Targeted hysteresis hyperthermia as a treatment for diseased tissue | |
JP2005518244A (en) | Non-invasive heating method of transplant vascular treatment device | |
WO2000052714A1 (en) | Heating of magnetic material by hysteresis effects | |
M Tishin et al. | Developing antitumor magnetic hyperthermia: principles, materials and devices | |
Tang et al. | Numerical method to evaluate the survival rate of malignant cells considering the distribution of treatment temperature field for magnetic hyperthermia | |
Grillone et al. | Magnetic nanotransducers in biomedicine | |
CN107206082B (en) | Phase-change nanoparticles | |
KR102051143B1 (en) | Microrobot for hyperthermia and medical treatment material delivery | |
JPH05137803A (en) | Treating element for combined chemo-and thermo-therapy | |
JPH05228219A (en) | Cancer treating thermo-element composition | |
JPH0549704A (en) | Thermal element for therapy of cancer | |
EP3359141B1 (en) | Mixture of lafesih magnetic nanoparticles with different curie temperatures to improve inductive heating efficiency for hyperthermia therapy | |
JPH05137802A (en) | Thermotherapy element to be infused in living body | |
EP2961429B1 (en) | Method for the production of sub-micrometric particles and their theranostic use in oncology with a specific apparatus | |
US20150157872A1 (en) | Device for Treating Cancer by Hyperthermia and the Method Thereof | |
JP2599619B2 (en) | Hyperthermia implant material | |
Sarkar et al. | A review of nanoferrites: synthesis and application in hyperthermia | |
JPH0261036A (en) | Temperature sensitive amorphous alloy | |
Eagle et al. | Modeling an injection profile of nanoparticles to optimize tumor treatment time with magnetic hyperthermia | |
JPH0252663A (en) | Composite magnetic material for thermotherapy |