JPH0522798B2 - - Google Patents

Info

Publication number
JPH0522798B2
JPH0522798B2 JP61171698A JP17169886A JPH0522798B2 JP H0522798 B2 JPH0522798 B2 JP H0522798B2 JP 61171698 A JP61171698 A JP 61171698A JP 17169886 A JP17169886 A JP 17169886A JP H0522798 B2 JPH0522798 B2 JP H0522798B2
Authority
JP
Japan
Prior art keywords
well
drilling
signal
measurement
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61171698A
Other languages
Japanese (ja)
Other versions
JPS6332085A (en
Inventor
Hiroaki Niitsuma
Hideaki Takahashi
Hiroyuki Abe
Noritoshi Nakabachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP61171698A priority Critical patent/JPS6332085A/en
Publication of JPS6332085A publication Critical patent/JPS6332085A/en
Publication of JPH0522798B2 publication Critical patent/JPH0522798B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、坑井の掘削工程の監視および地下情
報の収集を行なう坑井掘削監視方法に関し、特
に、かかる工程監視および情報収集を即時に行な
い得るようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a well drilling monitoring method for monitoring the drilling process of a well and collecting underground information. It was made so that it could be done.

(従来の技術) 従来、地下エネルギー開発や資源開発あるいは
土木技術などの地下工学の分野においては、地下
の調査、探索、資源の採取等、種々の目的のもと
に多数の坑井が掘削されている。かかる坑井の掘
削については地下情報の収集が極めて重要である
が、その地下情報の収集は、従来坑井の掘削によ
つて生じたカツテイングすなわち掘り屑やコアの
観察、あるいは、掘削後に行なう各種の検層によ
つて行なわれており、それらの観察や検層の結果
を分析することによつて、地層、水脈、破砕帯、
鉱床等の確認や掘削工程の評価などを行なつてい
た。
(Conventional technology) Conventionally, in the field of underground engineering such as underground energy development, resource development, and civil engineering, a large number of wells have been drilled for various purposes such as underground investigation, exploration, and resource extraction. ing. When drilling such wells, it is extremely important to collect underground information, but this underground information can be collected by observing cuttings, that is, cuttings and cores produced by conventional well drilling, or by various methods that are carried out after drilling. By analyzing these observations and logging results, we can identify geological strata, water veins, fracture zones,
Confirmation of ore deposits and evaluation of excavation processes were carried out.

(発明が解決しようとする問題点) しかしながら、従来は、いずれの場合において
も掘削すべき坑井に関する地下情報に即時に得る
ことは困難であつて一定の時間を要し、また、得
られる情報の種類にも制限があつた。したがつ
て、坑井の掘削に関しては、新たな地下情報抽出
技術や、坑井の掘進中に地下情報や掘進状態を示
すデータをオンラインで監視する技術が重要視さ
れて、その開発を促進する必要があるという問題
点があつた。
(Problem to be solved by the invention) However, in any case, conventionally, it has been difficult to immediately obtain underground information regarding the well to be excavated, and it takes a certain amount of time. There were also restrictions on the types of Therefore, when it comes to drilling wells, new technologies for extracting underground information and technologies for online monitoring of underground information and data showing the state of drilling during well drilling are being emphasized, and their development is being promoted. The problem was that it was necessary.

本発明の目的は、上述した従来の問題を解決
し、坑井の掘削に伴つて生じる弾性波をいわゆる
アコーステイツク・エミツシヨン(AE)法によ
り測定し、掘削の状態や坑井の仕上り、地質構
造、地下岩石の強度、変質の強弱、溶結の強弱、
脈、き裂、破砕帯等の地下情報を即時にモニタリ
ングし得る技術としての坑井掘削監視方法を提供
することにある。
The purpose of the present invention is to solve the above-mentioned conventional problems and to measure the elastic waves generated by the drilling of a well using the so-called acoustic emission (AE) method. , strength of underground rocks, strength of alteration, strength of welding,
The object of the present invention is to provide a method for monitoring well drilling as a technology that can immediately monitor underground information such as veins, cracks, and fracture zones.

(問題点を解決するための手段) 本発明は、坑井内AE計測装置を用いて、坑井
掘削時に発生するアコーステイツク・エミツシヨ
ン(AE)信号を計測し、その計測結果から、坑
井掘削の進行状況や地下情報を知るようにしたも
のであり、坑井内AE計測装置として本発明者ら
の開発に係る特願昭60−273348号明細書に記載の
「方位計」、特願昭60−236442号明細書に記載の
「坑井内に設置される振動器の固定装置」等を用
いた坑井内三軸AE計測システムにより上述のAE
計測を行なう。
(Means for Solving the Problems) The present invention uses an in-well AE measurement device to measure acoustic emission (AE) signals generated during well drilling, and from the measurement results, the well drilling It is designed to know the progress status and underground information, and is similar to the "direction meter" described in the specification of Japanese Patent Application No. 273348-1983, which was developed by the present inventors as an in-well AE measuring device. The above-mentioned AE can be measured by an in-well three-axis AE measurement system using the "vibrator fixing device installed in the well" described in the specification of No. 236442.
Take measurements.

すなわち、本発明坑井掘削監視方法は、所望の
坑井を掘削すべき土地の近傍に所望の深さを有す
る監視用坑井を設け、その監視用坑井内に所要の
感度を有するアコーステイツク・エミツシヨン計
測装置を配設して、当該計測装置により前記所望
の坑井の掘削に伴う振動によつて生ずるアコース
テイツク・エミツシヨン信号を計測することによ
り、当該所望の坑井の掘削工程の監視および地下
情報の収集を即時に行うことを特徴とするもので
ある。
That is, in the well drilling monitoring method of the present invention, a monitoring well having a desired depth is provided in the vicinity of the land where a desired well is to be drilled, and an acoustic probe having a required sensitivity is installed in the monitoring well. By installing an emission measuring device and measuring the acoustic emission signal generated by the vibration accompanying the drilling of the desired well, the drilling process of the desired well can be monitored and underground. The feature is that information is collected immediately.

(作用) 坑井の掘削は、石油、天然ガスの探査・採取、
地熱の探査・採取、地質調査、資源探査、土木調
査、土木工事、採鉱その他の多方面で数多く行な
われており、極めて重要であるために、この種の
技術の国際的な競争は激しく、各国が新技術の開
発にしのぎを削つている。本発明は、坑井技術の
基本技術にかかわるものであり、これによつて坑
井掘削に要する経費を大幅に削減し得る可能性と
ともに、従来の技術では収集し得なかつた地下情
報が即時に得られる極めて高い実用性を発揮する
ことができる。
(Function) Well drilling is the exploration and extraction of oil and natural gas.
It is being carried out in many fields such as geothermal exploration and extraction, geological surveys, resource exploration, civil engineering surveys, civil engineering works, mining, and many other fields.As it is extremely important, international competition for this type of technology is fierce, and many countries are are competing to develop new technology. The present invention relates to basic well technology, which has the potential to significantly reduce the cost required for well drilling, as well as to instantly obtain underground information that could not be collected using conventional technology. The resulting extremely high practicality can be demonstrated.

(実施例) 以下に図面を参照して実施例につき本発明を詳
細に説明する。
(Example) The present invention will be described in detail below with reference to the drawings.

本発明者らは、文部省特別推進研究「深部地殻
エネルギー開発のための人工き裂面の設計に関す
る研究(Г計画)」の一環として、岩手県岩手郡
松尾村東八幡平東北大学実験フイールドにおい
て、坑井の掘削に伴うAE計測を、本発明者らが
開発した坑井内AE計測システムを用いて行ない、
有望な結果を得ることができ、その結果に基づい
て本発明をなしたものである。
As part of the Ministry of Education, Culture, Sports, Science and Technology's special research project, ``Research on the Design of Artificial Crack Surfaces for Deep Crustal Energy Development (Г Project),'' AE measurements accompanying drilling were performed using the in-well AE measurement system developed by the present inventors.
Promising results were obtained, and the present invention was developed based on these results.

因みに、いわゆるAE計測、すなわち、アコー
ステイツク・エミツシヨン計測は、材料の微視的
な割れや変形等に伴つて主に単発的に発生する弾
性波からなるアコーステイツク・エミツシヨン信
号を圧電型、可動コイル型などの各種弾性波セン
サにより検知して測定するものであり、アコース
テイツク・エミツシヨン信号の発生原因によつて
異なる発生回数、総エネルギー、信号波形、周波
数スペクトル分布等を解析して発生原因を同定す
るに適しており、特に、地中における振動によつ
て発生するアコーステイツク・エミツシヨン信号
の計測は、土木、建築、資源開発、特に、地下エ
ネルギー開発の各技術分野で盛んになつて来てい
る。
By the way, so-called AE measurement, that is, acoustic emission measurement, uses a piezoelectric type, moving coil, etc. The acoustic emission signal is detected and measured using various types of elastic wave sensors such as molds, and the cause of the acoustic emission signal is identified by analyzing the number of occurrences, total energy, signal waveform, frequency spectrum distribution, etc. In particular, the measurement of acoustic emission signals generated by underground vibrations is becoming popular in the technical fields of civil engineering, architecture, resource development, and especially underground energy development. .

かかるアコーステイツク・エミツシヨン計測を
用いた本発明方法による坑井掘削監視システムの
概略構成の例を第1図に模式的に示す。図示の概
略構成においては、掘削リグ1を設けて掘削して
いる計測対象の所望の坑井2の近傍に観測井3を
掘削してその坑底部にAEゾンデ4を設置し、掘
削進行中の所望の坑井2におけるドリルカラーや
掘管のこすれによつて発生するAE信号、あるい
は、ビツトの異常、地質構造、き裂、破砕帯、
脈、岩石の強度や逸泥等に対応して発生するAE
信号を観測井3中のAEンデ4により検知して計
測車5により測定する。
An example of a schematic configuration of a well drilling monitoring system according to the method of the present invention using such acoustic emission measurement is schematically shown in FIG. In the schematic configuration shown in the figure, an observation well 3 is drilled near a desired well 2 to be measured, which is being drilled with a drilling rig 1, and an AE sonde 4 is installed at the bottom of the well 2, and an AE sonde 4 is installed at the bottom of the well. AE signals generated by rubbing of the drill collar or drilling pipe in the desired well 2, or bit abnormalities, geological structures, cracks, fracture zones, etc.
AE that occurs in response to veins, rock strength, slippage, etc.
The signal is detected by the AE end 4 in the observation well 3 and measured by the measurement vehicle 5.

かかるAE信号の計測による掘削監視の対象と
する坑井2は、東八幡平フイールド水圧破砕井F
−1であり、計測開始時における計測対象坑井の
深度は312m、掘削終了時すなわち掘り止め時に
おける坑井の深度は379.25mであつた。この坑井
のキツクオフポイント(KOP)すなわち垂直坑
と傾斜坑の屈曲点の深度は60m、最大偏距46mの
ロータリ掘削による傾斜井であり、40.34mの深
度まで10′のケーシングを挿入してある。この坑
井の掘進は、深度45mから359mまでが8′5/8の
トリコーンビツト掘削により、また、359mから
379.25mまでが101mmのHQビツトのコアリングに
よつて行なつた。坑井掘削地域の地層は第四紀層
であり、深度117mまでが関東森第一層と呼ばれ
るデサイト質凝灰岩であり、深度116.7〜257.5m
が凝灰角礫石および安山岩質火山礫凝灰岩からな
る関東森第二層であり、深度257.5m以下が小和
瀬川凝灰岩と呼ばれるデサイト質溶結凝灰岩であ
る。本発明監視方法によるAE計測は最深部の小
和瀬川凝灰岩の掘進中に行なつたが、小和瀬川凝
灰岩の溶結の強さは深度によつて変化している。
Well 2, which is subject to drilling monitoring by measuring such AE signals, is Higashi-Hachimantai field hydraulic fracturing well F.
-1, the depth of the well to be measured at the start of measurement was 312 m, and the depth of the well at the end of drilling, that is, when it was stopped, was 379.25 m. The depth of the kick-off point (KOP), that is, the bending point between the vertical well and the inclined well, is 60 m, and the well is an inclined well drilled by rotary drilling with a maximum offset of 46 m.A casing of 10' was inserted to a depth of 40.34 m. be. This well was excavated by drilling an 8'5/8 tricone bit from 45m to 359m, and from 359m to 359m.
Coring up to 379.25m was done using 101mm HQ bits. The geological strata in the well drilling area are Quaternary strata, and up to a depth of 117m is descitic tuff called the Kanto Mori First Layer, with a depth of 116.7 to 257.5m.
This is the Kanto Mori 2nd layer, which is composed of tuff breccia and andesitic lapilli tuff, and below 257.5 m in depth is descitic welded tuff called Owasegawa tuff. AE measurements using the monitoring method of the present invention were carried out during excavation of the Owasegawa tuff at its deepest point, but the strength of welding in the Owasegawa tuff varies with depth.

上述した坑井の掘削監視におけるAE計測は、
東北大学が開発した坑井内AE計測システムによ
つて行なつた。この坑井内AE計測システムは、
単一測定点におけるP波の到来方向およびP波と
S波との到達時間差のX、Y、Z三軸データを解
析してその到来波の振幅と位相とからAE信号発
生源の方向および距離を求め、その発生源の位置
を同定し得るようにした三軸AE計測方法を用い
ており、そのAE計測システムの構成を第2図に
示す。
The AE measurement in the drilling monitoring of the well mentioned above is
This was carried out using an in-well AE measurement system developed by Tohoku University. This in-well AE measurement system is
The direction and distance of the AE signal source can be determined from the amplitude and phase of the arriving wave by analyzing the X, Y, and Z triaxial data of the arrival direction of the P wave and the arrival time difference between the P wave and the S wave at a single measurement point. A three-axis AE measurement method is used to determine the location of the source and identify the location of the source. The configuration of the AE measurement system is shown in Figure 2.

図示の坑井内AE計測システムにおいては、リ
グを設けて多芯装甲ケーブル6により懸垂した坑
井内AEゾンデ4を観測井3内に湧出した水中に
入れて坑底まで下ろし、第1図に示したようにし
て所望の坑井2から発生したAE信号を検知し、
多芯装甲ケーブル6を介して計測車5に導く。こ
の坑井内AEゾンデ4は、円筒状ケースに収容し
たXYZ三軸方向の加速度を検出するための圧電
加速計、その三軸計測データを増幅するプリアン
プ、例えば本願人の出願に係る特開昭60−273348
号明細書に記載のように、ホール効果素子をモー
タ駆動により回転させてゾンデの方向を測定する
ようにした電子方位計、および、例えば本願日の
出願に係る特願昭60−236442号明細書に記載のよ
うに、直流モータで駆動して円筒状ケースの上下
両端をそれぞれ120°間隔で坑井内壁に固定するよ
うにした固定アームからなつており、XYZ三軸
方向検出出力信号を多芯ケーブル6を介して導い
た計測車5内の地上解析装置によつて処理する。
トランスデユーサとしての圧電加速計は、12個の
トランスデユーサを4個ずつ並列に接続して3グ
ループに区分し、互いに直角に三軸方向にセツト
してAE信号を捕捉する。ゾンデの総合感度は、
7Hz〜7KHzの周波数範囲で0.316〜3.16V/Galで
ある。
In the illustrated wellbore AE measurement system, a rig is installed, and the wellbore AE sonde 4 suspended by a multicore armored cable 6 is immersed in the water gushing out in the observation well 3 and lowered to the bottom of the wellbore, as shown in Figure 1. In this way, the AE signal generated from the desired well 2 is detected,
It is led to the measuring vehicle 5 via a multi-core armored cable 6. This in-well AE sonde 4 includes a piezoelectric accelerometer housed in a cylindrical case for detecting acceleration in the three-axis directions of XYZ, and a preamplifier for amplifying the three-axis measurement data. −273348
As described in the specification of the present patent application, an electronic compass in which the direction of a sonde is measured by rotating a Hall effect element driven by a motor; As described in , it consists of a fixed arm that is driven by a DC motor and fixes both the upper and lower ends of the cylindrical case to the inner wall of the well at 120° intervals, and the XYZ three-axis direction detection output signal is transmitted to the multicore. Processing is performed by a ground analysis device inside the measurement vehicle 5 guided through the cable 6.
The piezoelectric accelerometer used as a transducer consists of 12 transducers connected in parallel, divided into three groups, and set in three axes at right angles to each other to capture AE signals. The overall sensitivity of the sonde is
It is 0.316-3.16V/Gal in the frequency range of 7Hz-7KHz.

地上解析装置においては、坑井内AEゾンデ4
に備えた固定アームの駆動モータを制御する固定
モータ駆動装置7により操作してAEゾンデ4を
坑井内壁に固定し、XYレコーダ9により記録し
ながら電子方位計駆動装置8によりAEゾンデ4
内の電子方位計を操作して得られたXYZ三軸方
向の加速度検出出力信号を、それぞれ10〜40dB
の増幅利得を有する主アンプ10を介し自動デー
タ処理装置11に導いて、8ビツト構成のデイジ
タルデータにして処理するとともに、データレコ
ーダ18、デイジタル記憶オシロスコープ19、
リングダウンカウンタ20、ペン書きレコーダ2
1にも導く。自動データ処理装置11によりデー
タ処理した結果は、パーソナルコンピユータ12
を介し、プリンタ13およびフロツピデータデイ
スケツト14に導いて記録し記憶するとともに、
第1および第2の表示装置15および16により
観測しながらカラープリンタ17により色分け記
録する。
For ground analysis equipment, in-well AE sonde 4
The AE sonde 4 is fixed to the inner wall of the well by operating the fixed motor drive device 7 that controls the drive motor of the fixed arm provided for
The acceleration detection output signal in the three axes of XYZ obtained by operating the electronic compass within the
The data is led to an automatic data processing device 11 via a main amplifier 10 having an amplification gain of
Ring down counter 20, pen writing recorder 2
It also leads to 1. The results of data processing by the automatic data processing device 11 are sent to the personal computer 12.
via the printer 13 and floppy data diskette 14 for recording and storage,
While observing using the first and second display devices 15 and 16, color-coded recording is performed using the color printer 17.

上述した構成による坑井内AE計測システムに
おけるAE信号の測定可能周波数帯域は前述した
7Hz乃至7KHzであり、測定対象坑井2とするF
−1井から水平距離約150mに位置する計測井3
としてのAE−1井における深度210mの坑底付近
にAEゾンデ4を固定して所要の計測を行ない、
観測したAE信号はビデオカテツト型のデータレ
コーダ18に記録しておき、測定終了後にデータ
解析を行なうようにした。
The measurable frequency band of the AE signal in the in-well AE measurement system with the above-mentioned configuration is the aforementioned 7Hz to 7KHz.
Measurement well 3 located approximately 150m horizontal distance from well -1
AE sonde 4 was fixed near the bottom of the AE-1 well at a depth of 210 m and the necessary measurements were taken.
The observed AE signal was recorded on a video cathedral data recorder 18, and data analysis was performed after the measurement was completed.

上述したようにして、坑井の掘削に伴い連続型
のAE信号を観測したが、そのAE信号波形の一例
を第3図に示す。図中、波形Yは掘削対象坑井2
の方向を向いた水平成分であり、波形Zは垂直成
分である。AE信号の振幅は0.01〜0.4Galであり、
バツクグラウンドノイズは約0.001Galであつた。
As described above, a continuous AE signal was observed as the well was drilled, and an example of the AE signal waveform is shown in FIG. In the figure, waveform Y is the well 2 to be drilled.
The waveform Z is a horizontal component directed in the direction of , and the waveform Z is a vertical component. The amplitude of the AE signal is 0.01~0.4Gal,
Background noise was approximately 0.001 Gal.

つぎに、トリコーンビツト掘削区間である深度
320〜347mにおけるAE信号のRMSレベルの掘削
深度による変化の態様とそのAE信号に対応した
カツテイングの状態とを第4図に対比して示す。
また、各深度におけるAE信号のRMSレベルの時
間的変化の態様を第5図に順次に示す。
Next, the depth of the tricone bit excavation section
Figure 4 shows how the RMS level of the AE signal from 320 to 347 m changes with excavation depth and the state of cutting corresponding to the AE signal.
Furthermore, the manner in which the RMS level of the AE signal changes over time at each depth is sequentially shown in FIG.

これらの図に見られるように、AE信号の信号
レベルは、深度によつて変化しており、特に、深
度332〜340mの区間における信号レベルが大きく
なつている。また、第4図示のカツテイングの黒
ずんでいる部分は溶結の度合が強い部分であり、
その部分と第5図においてAE信号レベルの高い
部分とはよく対応している。一方、溶結凝灰岩の
破砕強度は溶結の強さと対応することが知られて
いる。したがつて、溶結の強い部分からのAE信
号レベルが高くなつているのは妥当である。ま
た、深度328mの近傍においては、AE信号レベル
の局所的な増大に対応してカツテイングが黒ずん
でいるのは、局所的な強溶結層にビツトの先端が
達したことを示しているが、カツチングについて
は、深度1m毎にカツテイングを採取しているの
で、局所的強溶結層の存在は余り明確には現われ
ていない。これに対して、AE信号については、
かなり明確に局所的な強溶結層の存在およびその
深度を知ることができる。
As seen in these figures, the signal level of the AE signal changes depending on the depth, and the signal level is particularly high in the section between 332 m and 340 m in depth. Also, the darkened part of the cutting shown in Figure 4 is the part where the degree of welding is strong.
This portion corresponds well to the portion where the AE signal level is high in FIG. 5. On the other hand, it is known that the crushing strength of welded tuff corresponds to the strength of welding. Therefore, it is reasonable that the AE signal level from the strongly welded portion is higher. In addition, near a depth of 328 m, the cutting becomes darker in response to a local increase in the AE signal level, indicating that the tip of the bit has reached the local strongly welded layer. As for the cuttings, the presence of local strongly welded layers is not very evident because cuttings are taken at every 1 m depth. On the other hand, for the AE signal,
The existence and depth of a local strongly welded layer can be known quite clearly.

さて、第5図の最上段にAE信号波形を示した
深度313mの近傍は、第4図示のカツテイングか
らも判るように、安山岩礫を含む弱溶結の凝灰岩
層であり、低レベルのAE信号中にあつて礫に対
応する高レベルのAE信号が間歇的に観測されて
いることが判る。また、第5図の第2段に深度
324mの近傍について示したAE信号波形は、トリ
コーンビツト掘削時に得られるAE信号波形の典
型例であり、地下岩体がビツトによつて崩されて
次第に打ち砕かれていく様子がよく現われてい
る。さらに、第5図の最下段に深度346mの近傍
について示したAE信号波形は、ほぼ均質の層の
掘削時に得られるAE信号波形の例であり、最上
段に示した深度313m近傍のAE信号波形とは対照
的に、インパルス性のAE信号波形があまり現わ
れていない。
Now, the vicinity of the 313m depth where the AE signal waveform is shown in the top row of Figure 5 is a weakly welded tuff layer containing andesite gravel, as can be seen from the cutting shown in Figure 4. It can be seen that high-level AE signals corresponding to gravel are observed intermittently. Also, the depth is shown in the second stage of Figure 5.
The AE signal waveform shown in the vicinity of 324 m is a typical example of the AE signal waveform obtained when excavating a tricone bit, and it clearly shows how the underground rock body is gradually broken down by the bit. Furthermore, the AE signal waveform shown near the depth of 346 m in the bottom row of Fig. 5 is an example of the AE signal waveform obtained when excavating a nearly homogeneous layer, and the AE signal waveform shown in the top row near the depth of 313 m. In contrast, the impulsive AE signal waveform does not appear much.

つぎに、掘削中の坑井からのAE信号レベルと
掘進率とを対照比較して第6図に示す。掘進率は
岩体の強度に対して負の相関を有しており、岩体
の強度を知る目安となるが、第6図においても、
AE信号レベルの高い区間は掘進率が低いという
傾向が現わている。ただし、337m以深の坑井に
おいてはビツト荷重を4t乃至5tに増大させるの
で、掘進率およびAE信号レベルの双方が増大し
ている。掘進率はある一定の掘進長毎にその測定
値が得られるので、掘進率のデータには局所的な
岩体強度の変化は現われていない。
Next, Fig. 6 shows a comparison of the AE signal level from the well being drilled and the drilling rate. The excavation rate has a negative correlation with the strength of the rock body, and is a measure of the strength of the rock body, but as shown in Figure 6,
There is a tendency for the excavation rate to be low in sections with high AE signal levels. However, in wells deeper than 337 m, the bit load is increased to 4t to 5t, which increases both the drilling rate and the AE signal level. Since the excavation rate is measured at every certain excavation length, changes in local rock strength are not reflected in the excavation rate data.

つぎに、従来の電気検層および音波検層の結果
とAE計測の結果とを対照比較して第7図に示す。
電気検層および音波検層の結果は、従来、地下岩
体の緻密さやき裂の存在を知る目安として用いら
れているが、図示の結果においては、電気検層の
結果が深度331〜345mの区間が強溶結であり、深
度320m以浅が弱溶結であることを示唆する程度
であり、図示のAE信号レベルの変化が示すよう
な局所的な岩体強度の変化を詳細に示すデータは
到底得られていない。
Next, Fig. 7 shows a comparison between the results of conventional electrical logging and sonic logging and the results of AE measurement.
The results of electrical logging and sonic logging have conventionally been used as a guideline for determining the density and presence of cracks in underground rock bodies, but the results shown in the figure indicate that the results of electrical logging at depths of 331 to 345 m. This only suggests that the section is strongly welded and the area shallower than 320m is weakly welded, and it is impossible to obtain data that shows detailed changes in local rock strength as shown by the changes in the AE signal level shown in the figure. It has not been done.

坑井の種々な掘削状態を示すAE計測の結果を
第8図に示す。第8図の上段には、ドリルカラー
が坑壁をこすつている状態を表わしたAE信号波
形を示し、図から判るように、掘り管の回転数
60rpmに対応した明確な繰返し波形が観測されて
いる。また、第8図の中段には、掘り管の共振現
象であるジヤリングの発生時に得られたAE信号
波形を示し、ジヤリングの発生に伴つてAE信号
レベルが異常に増大していることを表わしてい
る。さらに、第8図の下段には、掘進終了後の再
掘削時に得られたAE信号波形の例を示す。一般
に、坑井掘削においてはある一定長の掘進の後
に、掘進に伴つて生じた微小な孔曲がりの矯正お
よびカツテイングの浚いを行なうために、掘進し
た部分を数回に亘つて再掘削するのであるが、そ
の再掘削時に生ずるAE信号波形を示したもので
ある。図に示すように、掘進の終了とともにAE
信号レベルが低下し、その後の再掘削の都度、
AE信号の発生が見られ、図示の例においては、
2度の再掘削によつて坑井の曲がり矯正およびカ
ツテイングの浚いなどが完了してAE信号レベル
の増大が以後現われなくなつている。もし、極度
の孔曲がりや坑壁荒れ、崩落等が生じた場合に
は、再掘削時のAE信号波形の態様にそれらの状
態に対応した明確な相違が現われるものと考えら
れる。
Figure 8 shows the results of AE measurements showing various drilling conditions of the well. The upper part of Figure 8 shows the AE signal waveform representing the state in which the drill collar is rubbing against the pit wall.As can be seen from the figure, the rotation speed of the drilling pipe
A clear repetitive waveform corresponding to 60 rpm is observed. In addition, the middle part of Figure 8 shows the AE signal waveform obtained when jarring, which is a resonance phenomenon of the dug pipe, occurs, and shows that the AE signal level increases abnormally as the jarring occurs. There is. Furthermore, the lower part of FIG. 8 shows an example of the AE signal waveform obtained during re-excavation after the completion of excavation. In general, when drilling a well, after drilling a certain length, the excavated area is re-drilled several times in order to correct minute hole bends that occur during drilling and to dredge the cutting. shows the AE signal waveform that occurs during re-excavation. As shown in the figure, when the excavation ends, the AE
When the signal level drops and each subsequent re-excavation,
The occurrence of an AE signal can be seen, and in the example shown,
Through two re-drillings, the well was corrected and the cutting dredged, etc., and the AE signal level no longer increased. If extreme hole bending, roughening of the pit wall, collapse, etc. occur, clear differences will appear in the AE signal waveform during re-excavation, corresponding to these conditions.

以上のAE計測結果に示したように、坑井の掘
削に伴つて連続型のAE信号を観測することがで
き、その信号波形や信号レベルが地下構造や坑井
掘削の状態を反映しているので、これを利用して
つぎのような坑井掘削のモニタリングを行なうこ
とができるものと考えられる。
As shown in the above AE measurement results, continuous AE signals can be observed as the well is drilled, and the signal waveform and signal level reflect the underground structure and well drilling conditions. Therefore, it is thought that this can be used to monitor well drilling as described below.

まず、地層の変化のモニタリングを行なうこと
ができる。上述のAE計測の結果においては、同
一地層内における岩石溶結の強さ、すなわち、岩
石の強度によつてAE信号レベルが変化している
が、地層の変化によつてもAE信号レベルがかな
り変化するものと期待することができる。地層の
変化につては、従来、掘進に伴つて坑井内から取
出したカツテイングを地質技術者が目視により観
察して確認して来たが、上述したAE計測を併用
することにより、即時に、ある程度定量的なデー
タが得られるので、地質の変化の確認が容易にな
るとともに、一層確実に行ない得るものと期待す
ることができる。また、他の坑井における地層境
界で生じたAE信号レベルの変化がすでに確認さ
れているなど、ある程度データの蓄積がある場合
には、坑井地質技術者によらずとも、掘削技術者
のみによつて即時に地層の変化の判断が可能にな
るものと考えられ、その実現は極めて有効と考え
られる。
First, changes in the geological formations can be monitored. In the above AE measurement results, the AE signal level changes depending on the strength of rock welding within the same stratum, that is, the strength of the rock, but the AE signal level also changes considerably due to changes in the stratum. You can expect that. Conventionally, changes in the strata have been confirmed by geological engineers visually observing cuttings taken out from inside the well during drilling, but by combining the above-mentioned AE measurement, changes in the strata can be detected immediately and to some extent. Since quantitative data can be obtained, it is expected that confirmation of geological changes will become easier and more reliable. In addition, if a certain amount of data has been accumulated, such as changes in the AE signal level that have occurred at the geological boundary in other wells, such as changes in the AE signal level that have occurred at the geological boundary in other wells, it may be necessary to use only the drilling engineer rather than the well geotechnical engineer. Therefore, it is thought that it will be possible to immediately judge changes in the strata, and its realization is considered to be extremely effective.

つぎに、AE計測は、同一地層内における岩石
の力学物性の相違や断裂系の検知に用いることが
期待される。すなわち、以上に説明したAE計測
においては、岩石溶結の強弱が検知されたが、同
様に、地層の変質も強弱もAE計測の結果から判
断することができ、さらに、岩石溶結の強弱は岩
石の破壊靭性と直接に関連しているのであるか
ら、従来は、堀り管の回転数、ビツト荷重、泥水
量等の機械的データにより堀削監視を行なうマツ
ドログ法とAE計測とを併用することにより、地
下岩体の破壊靭性をオンラインで推定し得る可能
性もあると考えられる。また、AE計測は、深度
328m近傍のデータから判るように、局所的な力
学物性の変化を高感度で検知することができるの
で、地層の脈やスリツケンサイドすなわち断層に
至らぬ地層の微細なすべり、あるいは、破砕帯等
の断裂の検出に用いるのに好適である。かかる断
裂系の検出は石油や地熱開発あるいは岩盤調査等
に対して極めて重要である。しかしながら、トリ
コーン掘進やパーカツシヨン掘進の場合には、掘
進中に得られるカツテイングの観察によつて断裂
系の存在を検知することは困難であり、また、コ
ア堀りの場合にも、コスト高になることに加え
て、掘進時やコア採取時にコアにクラツクが生じ
やすいので、コアの観察による判断が困難になる
ことが多い。したがつて、AE計測は断裂系の検
知に極めて有効であると考えることができる。ま
た、AE計測が有する即時性は、加熱井の掘削に
おけるように地下の状態に応じて即時に適切な対
応を迫られるような場合などに特に有効である。
Next, AE measurements are expected to be used to detect differences in rock mechanical properties and fracture systems within the same stratum. In other words, in the AE measurement explained above, the strength and weakness of rock welding was detected, but in the same way, alteration and strength of strata can also be determined from the results of AE measurement, and furthermore, the strength and weakness of rock welding can be determined by the strength of rock welding. Since this is directly related to fracture toughness, conventional methods have been used to monitor drilling using mechanical data such as the number of revolutions of the drilling pipe, bit load, and amount of muddy water. It is thought that it may be possible to estimate the fracture toughness of underground rock bodies online. In addition, AE measurement
As can be seen from the data near 328m, it is possible to detect local changes in mechanical properties with high sensitivity, so it is possible to detect veins in the strata, slickensides, minute slips in the strata that do not lead to faults, or fracture zones. It is suitable for use in detecting ruptures in Detection of such fracture systems is extremely important for oil and geothermal development, rock survey, etc. However, in the case of tricone excavation or percution excavation, it is difficult to detect the presence of a fracture system by observing the cuttings obtained during excavation, and in the case of core excavation, the cost is also high. In addition, cracks tend to occur in the core during excavation and core collection, making it difficult to make judgments based on core observation. Therefore, AE measurement can be considered to be extremely effective in detecting fracture systems. Furthermore, the immediacy of AE measurement is particularly effective in cases such as when drilling a heated well, where immediate and appropriate responses are required depending on underground conditions.

さらに、第8図につき前述したように、AE計
測は掘削工程の監視に用いることができ、その監
視の対象の一つは、堀り管やドリルカラーの坑壁
とのこすれやビツトの不良など掘削時に生ずる事
故や障害の検知であり、監視の対象の他の一つは
孔曲がりや崩落など坑井仕上げの良否の判断であ
り、これらの情報の抽出は計測によつて得たAE
信号のRMS信号波形の解析が極めて有効である。
Furthermore, as mentioned above with reference to Fig. 8, AE measurement can be used to monitor the drilling process, and one of the targets for monitoring is drilling problems such as rubbing of the trench pipe or drill collar against the pit wall, or defective bits. This is to detect accidents and failures that occur from time to time, and another monitoring target is to judge whether the well completion is good or bad, such as hole bending or collapse, and the extraction of this information is based on the AE obtained by measurement.
Analysis of the RMS signal waveform of the signal is extremely effective.

(発明の効果) 以上の説明から明らかなように、AEすなわち
アコーステイツク・エミツシヨンの計測を用いる
本発明坑井掘削監視方法によれば、掘削中の坑井
について、以上に列挙して詳述したAE計測の利
点を全面的に活用して、坑井掘削によつて生ずる
AE信号波形の観察やデータ解析により、坑井掘
削の工程監視や地下情報の収集を即時に行なつて
坑井掘削に必要な適切な対応処理を即時に行ない
得るという格別の効果を挙げることができる。
(Effects of the Invention) As is clear from the above explanation, according to the well drilling monitoring method of the present invention using measurement of AE, that is, acoustic emission, the wells being drilled can be Taking full advantage of the advantages of AE measurement, the
By observing AE signal waveforms and analyzing data, it is possible to immediately monitor the process of well drilling and collect underground information, which has the extraordinary effect of immediately performing appropriate response processing necessary for well drilling. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法による坑井掘削監視システ
ムの概略構成の例を模式的に示す構成配置図、第
2図は本発明監視方法に用いるAE計測システム
の構成を示すブロツク線図、第3図はAE信号波
形の例を示す信号波形図、第4図はAE信号レベ
ルの坑井深度依存の態様の例をカツテイングの態
様と対比して示す信号波形図、第5図は各種深度
におけるAE信号レベルの時間的変化の態様の例
を示す信号波形図、第6図はAE信号レベルと坑
井掘進率との対応の例を示す信号波形図、第7図
はAE計測結果と従来の電気・音波検層結果との
例を対応して示す線図、第8図は各種の坑井掘進
状態とAE信号波形との対応の例を示す信号波形
図。 1……掘削リグ、2……監視対象坑井、3……
観測井、4……AEゾンデ、5……計測車、6…
…多芯装甲ケーブル、7……固定モータ駆動装
置、8……電子方位計駆動装置、9……XYレコ
ーダ、10……3チヤネル主アンプ、11……自
動データ処理装置、12……パーソナルコンピユ
ータ、13……プリンタ、14……フロツピデイ
スケツト、15……表示装置、16……表示装
置、17……カラープリンタ、18……データレ
コーダ、19……デイジタル記憶オシロスコー
プ、20……リングダウンカウンタ、21……ペ
ン書きレコーダ。
FIG. 1 is a configuration layout diagram schematically showing an example of the general configuration of a well drilling monitoring system according to the method of the present invention, FIG. 2 is a block diagram showing the configuration of an AE measurement system used in the monitoring method of the present invention, and FIG. The figure is a signal waveform diagram showing an example of the AE signal waveform, Figure 4 is a signal waveform diagram showing an example of how the AE signal level depends on well depth in comparison with the cutting behavior, and Figure 5 is a signal waveform diagram showing the AE signal level at various depths. Figure 6 is a signal waveform diagram showing an example of how the signal level changes over time. Figure 6 is a signal waveform diagram showing an example of the correspondence between AE signal level and well drilling rate. Figure 7 is a diagram showing AE measurement results and conventional electricity.・A line diagram showing examples of correspondence with sonic logging results, and FIG. 8 is a signal waveform diagram showing examples of correspondence between various well drilling conditions and AE signal waveforms. 1...Drilling rig, 2...Monitored well, 3...
Observation well, 4...AE sonde, 5...measurement vehicle, 6...
...Multicore armored cable, 7...Fixed motor drive device, 8...Electronic compass drive device, 9...XY recorder, 10...3 channel main amplifier, 11...Automatic data processing device, 12...Personal computer , 13...Printer, 14...Floppy diskette, 15...Display device, 16...Display device, 17...Color printer, 18...Data recorder, 19...Digital storage oscilloscope, 20...Ring Down counter, 21...pen writing recorder.

Claims (1)

【特許請求の範囲】[Claims] 1 所望の坑井を掘削すべき土地の近傍に所望の
深さを有する監視用坑井を設け、その監視用坑井
内に所要の感度を有するアコーステイツク・エミ
ツシヨン計測装置を配設して、当該計測装置によ
り前記所望の坑井の掘削に伴う振動によつて生ず
るアコーステイツク・エミツシヨン信号を計測す
ることにより、当該所望の坑井の掘削工程の監視
および地下情報の収集を即時に行うことを特徴と
する坑井掘削監視方法。
1. A monitoring well with a desired depth is installed near the land where the desired well is to be drilled, and an acoustic emission measuring device with the required sensitivity is placed inside the monitoring well. The method is characterized in that by measuring an acoustic emission signal generated by vibrations caused by the drilling of the desired well using a measuring device, the drilling process of the desired well is immediately monitored and underground information is collected. Well drilling monitoring method.
JP61171698A 1986-07-23 1986-07-23 Pit drilling monitor method Granted JPS6332085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61171698A JPS6332085A (en) 1986-07-23 1986-07-23 Pit drilling monitor method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61171698A JPS6332085A (en) 1986-07-23 1986-07-23 Pit drilling monitor method

Publications (2)

Publication Number Publication Date
JPS6332085A JPS6332085A (en) 1988-02-10
JPH0522798B2 true JPH0522798B2 (en) 1993-03-30

Family

ID=15928024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61171698A Granted JPS6332085A (en) 1986-07-23 1986-07-23 Pit drilling monitor method

Country Status (1)

Country Link
JP (1) JPS6332085A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2710740B2 (en) * 1993-03-19 1998-02-10 戸田建設株式会社 Front face exploration method
EP2279328A4 (en) 2008-04-07 2015-10-14 Prad Res & Dev Ltd Method for determining wellbore position using seismic sources and seismic receivers
US10227862B2 (en) 2008-04-07 2019-03-12 Schlumberger Technology Corporation Method for determining wellbore position using seismic sources and seismic receivers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125595A (en) * 1980-01-21 1981-10-01 Sperry Rand Corp Apparatus for conveying data with sound wave along drill string for well excavation
JPS60100711A (en) * 1983-10-11 1985-06-04 シエル・インターナショネイル・リサーチ・マーチャッピイ・ベー・ウイ Method and device for measuring position of underground point in blowoff well while using relief well as reference
JPS61145477A (en) * 1984-12-17 1986-07-03 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Acoustic transducer for winze remote monitor bed detector and transducer system containing said transducer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125595A (en) * 1980-01-21 1981-10-01 Sperry Rand Corp Apparatus for conveying data with sound wave along drill string for well excavation
JPS60100711A (en) * 1983-10-11 1985-06-04 シエル・インターナショネイル・リサーチ・マーチャッピイ・ベー・ウイ Method and device for measuring position of underground point in blowoff well while using relief well as reference
JPS61145477A (en) * 1984-12-17 1986-07-03 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Acoustic transducer for winze remote monitor bed detector and transducer system containing said transducer

Also Published As

Publication number Publication date
JPS6332085A (en) 1988-02-10

Similar Documents

Publication Publication Date Title
CN107589471B (en) A kind of Railway Tunnel Synthetic Geological Prediction Ahead of Construction method
Barton et al. In‐situ stress orientation and magnitude at the Fenton Geothermal Site, New Mexico, determined from wellbore breakouts
CN104390537B (en) A kind of side slope pre split Blasting Excavation damage control method based on blasting vibration test
US11619018B2 (en) Soil probing device having built-in generators and detectors for compressional waves and shear waves
Berard et al. Evidence of thermally induced borehole elongation: a case study at Soultz, France
JP2010266347A (en) Geological structure survey system and method therefor
US20160291186A1 (en) Seismic cable, system and method for acquiring information about seismic, microseismic and mechanical vibration incidents in a well
CN109239779B (en) Testing method for loose circle of tunnel surrounding rock and surrounding rock damage grading method
JP2003321828A (en) Ground investigation method making use of s wave amplitude accompanying percussive penetration
US5372038A (en) Probe to specifically determine the injectivity or productivity of a petroleum well and measuring method implementing said probe
Niitsuma et al. Acoustic emission measurement of geothermal reservoir cracks in Takinoue (Kakkonda) field, Japan
JPH08226975A (en) Method for surveying geology in front of face of tunnel
CN108547332B (en) Building pile foundation detection technology
JPH0522798B2 (en)
CN111596377B (en) Joint test method for loosening ring of high-ground-stress soft rock tunnel
CN113279435A (en) Foundation pile quality nondestructive testing method based on side-hole diffraction wave analysis
JPH0350874B2 (en)
EP0587405A2 (en) Acoustic well logging method
Nguyen et al. Measurement and interpretation of downhole seismic probe data for estimating shear wave velocity in deep-water environments
Niitsuma et al. Long-distance acoustic emission monitoring of hydraulically induced subsurface cracks in Nigorikawa geothermal field, Japan
Zulfahmi et al. Geotechnical structure interpretation from borehole wall imagery at Mamput Block, Central Kalimantan, Indonesia
CN110805433B (en) While-drilling sound wave remote detection system and method
JP2009052300A (en) Geological structure survey system and method therefor
Ehrmanntraut et al. Identification of Soil Layers and Properties by Vibration Measurements during Dynamic Penetration Testing
Yu A Deep Rock Cavern Captures Stormwater

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term