JPH05227925A - Method for sterilization - Google Patents

Method for sterilization

Info

Publication number
JPH05227925A
JPH05227925A JP3241775A JP24177591A JPH05227925A JP H05227925 A JPH05227925 A JP H05227925A JP 3241775 A JP3241775 A JP 3241775A JP 24177591 A JP24177591 A JP 24177591A JP H05227925 A JPH05227925 A JP H05227925A
Authority
JP
Japan
Prior art keywords
pressure
spores
treatment
activation
sterilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3241775A
Other languages
Japanese (ja)
Inventor
Haruyuki Funahashi
治幸 舟橋
Yoshito Shibauchi
好人 柴内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP3241775A priority Critical patent/JPH05227925A/en
Publication of JPH05227925A publication Critical patent/JPH05227925A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effectively sterilize at relatively low pressures such bacterial spores of esp. high pressure and heat resistance as to have been hard to make high- pressure sterilization, without impairing the ingredients and flavor of a food to be sterilized. CONSTITUTION:According to the pressure resistance of spores, the spores in a food to be sterilized is put to germination heat activation at 60-100 deg.C followed by high pressure treatment at >=100MPa.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、食品又は医薬品等で衛
生上又は品質保持上問題となり得る細菌芽胞を殺菌する
方法に関する。本技術は特に、耐熱性、耐圧性の高い細
菌芽胞の殺菌に適用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for sterilizing bacterial spores which may cause problems in hygiene or quality preservation in foods, medicines and the like. The present technology is particularly applicable to sterilization of bacterial spores having high heat resistance and pressure resistance.

【0002】[0002]

【従来の技術】食品や医薬品の腐敗や病原性微生物の汚
染は公衆衛生上問題となるため、従来より加熱殺菌等に
よる微生物コントロールが広く食品産業、医療業等の分
野で実施されている。食品あるいは医薬中に付着する細
菌の種類はその種類により若干異なるが、いろいろな菌
が空気や水を介して付着する可能性がある。殺菌の観点
からすれば、病原性の細菌、グラム陰性菌、および酵母
菌等は一般に熱に弱く通常の加熱殺菌で処理できコント
ロールし易いが、グラム陽性菌やカビ類、特に胞子を形
成するものは耐熱性が強く、加熱殺菌で容易に死滅しな
いので問題である。例えば、グラム陽性菌である枯草菌
(Bacillus subtilis )ではその菌株によって異なる
が、100℃で数分から1000分以上という耐熱性を
示す。
2. Description of the Related Art Since the spoilage of foods and pharmaceuticals and the contamination of pathogenic microorganisms pose a public health problem, control of microorganisms by heat sterilization has been widely practiced in the fields of food industry, medical industry and the like. The types of bacteria that attach to foods or medicines differ slightly depending on the types, but various bacteria may attach via air or water. From the viewpoint of sterilization, pathogenic bacteria, Gram-negative bacteria, yeasts, etc. are generally weak to heat and can be easily treated by ordinary heat sterilization and can be easily controlled, but Gram-positive bacteria and molds, especially those that form spores. Is a problem because it has high heat resistance and does not easily die by heat sterilization. For example, a gram-positive bacterium, Bacillus subtilis, exhibits a heat resistance of several minutes to 1,000 minutes or more at 100 ° C., although it varies depending on the strain.

【0003】しかし、加熱殺菌では、殺菌と同時にたん
白質、ビタミン等の成分変化、風味の変化を招くため、
食品等の種類によっては実施が適当でない場合が少なく
ない。牛乳を例にとれば、現在、UHT殺菌法、UHT
滅菌法、低温殺菌法、HTST殺菌法等が採用されてい
る。UHT殺菌法(120〜130℃、2〜4秒)では
牛乳中の栄養細胞、耐熱性菌、耐熱性菌の芽胞の一部を
死滅させ、また、UHT滅菌法(135〜150℃、2
〜4秒)では耐熱性菌の芽胞を含む全ての微生物を死滅
させることができるが、成分変化、風味変化が避けられ
ない。又、低温殺菌法(62〜65℃、30分)、HT
ST殺菌法(72〜85℃、16秒)では成分、風味の
変化が少なく牛乳本来の風味が維持されるが、耐熱性菌
及び耐熱性菌の芽胞を十分に殺菌できないため長期保存
ができない。
However, heat sterilization causes a change in components such as proteins and vitamins and a change in flavor at the same time as sterilization.
Depending on the type of food, there are many cases where implementation is not appropriate. Taking milk as an example, UHT sterilization method, UHT
Sterilization method, pasteurization method, HTST sterilization method and the like are adopted. The UHT sterilization method (120 to 130 ° C., 2 to 4 seconds) kills a part of vegetative cells, thermostable bacteria, and spores of thermostable bacteria in milk, and the UHT sterilization method (135 to 150 ° C., 2
In ~ 4 seconds), all microorganisms including spores of thermostable bacteria can be killed, but changes in the components and changes in flavor cannot be avoided. In addition, low temperature sterilization method (62 ~ 65 ℃, 30 minutes), HT
In the ST sterilization method (72 to 85 ° C., 16 seconds), there is little change in components and flavor, and the original flavor of milk is maintained, but heat-resistant bacteria and spores of heat-resistant bacteria cannot be sterilized sufficiently and thus cannot be stored for a long time.

【0004】そこで、近年注目されているのが高圧殺菌
法である。例えば、清涼飲料の高圧殺菌では大腸菌、カ
ビ、酵母、のような栄養細胞は室温で300〜600M
Pa−保持時間10分で殺菌できるという報告(高橋保
男ら、果汁協会報Vol 370 pp6-13,1988)や、更に高圧殺
菌に加熱処理を併用すると殺菌効果が向上するという報
告(高橋保男ら、果汁協会報Vol 381 pp41-46,1989) が
ある。又、B.subtilisの殺菌に関してもこれらの報告中
で4,000kg/cm2 (約400MPa)、10分
処理の静水圧により、B.subtilis以外の菌は、すべて死
滅し、47℃および57℃の加熱処理、6,000kg
/cm2 (約600MPa)、10分間の静水圧処理の
併用で、B.subtilisは死滅したと報告されている。
Therefore, the high pressure sterilization method has been attracting attention in recent years. For example, in high-pressure sterilization of soft drinks, vegetative cells such as Escherichia coli, mold and yeast are 300 to 600 M at room temperature.
Pa-A report that it can be sterilized with a holding time of 10 minutes (Takahashi Yasuo et al., Fruit Juice Association Bulletin Vol 370 pp6-13, 1988) and a report that heat treatment combined with high pressure sterilization improves the sterilization effect (Takahashi Yasuo et al. Juice Association Bulletin Vol 381 pp 41-46, 1989). In addition, regarding sterilization of B. subtilis, all of the bacteria except B. subtilis were killed by the hydrostatic pressure of 4,000 kg / cm 2 (about 400 MPa) for 10 minutes in these reports, and 47 ℃ and 57 ℃. Heat treatment of 6,000kg
It was reported that B. subtilis was killed by the combined use of hydrostatic pressure treatment for 10 minutes / cm 2 (about 600 MPa).

【0005】しかし、本発明者らの試験によれば耐熱
性、耐圧性の高いB.subtilisの芽胞は、600MPa−
60℃で60分保持しても完全に芽胞は死滅しない場合
があった。これは、一般に耐熱性、耐圧性の強いB.subt
ilisには種々の菌株があり、その中には特に耐性の強い
菌株もあり、又、被処理物の種類により菌の耐性が変わ
ってくるという事実と、ジュース類のようなpHの低い
食品(一般にpH4.6以下の食品を高酸性食品と呼ん
でいる)ではこれらの芽胞が発芽増殖しないということ
に起因している。即ち、従来実施されている高圧殺菌は
一般に大腸菌、カビ、酵母のように耐圧性の低い微生物
を対象としているが、牛乳やスープ類のような多くの低
酸性食品(pH≧4.6)では長期保存を実現するには
耐熱性の高い細菌芽胞を指標菌とすべき場合がある一方
で、このような耐性の強い芽胞の高圧による殺菌は困難
であった。また、これら芽胞は温度ばかりでなく圧力に
対しても耐性をもっているため高圧処理条件が苛酷とな
りやすい。このため、高圧殺菌においては食品の成分、
香りが変化しないよう細菌芽胞をより低い圧力で死滅さ
せる技術開発が課題となっている。
However, according to the tests conducted by the present inventors, spores of B. subtilis having high heat resistance and pressure resistance are 600 MPa-
In some cases, the spores were not completely killed even when kept at 60 ° C for 60 minutes. This is B.subt which generally has high heat resistance and pressure resistance.
There are various strains of ilis, some of which are particularly resistant, and the fact that the resistance of the bacterium changes depending on the type of treated material, and foods with low pH such as juices ( Generally, foods having a pH of 4.6 or less are called highly acidic foods), which is because these spores do not germinate and grow. That is, the conventional high-pressure sterilization generally targets low-pressure resistant microorganisms such as Escherichia coli, mold, and yeast, but in many low-acid foods (pH ≧ 4.6) such as milk and soups. In order to realize long-term storage, bacterial spores with high heat resistance should be used as an indicator bacterium, but sterilization of such highly resistant spores by high pressure was difficult. Further, since these spores are resistant not only to temperature but also to pressure, high-pressure treatment conditions are likely to become severe. Therefore, in high-pressure sterilization, food ingredients,
The challenge is to develop technology to kill bacterial spores with lower pressure so that the scent does not change.

【0006】一方、高圧殺菌を行なう装置は三菱重工
(株)、神戸製鋼(株)などで開発され工業化が進み、
試験機としては1000MPa程度まで可能であるが、
食品処理専用の生産機としては安全性、装置の耐久性な
どを考慮すると400〜500MPaでの運転が適して
いるといわれている。しかしながら、400〜500M
Paの圧力では大腸菌、カビ、酵母、ブドウ球菌を殺菌
することはできるが、耐熱性、耐圧性の高い細菌芽胞を
殺菌することは60℃の加温を併用してもできない場合
がある。
On the other hand, a device for high-pressure sterilization was developed by Mitsubishi Heavy Industries, Ltd., Kobe Steel Ltd., etc.
As a testing machine, up to about 1000 MPa is possible,
It is said that operation at 400 to 500 MPa is suitable as a production machine dedicated to food processing in consideration of safety and durability of the apparatus. However, 400-500M
E. coli, mold, yeast, and staphylococcus can be sterilized at a pressure of Pa, but it may not be possible to sterilize bacterial spores having high heat resistance and high pressure resistance even by heating at 60 ° C.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上述した従
来の高圧殺菌技術の実情に鑑み、特に耐圧性、耐熱性が
高く高圧殺菌が困難であった細菌芽胞を、被殺菌物の成
分、風味を損うことなく有効に殺菌する方法を提供する
ことを目的とする。
DISCLOSURE OF THE INVENTION The present invention, in view of the actual conditions of the conventional high-pressure sterilization technique described above, is a component of an object to be sterilized, in particular, a bacterial spore that has high pressure resistance and heat resistance and is difficult to sterilize under high pressure. It is an object to provide a method for effectively sterilizing without deteriorating the flavor.

【0008】[0008]

【課題を解決するための手段】かかる目的は、以下の手
段により達成される。即ち、本発明は、被殺菌物中の細
菌芽胞を加熱による発芽活性化(以下発芽熱活性とい
う)処理し、つづいて速やかに高圧処理することを特徴
とする細菌芽胞の殺菌方法である。本発明者らは、細菌
芽胞は、加熱されると発芽活性化され、耐熱性、耐圧性
が弱まることに着目し、高圧処理する前に一定の加熱処
理を施すことによって400〜500MPa程度の圧力
で細菌芽胞等を殺菌できることを見い出し本発明に至っ
た。本発明によれば従来高圧殺菌が困難であった細菌芽
胞を被殺菌物の成分変化等の弊害を招くことなく有効に
殺菌することができ、又、従来高圧殺菌が可能であった
ものに対しては高圧処理条件の緩和を図ることができ、
この結果、食品や医療品の品質を高め、同時にシェルフ
ライフを伸ばすことが可能となる。
This object is achieved by the following means. That is, the present invention is a method for sterilizing bacterial spores, which comprises subjecting bacterial spores in an object to be sterilized to germination activation by heat (hereinafter referred to as germination thermoactivity), and then rapidly performing high-pressure treatment. The present inventors pay attention to the fact that bacterial spores are activated by germination when they are heated, and their heat resistance and pressure resistance are weakened. By applying a constant heat treatment before high-pressure treatment, a pressure of about 400 to 500 MPa is obtained. It was found that the bacterial spores and the like can be sterilized by the method of the present invention, and the present invention has been completed. According to the present invention, it is possible to effectively sterilize bacterial spores, which were conventionally difficult to sterilize with high pressure, without causing harmful effects such as a change in the components of the sterilized product, and to those which were conventionally capable of sterilizing with high pressure. As a result, the high-pressure processing conditions can be eased,
As a result, it is possible to improve the quality of food and medical products and at the same time extend the shelf life.

【0009】以下、本発明を詳述する。まず、本発明に
おいて対象となる被殺菌物としては、耐熱性、耐圧性の
高い芽胞による汚染の可能性があり、高圧処理が可能な
食品、医療品等、その形態、形状等を問わずいずれも対
象となる。もちろん、上記の高圧処理条件の緩和が目的
なら、それほど耐圧性の高くない芽胞に対しても本法は
有効である。高圧処理の容易さという観点からは、各種
ジュース、清涼飲料、牛乳等の液体、各種スープ、ソー
ス類、果実ジャム、魚介類・肉類ペースト、卵等の流動
体や半流動体が好ましい。さらに、固形物であっても液
体中に浸漬あるいは分散していれば処理できる。又、細
菌芽胞による汚染の可能性と易加熱処理という観点から
は、牛乳、各種スープ類のような低酸性食品に実益があ
る。
The present invention will be described in detail below. First, as the sterilization object targeted in the present invention, heat resistance, there is a possibility of contamination by spores having high pressure resistance, food that can be processed under high pressure, medical products, etc., regardless of its form, shape, etc. Is also applicable. Of course, if the above-mentioned high-pressure treatment conditions are alleviated, the present method is also effective for spores that are not so resistant to pressure. From the viewpoint of ease of high-pressure treatment, various juices, soft drinks, liquids such as milk, various soups, sauces, fruit jams, seafood / meat pastes, eggs and other fluids and semi-fluids are preferable. Furthermore, even a solid substance can be treated if it is immersed or dispersed in a liquid. Further, from the viewpoint of the possibility of contamination by bacterial spores and easy heat treatment, low-acid foods such as milk and various soups have a practical benefit.

【0010】次に、対象となる細菌芽胞としては、B.su
btilis,B.cereus,B.coagulans 等、全ての芽胞形成菌の
芽胞である。本発明の目的からすれば、従来の高圧殺菌
では殺菌、滅菌に極めて大きな圧力が必要であったり、
又、充分な殺菌が実用上できなかった菌株の芽胞を対象
とすると有益である。例えばB.subtilisは比較的耐熱
性、耐圧性の低い菌株もあれば耐熱性、耐圧性の高い菌
株もあり、前者は従来の加熱処理を併用した高圧殺菌に
より有効に殺菌が可能であるが、後者はこのような高圧
殺菌でも死滅しない。
Next, the target bacterial spores are B. su.
Spores of all spore-forming bacteria such as btilis, B. cereus, B. coagulans. From the object of the present invention, conventional high-pressure sterilization requires sterilization and extremely high pressure for sterilization,
In addition, it is useful to target spores of strains for which sufficient sterilization has not been practically possible. For example, B. subtilis is relatively heat resistant, there are strains with low pressure resistance, heat resistance, there are strains with high pressure resistance, the former can be effectively sterilized by high pressure sterilization combined with conventional heat treatment, The latter does not die even with such high pressure sterilization.

【0011】本発明の殺菌方法の第1のステップは細菌
芽胞の発芽熱活性化処理である。発芽熱活性化とは、発
芽が熱の影響を受けて発芽が惹起され発芽状態になるこ
とをいい、現象的には芽胞の外膜が除々に澄んできて
(後述する Optical densityの低下)栄養細胞化への準
備段階に入ることで、一般的に耐熱性の低下が見られ
る。発芽熱活性化した芽胞は徐々に栄養分や酵素吸収等
の活動を開始するが、本発明では芽胞が発芽を開始する
直前までの処理で足りる。本発明における発芽熱活性化
の目的は、芽胞の外膜の持つ耐熱性、耐圧性を低下さ
せ、つづく高圧処理での殺菌を可能とすることである。
又、全ての芽胞が発芽熱活性化される必要はなく、高圧
処理の条件、目的とする殺菌程度、対象とする芽胞の種
類、被殺菌物の種類等により適宜設定する。但し、発芽
熱活性化の程度は高圧処理における殺菌効果に対し、臨
界的に作用するので、他の条件とのかね合いで適正な程
度とする必要がある。
The first step of the sterilization method of the present invention is germination heat activation treatment of bacterial spores. Germination heat activation means that germination is affected by heat to induce germination and becomes a germination state, and the outer membrane of the spores gradually becomes clear (decrease in optical density as described below). By entering the preparatory stage for cellularization, heat resistance generally decreases. The spores activated by germination gradually start activities such as absorption of nutrients and enzymes, but in the present invention, the treatment just before the spores start germination is sufficient. The purpose of heat activation for germination in the present invention is to reduce the heat resistance and pressure resistance of the outer membrane of spores, and to enable subsequent sterilization by high-pressure treatment.
Further, it is not necessary that all spores are activated by germination heat, and it is appropriately set depending on the conditions of high-pressure treatment, the intended degree of sterilization, the type of target spores, the type of sterilized object, and the like. However, the degree of germination heat activation has a critical effect on the bactericidal effect in high-pressure treatment, so it is necessary to set it to an appropriate degree in consideration of other conditions.

【0012】発芽熱活性化処理は、芽胞の活性化臨界温
度以上で高圧処理での殺菌促進効果を奏する臨界時間
(これを活性化臨界条件という。)実施する。活性化臨
界条件は芽胞の種類、環境条件等により個別的に決定さ
れるが、臨界温度未満では、いくら長時間処理しても効
果が現れず、同様に臨界時間未満では、温度が高くても
効果が現れない。一般的には40℃以上、好ましくは6
0−100℃の温度で、1分以上、好ましくは5−60
分間がよい。この範囲で、処理温度が高くなれば保持時
間は短かくてすむ。又、温度が高ければ活性化速度は処
理開始後5〜10分間位が大きくその後低下してくるの
で高い温度によれば活性化処理の効率化が図れるが、温
度が高すぎれば芽胞は活性化されない。耐熱性が比較的
低い芽胞では活性化処理中に一部死滅する場合もある
が、活性化処理の目的は殺菌ではないので、この段階で
温度を必要以上に高くしても有効ではなく、通常は芽胞
の耐熱性のため、殺菌効果もあまり認められない。一
方、保持時間が長すぎた場合は、芽胞は発芽し酸素吸収
等の活動を開始し、場合により、被殺菌物の腐敗を促進
する結果となる。又、比較的低温で長時間保持しても芽
胞は活性化されるが、この場合も他の微生物等による腐
敗が起り得る。
The germination heat activation treatment is carried out at a critical temperature (this is called activation critical condition) at which the spore activation critical temperature or higher exerts a bactericidal promotion effect in high pressure treatment. The activation critical condition is individually determined by the type of spores, environmental conditions, etc., but below the critical temperature, no effect appears even if treated for a long time, and similarly, below the critical time, even if the temperature is high. No effect. Generally 40 ° C or higher, preferably 6
At a temperature of 0-100 ° C for 1 minute or more, preferably 5-60
Minutes are good. Within this range, the higher the processing temperature, the shorter the holding time. Also, if the temperature is high, the activation rate will be large for about 5 to 10 minutes after the start of the treatment and then decrease. Therefore, if the temperature is too high, the activation treatment will be more efficient, but if the temperature is too high, the spores will be activated. Not done. Spores with relatively low heat resistance may partially die during the activation process, but the purpose of the activation process is not sterilization, so even if the temperature is raised higher than necessary at this stage, it is not effective, Due to the heat resistance of the spores, the bactericidal effect is not so noticeable. On the other hand, if the holding time is too long, the spores will germinate and start activities such as oxygen absorption, possibly promoting the decomposition of the sterilized material. Further, the spores are activated even when kept at a relatively low temperature for a long time, but in this case as well, spoilage due to other microorganisms may occur.

【0013】活性化処理の程度は高圧処理条件との関係
において殺菌効果に大きく影響する。活性化処理の程度
による殺菌効果の態様には高圧処理の圧力が未活性化処
理のものと同じとした場合、大別して3つある。第1に
は、高圧処理初期において生菌数減少の勾配が大きくそ
の後はなだらかとなり最終的生菌数は未活性化処理のも
のとほとんど変わらないものである。(図1(A))。
これは、活性化処理により芽胞のうち比較的耐性が弱い
もののみが活性化し、強いものは活性化しなかったため
に、強い芽胞が最後まで残ることによる。この場合は、
高圧処理の時間を短縮しても同様の殺菌効果が得られる
利点がある。第2には、高圧処理初期の生菌数減少の勾
配は比較的大きく、その後は、未活性化処理と同様の勾
配で減少していくものである(図1(B))。これは、
芽胞のうち耐性の弱いもの程活性化が進み、耐性の強い
ものもある程度活性化することによる。この場合は、高
圧処理の時間を短縮しても同様の殺菌効果が得られ、
又、同じ時間高圧処理をした場合はより大きい殺菌効果
が得られる利点がある。第3には、高圧処理初期から最
後まで生菌数減少の勾配が大きいものである(図1
(C))。これは、耐性の強い芽胞も含め多くの芽胞が
活性化したことによる。この場合は、高圧処理時間の短
縮化ばかりでなく、従来高圧処理による殺菌が困難であ
った芽胞の殺菌が可能となる利点がある。上記態様
(A)−(C)の共通の利点としてはいずれにおいて
も、高圧処理の圧力を低くしても未活性化処理のものと
同等もしくはそれ以上の殺菌効果が得られることであ
る。このように、活性化処理の程度は殺菌効果に関連し
ているため、目的とする殺菌程度、高圧処理条件、対象
芽胞、被殺菌物等との関連で相対的に設定すればよい。
例えば、比較的耐性の弱い芽胞を殺菌する場合は高圧処
理のみでも殺菌効果が得られるので態様(A)となるよ
う比較的弱い活性化処理を実施し、高圧処理時間の短縮
化、圧力の軽減化を図ることができる。一方、比較的耐
性の強い芽胞を殺菌する場合は高圧処理のみでは殺菌効
果が得られないので態様(C)となるよう比較的強い活
性化処理を実施し、目的とする殺菌効果を達成すること
ができる。
The degree of activation treatment has a great influence on the bactericidal effect in relation to the high-pressure treatment conditions. When the pressure of the high-pressure treatment is the same as that of the non-activation treatment, there are roughly three modes of the bactericidal effect depending on the degree of the activation treatment. First, the gradient of viable cell count decrease is large at the early stage of high-pressure treatment and thereafter becomes gentle, and the final viable cell count is almost the same as that of the unactivated treatment. (FIG. 1 (A)).
This is because only a relatively weakly resistant spore among the spores was activated by the activation treatment, and a strong one was not activated, so that a strong spore remained until the end. in this case,
There is an advantage that a similar bactericidal effect can be obtained even if the high-pressure treatment time is shortened. Secondly, the gradient of viable cell count decrease at the early stage of the high-pressure treatment is relatively large, and then decreases with the same gradient as the inactivation treatment (FIG. 1 (B)). this is,
This is because the less resistant one of the spores is more activated and the more resistant one is also activated to some extent. In this case, the same bactericidal effect can be obtained even if the high-pressure treatment time is shortened.
Further, there is an advantage that a larger bactericidal effect can be obtained when the high pressure treatment is performed for the same time. Third, there is a large gradient of decrease in viable cell count from the beginning to the end of high-pressure treatment (Fig. 1).
(C)). This is due to activation of many spores, including highly resistant spores. In this case, not only the high-pressure treatment time can be shortened, but also spores, which have been difficult to sterilize by high-pressure treatment, can be sterilized. In any of the above aspects (A)-(C), the sterilizing effect equivalent to or higher than that of the non-activation treatment can be obtained even if the pressure of the high pressure treatment is lowered. As described above, since the degree of activation treatment is related to the bactericidal effect, it may be relatively set in relation to the desired sterilization degree, high-pressure treatment conditions, target spores, sterilized objects, and the like.
For example, when sterilizing relatively weakly resistant spores, a sterilizing effect can be obtained only by high-pressure treatment, so a relatively weak activation treatment is carried out to achieve the mode (A) to shorten the high-pressure treatment time and reduce the pressure. Can be promoted. On the other hand, when sterilizing relatively highly resistant spores, the bactericidal effect cannot be obtained only by high-pressure treatment, so a relatively strong activation treatment should be carried out to achieve the mode (C) to achieve the desired bactericidal effect. You can

【0014】活性化処理の強弱の一つの指標となり得る
ものには芽胞の光学的密度(Optical Density;以下O
Dという) の低下がある。ここでODは芽胞懸濁液の
可視光(ここでは波長440nmの光を使用)に対する
吸光度と定義されるが、以下の発芽熱活性化処理におい
ては、 で定義した相対ODを用いて説明する。ここで測定した
ODとは、発芽熱活性化中のある時間におけるODの観
測値、初期ODは活性化処理していない芽胞懸濁液のO
D値、そして最終ODは懸濁液中の芽胞が全て発芽活性
化した時のOD値である。B.subtilisを例にとれば、比
較的耐性の弱いものでは活性化処理も弱くてすむので、
相対ODの4−6%程度の減少でも高圧処理で殺菌効果
を向上させ得る。比較的耐性の強いものでは15−20
%程度減少するまで活性化を図ると効果が大きい。図
2、3に相対ODの実測例として、B.subtilis ATCC
6633とB.subtilis NCDO 2130の場合を示す。図に見る
ように相対ODの低下の大きさは処理時間に比例してい
るとはかぎらないが、活性化処理程度の目安すとしては
耐性の弱い芽胞で4−56%程度の低下、耐性の強い芽
胞で15−50%程度の低下である。
Optical density of spores (hereinafter referred to as “O”) is one of the indicators of the strength of the activation treatment.
(D)). Here, OD is defined as the absorbance of the spore suspension with respect to visible light (here, light having a wavelength of 440 nm is used). In the following germination heat activation treatment, It will be explained using the relative OD defined in. The OD measured here is the observed value of OD at a certain time during the activation of germination heat, and the initial OD is O of the spore suspension that has not been activated.
The D value and the final OD are the OD values when all the spores in the suspension were germinated and activated. In the case of B. subtilis, for example, those with relatively weak tolerance require less activation, so
Even if the relative OD is reduced by about 4-6%, the high-pressure treatment can improve the sterilization effect. 15-20 for relatively strong ones
The effect will be great if you activate it until it decreases by about%. 2 and 3 show an example of measurement of relative OD, B.I. subtilis ATCC
6633 and B.I. The case of subtilis NCDO 2130 is shown. As shown in the figure, the magnitude of the decrease in relative OD is not always proportional to the treatment time, but as a guideline for the degree of activation treatment, spores with weak resistance show a decrease of about 4-56% in resistance. With strong spores, the reduction is about 15-50%.

【0015】尚、活性化は熱の他、例えば還元物質、エ
チルアルコール、アミノ酸、糖等の存在、pH等によっ
ても促進され得るので、必要によりpHを調整したり、
エチルアルコール、アミノ酸、糖等を添加して加熱処理
してもよい。
The activation can be promoted not only by heat but also by the presence of reducing substances, ethyl alcohol, amino acids, sugars, etc., pH, etc., so that the pH can be adjusted if necessary,
You may heat-process by adding ethyl alcohol, an amino acid, sugar, etc.

【0016】次に、高圧処理について説明する。活性化
した、細菌芽胞は保存条件によって発芽増殖したり、ま
た再び非活性化したりする。したがって高圧処理は活性
化処理の後、速やかに実施することが望ましい。高圧処
理の条件を取りうる範囲で示せば、従来の高圧範囲での
範囲と大きく相違していない。即ち、100−1000
MP、室温−100℃、数時間以内程度がとりうる範囲
といえる。しかし、これは範囲であって、従来技術にお
いて例えば100MP、室温、数分で芽胞の殺菌が実施
可能であることを意味していない。即ち、圧力が低けれ
ば、温度を高くするか処理時間を長くとることが不可欠
であり、上記範囲内で任意に条件を設定できるわけでは
ない。
Next, the high pressure processing will be described. The activated bacterial spores germinate and proliferate or are deactivated again depending on storage conditions. Therefore, it is desirable that the high-pressure treatment be carried out immediately after the activation treatment. As far as the condition of the high-pressure treatment can be taken, it is not much different from the range in the conventional high-pressure range. That is, 100-1000
It can be said that the range is MP, room temperature-100 ° C, and within several hours. However, this is a range and does not mean that spore sterilization can be carried out in the prior art, for example, at 100 MP, room temperature and minutes. That is, if the pressure is low, it is indispensable to increase the temperature or the processing time, and it is not possible to set the conditions arbitrarily within the above range.

【0017】本発明の高圧処理における特徴は、まず上
記範囲内で従来高処理殺菌できなかった芽胞を本発明で
は同範囲内で充分殺菌できること、次に、従来ある条件
で高圧殺菌できた芽胞を本発明ではさらに緩和な加圧条
件で殺菌ができることである。後者の特徴は、例えば、
次のように規定できる。同等の殺菌効果を得るのに、他
の条件は同じとして、高圧処理時間は1/2−1/5程
度まで、又、圧力は1/2−1/3程度まで短縮するこ
とが可能である。前記高圧処理の範囲はとり得る範囲で
あるが、本発明において実用性を考慮すれば、40℃以
上、好ましくは50−60℃で100MPa以上、好ま
しくは400−700MPaで0−60分程度がよい。
処理時間が0分をとり得るのは、活性化処理で芽胞が脆
弱化しており所定圧力になるまでの昇圧段階で、芽胞が
死滅する場合があるからである。
The feature of the present invention in high-pressure treatment is that spores which could not be sterilized by high-treatment in the above range can be sterilized sufficiently in the same range in the present invention. In the present invention, it is possible to sterilize under milder pressure conditions. The latter feature is, for example,
It can be specified as follows. In order to obtain the same bactericidal effect, it is possible to reduce the high-pressure treatment time to about 1 / 2-1 / 5 and the pressure to about 1 / 2-1 / 3 under the same conditions. .. Although the range of the high-pressure treatment is possible, in consideration of practicality in the present invention, 40 ° C. or higher, preferably 50-60 ° C., 100 MPa or higher, preferably 400-700 MPa, 0-60 minutes or so. ..
The treatment time can be 0 minutes because the spores are weakened by the activation treatment, and the spores may be killed in the step of increasing the pressure until a predetermined pressure is reached.

【0018】一方、運転の安全性高圧装置の耐久性、被
殺菌物の内容成分の変化等の見地から圧力は500〜6
00MPaが実際の運転上の好ましい上限と考えられる
が、従来、この程度の圧力では加温しても又、保持時間
を長くしても殺菌できなかった芽胞の殺菌が可能とな
る。
On the other hand, the operating pressure is 500 to 6 from the viewpoints of durability of the high-pressure device and changes in the content components of the sterilized object.
It is considered that 00 MPa is a preferable upper limit in actual operation, but it is possible to sterilize spores that could not be sterilized by heating at such a pressure and prolonging the holding time.

【0019】高圧処理の温度が高いと高圧による効果を
促進することができる。温度が低い場合は高圧の効果が
低減するが、耐圧性の比較的弱い芽胞を処理する場合で
は活性化処理によりさらに耐圧性が低下するため、場合
により室温でもよい。一方、温度が高い場合は殺菌効果
は向上するので温度の上限は特に限定されない。但し、
市販されている高圧処理装置の構造上の制約から前記範
囲程度となる。又、高圧処理を上昇温度下で実施するの
は効果的であり、逆に、高圧処理開始時に高温とし、そ
の後は下降温度下で実施してもよい。
When the temperature of the high pressure treatment is high, the effect of the high pressure can be promoted. When the temperature is low, the effect of high pressure is reduced, but in the case of treating spores having relatively low pressure resistance, the pressure resistance is further lowered by the activation treatment. On the other hand, when the temperature is high, the bactericidal effect is improved, so the upper limit of the temperature is not particularly limited. However,
Due to the structural restrictions of commercially available high-pressure processing equipment, the above range is reached. Further, it is effective to carry out the high-pressure treatment at a rising temperature, and conversely, it may be carried out at a high temperature at the start of the high-pressure treatment and thereafter at a lowering temperature.

【0020】所定圧力までの昇圧速度は速い方がよい
が、特に限定されない。目安すとしては20−150M
Pa/min程度で例えば処理量の変化で調整できる。
昇圧中に耐圧性の弱い芽胞は死滅する場合があるが、耐
圧性の強い芽胞では全く変化しない場合もある。しか
し、活性化処理の程度を強くすることで昇圧時のみで充
分な殺菌効果を得ることが可能で、これは従来技術では
全くみられない本発明に特有な効果である。換言すれ
ば、細菌芽胞の種類によっては、活性化処理の程度を調
整することで、昇圧時のみで所望の程度まで殺菌を実施
することもできるのである。
It is preferable that the rate of pressure increase up to the predetermined pressure is high, but it is not particularly limited. 20-150M as a guide
It can be adjusted, for example, by changing the processing amount at about Pa / min.
The spores with weak pressure resistance may die during pressurization, but the spores with high pressure resistance may not change at all. However, by strengthening the degree of activation treatment, it is possible to obtain a sufficient bactericidal effect only at the time of pressurization, which is a unique effect of the present invention that has never been seen in the prior art. In other words, depending on the type of bacterial spores, the degree of activation treatment can be adjusted so that sterilization can be carried out to the desired degree only at the time of pressurization.

【0021】[0021]

【実施例】以下、実施例により本発明を具体的に説明す
る。 1.実施方法 (1)供試菌 供試菌としてBicillus属の芽胞の中でも比較的耐熱性、
耐圧性の低いBacillussubtilis ATCC 6633と耐熱性、耐
圧性の高いBacillus subtilis NCDO 2130 の2菌種を用
いた。
EXAMPLES The present invention will be specifically described below with reference to examples. 1. Method of implementation (1) Test bacterium As a test bacterium, relatively heat-resistant among spores of the genus Bicillus,
Two strains of Bacillus subtilis ATCC 6633, which has low pressure resistance, and Bacillus subtilis NCDO 2130, which has high heat resistance and pressure resistance, were used.

【0022】(2)供試菌液の調製 実験にはリン酸緩衝液と雪印乳業(株)製、雪印3.5
牛乳(無脂乳固形分8.3%以上、乳脂肪分3.5%以
上)を使用した。各濃厚菌混濁液を用い、リン酸緩衝液
および牛乳中に供試菌数が106 個/mlになるように
希釈して調製した。リン酸緩衝液はリン酸緩衝液−生理
食塩水(pH7.0)である。pHの調整は水酸化ナト
リウムおよび塩酸を用いて行った。また、牛乳のpH調
整は行わなかったが、約6.8であった。B.subtilis A
TCC 6633およびB.subtilis NCDO2130の芽胞についての
調製法は表1に示した。
(2) Preparation of test bacterial solution In the experiment, a phosphate buffer solution and Snow Brand Milk Products Co., Ltd.
Milk (non-fat milk solid content 8.3% or more, milk fat content 3.5% or more) was used. Each concentrated bacterial suspension was diluted with phosphate buffer and milk so that the number of test bacteria would be 10 6 cells / ml. The phosphate buffer is phosphate buffer-saline (pH 7.0). The pH was adjusted using sodium hydroxide and hydrochloric acid. The pH of milk was not adjusted, but it was about 6.8. B.subtilis A
The preparation methods for TCC 6633 and B. subtilis NCDO 2130 spores are shown in Table 1.

【0023】[0023]

【表1】 (3)活性化処理および高圧処理 リン酸緩衝液および牛乳を用いて調製された菌液を10
mlずつポリプロピレン製袋に分注し、空気が入らない
ように充填し、口をヒートシールし、試料とした。試料
は活性化処理および高圧処理時以外は常時氷水中で保存
した。活性化処理は恒温槽中でB.subtilis ATCC 6633の
場合、60℃、80℃、90℃で15分間、B.subtilis
NCDO 2130の場合、80℃、90℃、100℃で15分
間行った。
[Table 1] (3) Activation treatment and high-pressure treatment 10 times the bacterial solution prepared using phosphate buffer and milk
Each ml was dispensed into a polypropylene bag, filled so that air did not enter, and the mouth was heat-sealed to obtain a sample. The samples were always stored in ice water except during activation and high-pressure treatment. In the case of B. subtilis ATCC 6633, the activation treatment was carried out at 60 ° C, 80 ° C, 90 ° C for 15 minutes in B. subtilis ATCC 6633.
In the case of NCDO 2130, it was performed at 80 ° C., 90 ° C. and 100 ° C. for 15 minutes.

【0024】高圧処理には三菱重工業(株)製の高圧試
験装置MCT150を使用した。試料チャンバーの容量
はB.subtilis ATCC 6633の場合、5301.4cm3
B.subtilis NCDO 2130の場合、196.4cm3 とし
た。高圧処理する際に60℃の加温を併用したが、恒温
槽中の温水を循環することにより試料チャンバーの温度
調整を行った。
A high-pressure tester MCT150 manufactured by Mitsubishi Heavy Industries Ltd. was used for the high-pressure treatment. The capacity of the sample chamber is 5301.4 cm 3 for B. subtilis ATCC 6633,
In the case of B. subtilis NCDO 2130, it was 196.4 cm 3 . Although the heating at 60 ° C. was used together during the high-pressure treatment, the temperature of the sample chamber was adjusted by circulating hot water in the constant temperature bath.

【0025】(4)生菌数の測定 供試菌液を活性化処理し、その後、試料を高圧処理し
た。活性化処理後、昇圧後、および高圧処理後の生菌数
を測定した。B.subtilisの場合、滅菌リン酸緩衝生理食
塩水で希釈後、標準寒天培地を用い、35℃で48時間
培養した後、生育したコロニー数を計数した。 2.実施結果 結果を図4−図11にまとめて示す。
(4) Measurement of viable cell count The test bacterial solution was activated, and then the sample was subjected to high pressure treatment. The number of viable bacteria was measured after activation, after pressurization, and after high-pressure treatment. In the case of B. subtilis, the number of grown colonies was counted after diluting with sterile phosphate-buffered saline and culturing for 48 hours at 35 ° C. using a standard agar medium. 2. Implementation Results The results are shown together in FIGS.

【0026】(1)活性化処理時の芽胞の死滅 B.subtilis ATCC 6633を温度60〜90℃で15分間加
熱し、処理後の生菌数を測定した。図4及び6にリン酸
緩衝液中、図5及び7に牛乳中における芽胞の死滅を示
した。初期生菌数(N0)と活性化処理後の生菌数(N
1)を比較すると1オーダー近い差がみられた場合もあ
ったが、繰り返し実験を行ったところ加熱によりリン酸
緩衝液、牛乳中とも大きな差異はみられなかった。通
常、60〜90℃で15分間の加温では芽胞は死滅しに
くいが、保存や菌液調製時の菌の状態により活性化処理
後の生菌数(N1)は多少変化する可能性もあると考え
られる。次にB.subtilis NCDO 2130を温度80〜100
℃で15分間加熱処理し、処理後の生菌数(N1)を測
定した。図8及び10にリン酸緩衝液中、図9及び11
に牛乳中における加熱による芽胞の死滅を示した。B.su
btilis ATCC 6633同様、初期生菌数(N0)と差はな
く、加熱による殺菌効果はみられなかった。因に、加熱
殺菌実験により算出された110℃におけるB.subtilis
NCDO 2130のD値は63.4分であり、又温度80〜1
00℃で15分間加熱処理しても芽胞は死滅しなかった
(D値とは生菌数が1/10になるまでの処理時間をい
う。)。
(1) Killing of spores during activation treatment B. subtilis ATCC 6633 was heated at a temperature of 60 to 90 ° C for 15 minutes, and the viable cell count after the treatment was measured. 4 and 6 show spore killing in phosphate buffer, and FIGS. 5 and 7 show spore killing in milk. Initial viable cell count (N0) and viable cell count after activation (N
When comparing 1), there was a case where a difference close to one order was observed in some cases, but when repeated experiments were performed, no large difference was observed between the phosphate buffer solution and the milk due to heating. Usually, spores are not easily killed by heating at 60 to 90 ° C for 15 minutes, but the viable cell count (N1) after activation may change somewhat depending on the state of the bacteria during storage or preparation of bacterial solution. it is conceivable that. Then B. subtilis NCDO 2130 at a temperature of 80-100
After heat treatment at 15 ° C. for 15 minutes, the number of viable bacteria (N1) after the treatment was measured. Figures 8 and 10 in phosphate buffer, Figures 9 and 11
It showed that spores were killed by heating in milk. B.su
Similar to btilis ATCC 6633, there was no difference from the initial viable cell count (N0), and no bactericidal effect by heating was observed. As a result, B. subtilis at 110 ℃ calculated by heat sterilization experiment
NCDO 2130 has a D value of 63.4 minutes and a temperature of 80-1
The spores were not killed by heat treatment at 00 ° C. for 15 minutes (the D value means the treatment time until the viable cell count becomes 1/10).

【0027】尚、上記活性化処理の処理時間は15分間
であるが活性化処理時間による芽胞の相対ODの低下を
計測した結果を前述した図2(B.subtilis ATCC 663
3)、図3(B.subtilis NCDO 2130)より見ると、いず
れの菌株においても活性化処理の温度が高い程、透明性
の変化が速く、透明度が高くなる傾向にあり、またいず
れの温度においても透明性は増しており活性化されてい
ると認められた。
The treatment time of the above-mentioned activation treatment was 15 minutes, but the result of measuring the decrease in the relative OD of the spores due to the activation treatment time was shown in FIG. 2 (B. subtilis ATCC 663).
3) and FIG. 3 (B. subtilis NCDO 2130), in any strain, the higher the activation temperature, the faster the transparency changes and the higher the transparency. However, the transparency was increased, and it was recognized that it was activated.

【0028】(2)昇圧時の芽胞の死滅に及ぼす活性化
処理の効果 B.subtilis ATCC 6633を高圧処理する時、200MP
a、400MPaの圧力に到達するまでそれぞれ9分3
0秒、17分30秒の昇圧時間を要した。B.subtilis A
TCC 6633はB.subtilis NCDO 2130にくらべ耐熱性、耐圧
性ともに低いので、60,80,90℃で15分間加熱
前処理し、その後、200MPa、400MPaの圧力
で処理した。図4及び6にリン酸緩衝液中における芽胞
の死滅を図5及び7に牛乳中における芽胞の死滅活性化
を示した。活性化処理後の生菌数はN1、昇圧後の生菌
数はN2である(尚、便宜上、図中横軸にN1,N2等
の記号を記しているが、これは縦軸の生菌数との対応を
示している。)。活性化処理しない場合には昇圧時にリ
ン酸緩衝液中および牛乳中ともに200MPaで1オー
ダー、400MPaで2オーダーの芽胞が死滅したが、
リン酸緩衝液、牛乳とも、活性化処理温度が60℃→8
0℃→90℃と高くなるに従い、N2の減少が大きくな
った。特に400MPaでは活性化処理の効果が顕著で
あり80℃の活性化処理で4オーダー、90℃で5オー
ダーも減少し、昇圧時だけで充分殺菌が実施できた。こ
の結果から、耐圧性が比較的低い芽胞は昇圧時のみで殺
菌することも可能であることが判る。尚、60℃−15
分の活性化処理をした場合、処理しなかった場合と比較
して差はみられなかったが、これよりも耐熱性、耐圧性
の弱い芽胞を対象とすれば、差が現れたものと考えられ
る。
(2) Effect of activation treatment on killing of spores at pressurization 200MP when high-pressure treatment of B. subtilis ATCC 6633
a, 3 minutes each for reaching a pressure of 400 MPa 3
The pressurization time of 0 seconds and 17 minutes and 30 seconds was required. B.subtilis A
Since TCC 6633 has lower heat resistance and pressure resistance than B. subtilis NCDO 2130, it was pretreated by heating at 60, 80 and 90 ° C. for 15 minutes, and then treated at a pressure of 200 MPa and 400 MPa. FIGS. 4 and 6 show spore killing in phosphate buffer, and FIGS. 5 and 7 show spore killing activation in milk. The number of viable bacteria after activation treatment is N1, and the number of viable bacteria after pressurization is N2 (for convenience, symbols such as N1 and N2 are shown on the horizontal axis in the figure, but this is on the vertical axis. Shows the correspondence with the number.). Without activation treatment, the spores of 1 order at 200 MPa and 2 orders at 400 MPa died in both the phosphate buffer and the milk during pressurization.
The activation temperature for both phosphate buffer and milk is 60 ° C → 8
As the temperature increased from 0 ° C to 90 ° C, the decrease in N2 increased. In particular, at 400 MPa, the effect of the activation treatment was remarkable, and the activation treatment at 80 ° C. reduced it by 4 orders and at 90 ° C. by 5 orders, and sufficient sterilization could be carried out only at the time of pressurization. From this result, it is understood that the spores having relatively low pressure resistance can be sterilized only at the time of pressurization. In addition, 60 ℃ -15
There was no difference in the case of activating treatment for 10 minutes compared to the case of not activating, but it is considered that the difference appeared when spores with lower heat resistance and pressure resistance were targeted. Be done.

【0029】次に、B.subtilis NCDO 2130の場合は、4
00MPa、600MPaの圧力に到達するまでそれぞ
れ5分30秒、6分30秒の昇圧時間を必要とした。8
0,90,100℃で15分間加熱処理し、その後、4
00MPa、600MPaの高圧処理を行った。図8及
び10にリン酸緩衝液中の芽胞の死滅、図9及び11に
牛乳中の芽胞の死滅を示した。リン酸緩衝液中では40
0MPa、600MPaともに80〜100℃の温度範
囲で15分間の処理をしても活性化処理なしと差はなか
ったが、牛乳中では600MPaまでの昇圧時に90℃
以上の加熱前処理により1オーダー近い殺菌効果がみら
れた。
Next, in the case of B. subtilis NCDO 2130, 4
It took 5 minutes and 30 seconds and 6 minutes and 30 seconds to increase the pressure to 00 MPa and 600 MPa, respectively. 8
Heat treatment at 0, 90, 100 ℃ for 15 minutes, then 4
High-pressure treatment of 00 MPa and 600 MPa was performed. 8 and 10 show the death of spores in the phosphate buffer, and FIGS. 9 and 11 show the death of spores in milk. 40 in phosphate buffer
Both 0MPa and 600MPa did not differ from those without activation treatment even after treatment for 15 minutes in the temperature range of 80 to 100 ° C, but in milk, 90 ° C at the time of pressurization up to 600MPa.
By the above heating pretreatment, a bactericidal effect close to one order was observed.

【0030】一般に耐熱性と耐圧性は相関が高く、B.su
btilis ATCC 6633はB.subtilis NCDO 2130に比べ、耐熱
性が低く、耐圧性も低いため、B.subtilis ATCC 6633は
発芽活性化されやすく、発芽活性化された芽胞は元の芽
胞に比べ耐圧性が低かったために低い圧力でも殺菌効果
が高かったと考えられる。一方、B.subtilis NCDO 2130
は一部発芽活性化されてはいるが、耐圧性が高いため昇
圧時だけでは死滅まで到らなかった。しかし、活性化処
理をさらに強く行うことにより、昇圧時で充分な殺菌効
果を得ることも可能である。
Generally, heat resistance and pressure resistance have a high correlation, and B.su
Since btilis ATCC 6633 has lower heat resistance and lower pressure resistance than B. subtilis NCDO 2130, B. subtilis ATCC 6633 is easily germinated and the germinated activated spores are more resistant to pressure than the original spores. It is considered that the bactericidal effect was high even at low pressure because it was low. On the other hand, B. subtilis NCDO 2130
Although the germination was partially activated, it could not be killed only by increasing the pressure because of its high pressure resistance. However, it is possible to obtain a sufficient bactericidal effect at the time of pressurization by further strengthening the activation treatment.

【0031】(3)圧力保持時(60℃加温)の芽胞の
死滅に及ぼす加熱前処理の効果 定めた圧力に到達した時を保持時間0分とし(N2)、
圧力保持後の生菌数を計測した(N3)。図4及び6に
示すようにB.subtilis ATCC 6633はリン酸緩衝液中で、
保持時間が長くなるにしたがい殺菌効果も高まる傾向が
みられたが、この傾向は活性化処理の有無であまり相違
がなかった。これはB.subtilis ATCC 6633芽胞が活性化
処理により発芽活性化され、耐性が弱まったものは昇圧
時にすでに死滅し、発芽活性化されずに元の状態に近い
耐圧性の高い芽胞のみが残存したため圧力保持時の生菌
数減少が小さくなったためである。換言すれば、昇圧時
にすでに活性化処理による殺菌効果が顕在化するため、
保持時には顕著でなくなる。
(3) Effect of heat pretreatment on killing of spores during pressure holding (heating at 60 ° C.) The holding time is 0 minutes when the predetermined pressure is reached (N2),
The viable cell count after the pressure was maintained was measured (N3). As shown in FIGS. 4 and 6, B. subtilis ATCC 6633 was
There was a tendency for the bactericidal effect to increase as the holding time became longer, but this tendency was not so different between with and without the activation treatment. This is because B. subtilis ATCC 6633 spores were germinated and activated by the activation treatment, and those whose resistance became weaker had already died at the time of pressurization, and only spores with high pressure resistance close to the original state remained without germination activation. This is because the decrease in the number of viable bacteria when the pressure was maintained was reduced. In other words, the bactericidal effect of the activation treatment has already become apparent when the pressure is increased,
It becomes less noticeable when held.

【0032】図5及び7にはB.subtilis ATCC 6633の牛
乳中での殺菌効果を示すが、牛乳中でも同様の傾向がみ
られ、昇圧時に殺菌効果の高かった80℃−15分、9
0℃15分の加熱前処理は圧力保持時には大きな効果は
見られなかった。
5 and 7 show the bactericidal effect of B. subtilis ATCC 6633 in milk, the same tendency was observed in milk, and the bactericidal effect was high at the time of pressurization at 80 ° C. for 15 minutes, 9 minutes.
The heating pretreatment at 0 ° C. for 15 minutes did not show a great effect when the pressure was maintained.

【0033】因に、各条件におけるN3/N2基準のD
値(生菌数が1/10になるまでの時間(分)を示し、
殺菌効果の指標となる)を計算したところ該D値の上か
らは活性化処理の効果は有意でなかった。この理由は前
述したようにB.subtilis ATCC 6633 の場合、昇圧時に
菌の死滅が起っているためである。
Incidentally, the D of N3 / N2 standard under each condition
Value (indicates the time (minutes) until the viable cell count becomes 1/10,
The effect of the activation treatment was not significant on the D value when calculated as (indicator of bactericidal effect). The reason for this is that, in the case of B. subtilis ATCC 6633, the bacteria die when the pressure is increased, as described above.

【0034】B.subtilis NCDO 2130については図8(4
00MPa)及び図10(600MPa)にリン酸緩衝
液中での殺菌効果を示す。400MPaでは、圧力処理
のみ行った場合は保持時間を延長しても殺菌効果が全く
認められなかったが、活性化処理を行うことにより保持
時間を長くするにつれて殺菌効果が高まるようになっ
た。また、活性化処理温度が高くなるにつれて圧力保持
時の殺菌効果が高まった。600MPaでは、圧力処理
のみでも40分間の保持で若干の殺菌効果が認められた
が1オーダー以下の減少にすぎなかった。一方、活性化
処理をしたものは、保持時間ともに確実に殺菌効果が得
られ、40分間の保持では2〜3オーダーの減少が認め
られた。このように、昇圧時には死滅しない芽胞も活性
化処理を施したものでは圧力保持時に死滅させることが
できる。牛乳中での殺菌効果もほぼ同様で、図9(40
0MPa)及び図11(600MPa)に示す。しか
し、B.subtilis NCDO 2130の場合、昇圧時にも観察され
たが、同じ処理条件にもかかわらず、リン酸緩衝液中に
比べて牛乳中ではより多くの菌が死滅していた。緩衝液
中よりも多くの成分を含む牛乳中の方が発芽活性化され
やすいとも考えられるが、前処理なしの場合も含めて殺
菌効果が高かったので牛乳中の成分が殺菌に関して何ら
かの影響を与えていると考えられる。
For B. subtilis NCDO 2130, FIG.
00 MPa) and FIG. 10 (600 MPa) show the bactericidal effect in the phosphate buffer. At 400 MPa, no bactericidal effect was observed even if the holding time was extended when only the pressure treatment was performed, but the bactericidal effect increased as the holding time was prolonged by performing the activation treatment. Moreover, the sterilization effect at the time of maintaining the pressure increased as the activation treatment temperature increased. At 600 MPa, a slight bactericidal effect was recognized by holding for 40 minutes only by pressure treatment, but the decrease was only one order or less. On the other hand, in the case of the activation treatment, the sterilizing effect was surely obtained with the holding time, and the reduction of 2 to 3 orders was observed after the holding for 40 minutes. As described above, spores that do not die at the time of pressurization can also be made to die at the time of holding the pressure by the activation treatment. The bactericidal effect in milk is almost the same.
0 MPa) and FIG. 11 (600 MPa). However, in the case of B. subtilis NCDO 2130, more bacteria were killed in milk than in phosphate buffer, despite the same treatment conditions, which was also observed during pressurization. It is considered that the milk containing more components than the buffer solution is more likely to be activated in germination, but the sterilizing effect was high even without pretreatment, so the components in milk have some influence on sterilization. It is thought that

【0035】表2にはB.subtilis NCDO 2130におけるD
値を示す。表2に示す通り、耐圧性の弱いB.subtilis A
TCC 6633に比べ保持時の活性化処理効果は著しく、一般
に活性化処理の程度が強くなる程D値は減少し、又、圧
力が高い方がD値は減少する。但し、600MPa、牛
乳のように圧力処理のみで殺菌効果があるものでは活性
化処理の効果は顕著でなくなる。これは、昇圧時ですで
にある程度の殺菌効果が顕在化するためである。又、リ
ン酸緩衝液では80℃で活性化処理したものの400M
Paと600MPaでは、殺菌効果が大きく異なり、同
様に、400MPaでは80℃と90℃で大きく異な
る。これは80℃での活性化処理においては600MP
a付近の圧力が臨界条件的値であり、又、400MPa
においては90℃付近の温度が臨界条件的値であること
を示している。一方、400MPa、80℃においても
対照と比べ大幅に殺菌効果は向上し、又、B.subtilis A
TCC6633での60℃では圧力に関係なく効果が有意でな
かったことから活性化処理の程度と圧力の間には、殺菌
効果を向上させ得る第一の臨界条件があり、次に、その
効果を大幅に増大させ得る第二の臨界条件があることが
判る。これらの条件は、対象とする芽胞の種類、被殺菌
物等により設定され得るものである。
Table 2 shows D in B. subtilis NCDO 2130.
Indicates a value. As shown in Table 2, B. subtilis A with weak pressure resistance
Compared with TCC 6633, the effect of activation treatment during holding is remarkable, and generally the D value decreases as the degree of activation treatment increases, and the D value decreases as the pressure increases. However, the effect of the activation treatment becomes insignificant in the case of 600 MPa, which has a sterilizing effect only by pressure treatment such as milk. This is because the bactericidal effect is already manifested to some extent when the pressure is increased. In addition, the phosphate buffer solution is 400M, which was activated at 80 ℃.
At Pa and 600 MPa, the bactericidal effect is greatly different, and similarly at 400 MPa, 80 ° C. and 90 ° C. are greatly different. This is 600MP in activation treatment at 80 ℃
The pressure around a is a critical condition value, and 400 MPa
Shows that the temperature around 90 ° C. is a critical condition value. On the other hand, even at 400 MPa and 80 ° C, the bactericidal effect was significantly improved compared to the control, and B. subtilis A
At 60 ° C with TCC6633, the effect was not significant regardless of pressure, so there is a first critical condition that can improve the bactericidal effect between the degree of activation treatment and pressure. It can be seen that there is a second critical condition that can be greatly increased. These conditions can be set depending on the type of spores to be treated, the substance to be sterilized, and the like.

【0036】[0036]

【表2】 以上、N0〜N3までの生菌数変化を前述殺菌効果の態
様の観点から概括的にみてみると、B.subtilis ATCC 66
33の200MPaにおける殺菌効果は態様(A)、40
0MPaにおけるそれは態様(B)、B.subtilis NCDO
2130の400MPa、600MPaにおけるそれは態様
(C)ということができる。
[Table 2] As described above, when the changes in the viable cell count from N0 to N3 are generally viewed from the viewpoint of the mode of the bactericidal effect described above, B. subtilis ATCC 66
The sterilization effect of 33 at 200 MPa is 40 (40%).
At 0 MPa it is embodiment (B), B. subtilis NCDO
It can be said that the aspect of 2130 at 400 MPa and 600 MPa is the aspect (C).

【0037】[0037]

【発明の効果】以上説明したように、高圧処理前に活性
化処理を施すことにより、比較的耐熱性、耐圧性の低い
芽胞では(あるいは、耐熱性、耐圧性の高い芽胞でも活
性化処理を充分実施することで)昇圧時に殺菌すること
ができ、昇圧時に死滅しない芽胞に対しては、圧力保持
時に殺菌することができる。即ち、高圧処理の単独操作
だけでは死滅しなかった芽胞の殺菌を可能とし、さら
に、高圧処理のみで殺菌が可能であるものに対しては高
圧処理条件を緩和にできる技術的意義がある。従って、
本発明の殺菌方法によれば被殺菌物の成分変化を招くこ
となく耐性の強い芽胞を含め芽胞の殺菌を効率的に実施
でき、被殺菌方法は広く食品、医薬品の分野で極めて有
用な技術である。
As described above, by performing the activation treatment before the high-pressure treatment, the spores having relatively low heat resistance and pressure resistance can be activated (or even the spores having high heat resistance and pressure resistance can be activated. It can be sterilized at the time of pressurization (by sufficient implementation), and spores that do not die at the time of pressurization can be sterilized at the time of holding the pressure. That is, there is a technical significance that spores that have not been killed by a single operation of high-pressure treatment can be sterilized, and that high-pressure treatment conditions can be relaxed for those that can be sterilized only by high-pressure treatment. Therefore,
According to the sterilization method of the present invention, it is possible to efficiently perform sterilization of spores including highly resistant spores without inducing a change in components of the sterilization target, and the sterilization method is widely used in food and pharmaceutical fields. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の殺菌方法による殺菌効果の態様
(A),(B),(C)を示す概念図である。
FIG. 1 is a conceptual diagram showing modes (A), (B) and (C) of a bactericidal effect by the sterilizing method of the present invention.

【図2】B.subtilis ATCC 6633の活性化処理中のoptica
l density 変化を示すグラフである。
Fig. 2 optica during activation of B. subtilis ATCC 6633
It is a graph which shows l density change.

【図3】B.subtilis NCDO 2130の活性化処理中のoptica
l density 変化を示すグラフである。
Fig. 3 optica during activation of B. subtilis NCDO 2130
It is a graph which shows l density change.

【図4】リン酸緩衝液中のB.subtilis ATCC 6633の20
0MPa下における生菌数変化を示すグラフである。図
中(a)は活性化処理温度が60℃、(b)は同80
℃、(c)は同90℃、(d)は対照である。
FIG. 4: 20 of B. subtilis ATCC 6633 in phosphate buffer
It is a graph which shows a change in the number of viable bacteria under 0 MPa. In the figure, (a) shows the activation temperature of 60 ° C., (b) shows the same 80
° C, (c) is the same 90 ° C, (d) is a control.

【図5】牛乳中のB.subtilis ATCC 6633の200MPa
下における生菌数変化を示すグラフである。図中(a)
は活性化処理温度が60℃、(b)は同80℃、(c)
は同90℃、(d)は対照である。
FIG. 5: 200 MPa of B. subtilis ATCC 6633 in milk
It is a graph which shows the viable cell count change below. (A) in the figure
Has an activation temperature of 60 ° C, (b) has the same temperature of 80 ° C, (c)
Is 90 ° C. and (d) is a control.

【図6】リン酸緩衝液中のB.subtilis ATCC 6633の40
0MPa下における生菌数変化を示すグラフである。図
中(a)は活性化処理温度が60℃、(b)は同80
℃、(c)は同90℃、(d)は対照である。
FIG. 6: 40 of B. subtilis ATCC 6633 in phosphate buffer
It is a graph which shows a change in the number of viable bacteria under 0 MPa. In the figure, (a) shows the activation temperature of 60 ° C., (b) shows the same 80
° C, (c) is the same 90 ° C, (d) is a control.

【図7】牛乳中のB.subtilis ATCC 6633の400MPa
下における生菌数変化を示すグラフである。図中(a)
は活性化処理温度が60℃、(b)は同80℃、(c)
は同90℃、(d)は対照である。
Figure 7: 400 MPa of B. subtilis ATCC 6633 in milk
It is a graph which shows the viable cell count change below. (A) in the figure
Has an activation temperature of 60 ° C, (b) has the same temperature of 80 ° C, (c)
Is 90 ° C. and (d) is a control.

【図8】リン酸緩衝液中のB.subtilis NCDO 2130の40
0MPa下における生菌数変化を示すグラフである。図
中(a)は活性化処理温度が80℃、(b)は同90
℃、(c)は同100℃、(d)は対照である。
FIG. 8: 40 of B. subtilis NCDO 2130 in phosphate buffer
It is a graph which shows a change in the number of viable bacteria under 0 MPa. In the figure, (a) shows an activation treatment temperature of 80 ° C., (b) shows the same 90 °
° C, (c) is the same 100 ° C, (d) is a control.

【図9】牛乳中のB.subtilis NCDO 2130の400MPa
下における生菌数変化を示すグラフである。図中(a)
は活性化処理温度が80℃、(b)は同90℃、(c)
は同100℃、(d)は対照である。
Figure 9: 400 MPa of B. subtilis NCDO 2130 in milk
It is a graph which shows the viable cell count change below. (A) in the figure
Has an activation temperature of 80 ° C., (b) has the same temperature of 90 ° C., (c)
The same is 100 ° C., and (d) is a control.

【図10】リン酸緩衝液中のB.subtilis NCDO 2130の6
00MPa下における生菌数変化を示すグラフである。
図中(a)は活性化処理温度が80℃、(b)は同90
℃、(c)は同100℃、(d)は対照である。
FIG. 10: 6 of B. subtilis NCDO 2130 in phosphate buffer
It is a graph which shows the viable cell count change under 00 MPa.
In the figure, (a) shows an activation treatment temperature of 80 ° C., (b) shows the same 90 °
° C, (c) is the same 100 ° C, (d) is a control.

【図11】牛乳中のB.subtilis NCDO 2130の600MP
a下における生菌数変化を示すグラフである。図中
(a)は活性化処理温度が80℃、(b)は同90℃、
(c)は同100℃、(d)は対照である。
FIG. 11: 600MP of B. subtilis NCDO 2130 in milk
It is a graph which shows the viable cell count change under a. In the figure, (a) shows the activation treatment temperature of 80 ° C, (b) shows the same 90 ° C,
(C) is the same 100 degreeC, (d) is a control.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被殺菌物中の細菌芽胞を加熱により発芽
活性化処理し、つづいて高圧処理することを特徴とする
細菌芽胞の殺菌方法。
1. A method for sterilizing bacterial spores, which comprises subjecting bacterial spores in a substance to be sterilized to germination activation treatment by heating, and then subjecting to high pressure treatment.
【請求項2】 加熱による発芽活性化処理が40℃以上
で1分間以上であり、高圧処理における加圧圧力が10
0MPa以上である請求項1に記載の殺菌方法。
2. The germination activation treatment by heating is performed at 40 ° C. or higher for 1 minute or longer, and the pressurization pressure in the high pressure treatment is 10
The sterilization method according to claim 1, wherein the sterilization method is 0 MPa or more.
JP3241775A 1991-09-20 1991-09-20 Method for sterilization Pending JPH05227925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3241775A JPH05227925A (en) 1991-09-20 1991-09-20 Method for sterilization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3241775A JPH05227925A (en) 1991-09-20 1991-09-20 Method for sterilization

Publications (1)

Publication Number Publication Date
JPH05227925A true JPH05227925A (en) 1993-09-07

Family

ID=17079342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3241775A Pending JPH05227925A (en) 1991-09-20 1991-09-20 Method for sterilization

Country Status (1)

Country Link
JP (1) JPH05227925A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH119242A (en) * 1997-06-25 1999-01-19 Kagome Co Ltd Production of liquid food
EP1421185A2 (en) * 2001-08-07 2004-05-26 Boston Biomedica, Inc. Rapid cryobaric sterilization and vaccine preparation
KR100822711B1 (en) * 2006-12-22 2008-04-17 주식회사농심 Pretreatment of mung-bean
WO2008083216A1 (en) * 2006-12-29 2008-07-10 Kraft Foods Global Brands Llc Process for reducing spore levels in compositions
JP2009118775A (en) * 2007-11-14 2009-06-04 Ahjikan Co Ltd Spore sprouting method, and spore-forming bacterium sterilization method using the same
WO2013129654A1 (en) 2012-03-02 2013-09-06 株式会社明治 Sterilization method
JP2018518981A (en) * 2015-07-03 2018-07-19 ナチュロ ピーティーワイ リミテッド How to process milk

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH119242A (en) * 1997-06-25 1999-01-19 Kagome Co Ltd Production of liquid food
EP1421185A2 (en) * 2001-08-07 2004-05-26 Boston Biomedica, Inc. Rapid cryobaric sterilization and vaccine preparation
EP1421185A4 (en) * 2001-08-07 2005-12-21 Boston Biomedica Inc Rapid cryobaric sterilization and vaccine preparation
KR100822711B1 (en) * 2006-12-22 2008-04-17 주식회사농심 Pretreatment of mung-bean
WO2008083216A1 (en) * 2006-12-29 2008-07-10 Kraft Foods Global Brands Llc Process for reducing spore levels in compositions
AU2007339844B2 (en) * 2006-12-29 2014-04-10 Commonwealth Scientific And Industrial Research Organisation Process for reducing spore levels in compositions
US8993023B2 (en) 2006-12-29 2015-03-31 Kraft Foods Group Brands Llc Process for reducing spore levels in compositions
JP2009118775A (en) * 2007-11-14 2009-06-04 Ahjikan Co Ltd Spore sprouting method, and spore-forming bacterium sterilization method using the same
WO2013129654A1 (en) 2012-03-02 2013-09-06 株式会社明治 Sterilization method
JP2018518981A (en) * 2015-07-03 2018-07-19 ナチュロ ピーティーワイ リミテッド How to process milk

Similar Documents

Publication Publication Date Title
JP3672931B2 (en) High-temperature / ultra-high pressure sterilization of low acid foods
Muntean et al. High pressure processing in food industry–characteristics and applications
D'amico et al. Inactivation of microorganisms in milk and apple cider treated with ultrasound
Dogan et al. High pressure inactivation kinetics of Listeria monocytogenes inactivation in broth, milk, and peach and orange juices
US6120732A (en) Microbial inactivation by high-pressure throttling
Evelyn et al. Thermosonication versus thermal processing of skim milk and beef slurry: modeling the inactivation kinetics of psychrotrophic Bacillus cereus spores
Piyasena et al. Inactivation of microbes using ultrasound: a review
Podolak et al. Factors affecting microbial inactivation during high pressure processing in juices and beverages: A review
Silva Differences in the resistance of microbial spores to thermosonication, high pressure thermal processing and thermal treatment alone
JP2000083633A (en) Sterilization for food
US20080152775A1 (en) Inactivation of food spoilage and pathogenic microorganisms by dynamic high pressure
Trujillo et al. Effect of heat and high-pressure treatments on microbiological quality and immunoglobulin G stability of caprine colostrum
CZ373798A3 (en) Method of reducing viability of micro-organisms
JP2018536435A (en) Method for liquid food preservation using pulsed electric field treatment
JPH05227925A (en) Method for sterilization
AU2486799A (en) Method for ultra high pressure inactivation of microorganisms in juice products
JP4872048B2 (en) Method for germinating spores and method for sterilizing spores using the same
EP1201252B1 (en) Method for inactivating microorganisms using high pressure processing
Zhou et al. Microbial decontamination of food by power ultrasound
Ramteke et al. Thermosonication technology in the dairy industry: A review
EP0610410B1 (en) A method of heat-treating liquid milk product
EP0096477B1 (en) Whey fermentation process
Cameron Impact of low-frequency high-power ultrasound on spoilage and potentially pathogenic dairy microbes
JP2002191334A (en) Food sterilization method
JP3154233B2 (en) Fluid sterilization method