JPH05227700A - Claw-pole type motor - Google Patents

Claw-pole type motor

Info

Publication number
JPH05227700A
JPH05227700A JP5931592A JP5931592A JPH05227700A JP H05227700 A JPH05227700 A JP H05227700A JP 5931592 A JP5931592 A JP 5931592A JP 5931592 A JP5931592 A JP 5931592A JP H05227700 A JPH05227700 A JP H05227700A
Authority
JP
Japan
Prior art keywords
rotary shaft
cooling gas
pole type
electric motor
end side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5931592A
Other languages
Japanese (ja)
Inventor
Daisaku Kato
大策 加藤
Hiroshi Oya
博志 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP5931592A priority Critical patent/JPH05227700A/en
Publication of JPH05227700A publication Critical patent/JPH05227700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

PURPOSE:To provide a claw-pole type motor in which cooling is performed positively with reduced power consumption. CONSTITUTION:A spiral groove 14 for forming cooling gas 10 flow in the direction from one end side to the other end side of a rotary shaft 1 through rotation of the rotary shaft 1 is formed in at least one of the outer peripheral surface of the rotary shaft 1 of a claw-pole type motor or the inner peripheral surface of casing flange 15 surrounding the rotary shaft 1 and a cooling gas circulation passage 16 equipped with a gas cooler 13 connects one and the other ends of the rotary shaft 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ヘリウムHe、水素H2
等の極低温液化冷凍用ターボ圧縮機等に用いられるクロ
ーポール型電動機に関するものである。
The present invention relates to helium He, hydrogen H 2
The present invention relates to a claw pole type electric motor used in a cryogenic liquefaction refrigeration turbo compressor or the like.

【0002】[0002]

【従来の技術】ヘリウム液化冷凍用低温ターボ圧縮機
は、非常に軽いヘリウムガスに動エネルギーを与えて圧
縮する必要があり、よって駆動電動機は高速を要するた
めにクローポール型が用いられる。
2. Description of the Related Art A low temperature turbo compressor for liquefying helium needs to give kinetic energy to a very light helium gas to compress it. Therefore, a driving motor is of a claw pole type because it requires high speed.

【0003】従来の通常の同期式電動機等は、環状に構
成される固定子の軸心部に設けられる回転子の構成を、
回転軸の外周に多数の積層板及び多数の銅製バー等によ
り組立てた組立体を取り付けた構成を有しており、従っ
て高速回転させると回転子の組立体に非常に大きな遠心
力に基づく荷重が作用することになって強度面に問題を
生じる。これに対して、クローポール型電動機は、これ
等の組立体がなく高速回転に適した一体構造となってい
る。
In a conventional normal synchronous electric motor or the like, the rotor provided at the axial center of a stator formed in an annular shape has the following structure.
It has a structure in which a large number of laminated plates and a large number of copper bars, etc. are attached to the outer circumference of the rotating shaft, and therefore, when rotating at a high speed, a load based on a very large centrifugal force is applied to the rotor assembly. This will cause a problem in strength. On the other hand, the claw pole type electric motor does not have such an assembly and has an integrated structure suitable for high speed rotation.

【0004】図4は従来のクローポール型電動機の一例
を示すもので、回転軸1の外周を包囲するように固定子
2を設けると共に、該固定子2を軸方向に挟むように界
磁コイル3を取り付けた構成を有し、該界磁コイル3に
よる磁界をケーシングフランジ15を介して前記回転軸
1に伝えるようにしているために回転軸1は磁性材及び
N,S極を区分する非磁性材を成形した一体形状の構成
となっている。従って、クローポール型電動機は回転軸
1の強度を大幅に増大することができるので、高速回転
に適したものであるといえる。4は前記回転軸1に取り
付けてヘリウムガスの圧縮を行うターボ圧縮機5のイン
ペラ、6はジャーナル磁気軸受、7はスラスト磁気軸
受、8は固定子冷却用の液化窒素の導入口、9は導出口
を示す。
FIG. 4 shows an example of a conventional claw pole type electric motor. A stator 2 is provided so as to surround the outer circumference of a rotary shaft 1, and a field coil is provided so as to sandwich the stator 2 in the axial direction. 3 is attached, and the magnetic field generated by the field coil 3 is transmitted to the rotary shaft 1 through the casing flange 15, so the rotary shaft 1 separates the magnetic material and the N and S poles. It has a one-piece structure formed by molding a magnetic material. Therefore, the claw pole type electric motor can greatly increase the strength of the rotating shaft 1, and can be said to be suitable for high speed rotation. 4 is an impeller of a turbo compressor 5 attached to the rotary shaft 1 for compressing helium gas, 6 is a journal magnetic bearing, 7 is a thrust magnetic bearing, 8 is a liquefied nitrogen inlet for cooling the stator, and 9 is a guide. Indicates the exit.

【0005】一方、クローポール型電動機は、高速回転
するために冷却ガスの摩擦熱、鉄心ヒステリシス損及び
導体抵抗に基づく発熱密度が通常の電動機に比べて大き
く、外見上は小型であっても温度の上昇が激しいので強
制冷却を行う必要がある。
On the other hand, since the claw pole type motor rotates at a high speed, the heat generation density based on the frictional heat of the cooling gas, the hysteresis loss of the iron core and the conductor resistance is larger than that of a normal motor, and even if it is small in appearance, the temperature is small. It is necessary to perform forced cooling because the temperature rises sharply.

【0006】このため、従来は図4に示すように、ター
ボ圧縮機5のインペラ4背面から圧縮機吐出ガス(ヘリ
ウムガス)の一部を冷却ガス10として電動機内に導
き、回転軸1に沿って流すことにより、回転軸1や固定
子2内面等を冷却し、続いて昇温した冷却ガス10を流
量調整用のオリフィス11を通した後、管路12を介し
て液化窒素等と熱交換して冷却を行うようにしたガス冷
却器13に導き、ターボ圧縮機5に再び吸引させるよう
にしている。
For this reason, conventionally, as shown in FIG. 4, a part of the compressor discharge gas (helium gas) is introduced from the back surface of the impeller 4 of the turbo compressor 5 into the electric motor as the cooling gas 10, and along the rotating shaft 1. To cool the rotating shaft 1 and the inner surface of the stator 2 and the like, and then pass the heated cooling gas 10 through the orifice 11 for adjusting the flow rate, and then exchange heat with the liquefied nitrogen and the like via the pipe 12. Then, the gas is guided to the gas cooler 13 for cooling, and the turbo compressor 5 is made to suck again.

【0007】[0007]

【発明が解決しようとする課題】しかし、前記電動機の
冷却にはかなりの量の冷却ガス10を流す必要があり、
従来方式では、ターボ圧縮機で圧縮したガスの一部を冷
却ガス10として使用するようにしているために、圧縮
ガス量及び動力消費量が増加し、ターボ圧縮機5の効率
が低下してしまう問題を有していた。
However, in order to cool the electric motor, it is necessary to flow a considerable amount of cooling gas 10.
In the conventional method, since a part of the gas compressed by the turbo compressor is used as the cooling gas 10, the amount of compressed gas and power consumption increase, and the efficiency of the turbo compressor 5 decreases. Had a problem.

【0008】本発明は、上記従来の問題点に鑑みてなし
たもので、確実な冷却を行い、而も冷却のための動力消
費を減少できるクローポール型電動機を提供することを
目的とする。
The present invention has been made in view of the above conventional problems, and an object of the present invention is to provide a claw pole type electric motor capable of performing reliable cooling and reducing power consumption for cooling.

【0009】[0009]

【課題を解決するための手段】本発明は、クローポール
型電動機の回転軸の外周面と、該回転軸を包囲するケー
シングフランジ内周面との少なくとも何れか一方に、回
転軸の回転により回転軸の一端側から他端側に向かう冷
却ガスの流れを形成する螺旋溝を形成し、前記回転軸の
一端側と他端側との間を、途中にガス冷却器を備えた冷
却ガス循環流路で接続したことを特徴とするクローポー
ル型電動機、に係るものである。
According to the present invention, at least one of an outer peripheral surface of a rotary shaft of a claw pole type electric motor and an inner peripheral surface of a casing flange surrounding the rotary shaft is rotated by rotation of the rotary shaft. A cooling gas circulating flow that forms a spiral groove that forms a flow of cooling gas from one end side to the other end side of the shaft, and has a gas cooler in the middle between one end side and the other end side of the rotating shaft. The present invention relates to a claw pole type electric motor characterized by being connected by a road.

【0010】[0010]

【作用】クローポール型電動機を駆動すると、回転軸の
回転により、回転軸の外周面とケーシングフランジの内
周面との少なくとも一方に形成した螺旋溝により、回転
軸の一端側から他端側に向かう冷却ガスの流れが形成さ
れて、電動機が冷却される。冷却により昇温した冷却ガ
スは、冷却ガス循環流路に備えたガス冷却器で冷やされ
て、再び前記回転軸の一端側に導かれる。前記螺旋溝の
数、断面形状、リード角を選定することにより冷却ガス
の流量を選定することができる。
When the claw pole type motor is driven, the rotation of the rotary shaft causes the spiral groove formed on at least one of the outer peripheral surface of the rotary shaft and the inner peripheral surface of the casing flange to move from one end side to the other end side of the rotary shaft. An oncoming cooling gas flow is formed to cool the electric motor. The cooling gas whose temperature has risen due to cooling is cooled by a gas cooler provided in the cooling gas circulation passage and is again guided to one end side of the rotating shaft. The flow rate of the cooling gas can be selected by selecting the number of spiral grooves, the cross-sectional shape, and the lead angle.

【0011】[0011]

【実施例】以下本発明の実施例を図面を参照しつつ説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1は本発明のクローポール型電動機の一
例を示すもので、図中図4と同一の符号を付したものは
同一物を表わしており、詳細な説明は省略する。
FIG. 1 shows an example of a claw pole type electric motor according to the present invention. In the figure, the parts denoted by the same reference numerals as those in FIG. 4 represent the same parts, and detailed description thereof will be omitted.

【0013】図1のクローポール型電動機の回転軸1の
外周面に、図2に示すように、回転軸1の回転により回
転軸1の一端側から他端側に向かう冷却ガス10の流れ
を形成するようにした平行な複数の螺旋溝14を形成す
る。螺旋溝14の数、断面形状、リード角、及び軸方向
長さ等は冷却に必要な冷却ガス10流量及び流路全体の
抵抗に応じて任意に設計することができる。また、界磁
コイル3の磁路となるケーシングフランジ15は固定子
2を挟んで軸方向両側にあるので、螺旋溝14を一方の
ケーシングフランジ15に隣接して回転軸1に設けたり
両方のケーシングフランジ15に隣接して回転軸1に設
けることができる。図1は両方に設けた例を示す。
As shown in FIG. 2, the flow of the cooling gas 10 from one end side to the other end side of the rotating shaft 1 by the rotation of the rotating shaft 1 is caused on the outer peripheral surface of the rotating shaft 1 of the claw pole type electric motor of FIG. A plurality of parallel spiral grooves 14 that are to be formed are formed. The number, cross-sectional shape, lead angle, axial length, etc. of the spiral groove 14 can be arbitrarily designed according to the flow rate of the cooling gas 10 required for cooling and the resistance of the entire flow path. Further, since the casing flange 15 serving as the magnetic path of the field coil 3 is located on both sides in the axial direction with the stator 2 interposed therebetween, the spiral groove 14 is provided adjacent to one casing flange 15 on the rotary shaft 1 or both casings. It may be provided on the rotary shaft 1 adjacent to the flange 15. FIG. 1 shows an example provided on both sides.

【0014】前記回転軸1の一端側におけるジャーナル
磁気軸受6の反ターボ圧縮機5側位置と、回転軸1の他
端側におけるジャーナル磁気軸受6のターボ圧縮機5側
位置との間を、途中にガス冷却器15を備えた冷却ガス
循環流路16で接続する。また冷却ガス10としては、
ターボ圧縮機5で圧縮するガスと同じヘリウムガスを用
いる。図中17は冷却ガス導入口、18は冷却ガス導出
口、19はエアギャップを示す。
On the way between the position of the journal magnetic bearing 6 on one end side of the rotary shaft 1 opposite to the turbo compressor 5 side and the position of the journal magnetic bearing 6 on the other end side of the rotary shaft 1 on the turbo compressor 5 side. Are connected by a cooling gas circulation flow path 16 equipped with a gas cooler 15. As the cooling gas 10,
The same helium gas as the gas compressed by the turbo compressor 5 is used. In the figure, 17 is a cooling gas inlet, 18 is a cooling gas outlet, and 19 is an air gap.

【0015】螺旋溝14を設けた回転軸1が回転を開始
すると、螺旋溝14内の冷却ガス10は慣性及び粘性に
よって螺旋溝14に沿って流れ軸方向に排出される。
When the rotary shaft 1 provided with the spiral groove 14 starts to rotate, the cooling gas 10 in the spiral groove 14 is discharged in the flow axis direction along the spiral groove 14 due to inertia and viscosity.

【0016】螺旋溝14に流入する冷却ガス10は、ガ
ス冷却器13により冷却され電動機内部構成材より温度
が低いので、電動機内を回転軸1に沿って流れる過程で
熱を吸収して電動機外に排出される。排出された冷却ガ
ス10は、ガス冷却器13により冷却されて再び循環使
用され、この過程を繰り返すことにより、電動機は駆動
中常に発熱分を冷却され、一定温度を保つことができ
る。
Since the cooling gas 10 flowing into the spiral groove 14 is cooled by the gas cooler 13 and has a lower temperature than the components inside the electric motor, it absorbs heat in the process of flowing along the rotating shaft 1 inside the electric motor and outside the electric motor. Is discharged to. The discharged cooling gas 10 is cooled by the gas cooler 13 and is circulated and used again. By repeating this process, the electric motor is constantly cooled by the heat generation and can maintain a constant temperature.

【0017】この時、インペラ4出口と電動機内部とが
通じているので、冷却ガス10の圧力はインペラ4出口
圧力に支配され、運転条件により変動することがある
が、冷却ガス10の量が少ないため極く短時間で平衡
し、圧力変動による冷却ガス流の変動が冷却効果に悪影
響を与えることはない。
At this time, since the outlet of the impeller 4 communicates with the inside of the electric motor, the pressure of the cooling gas 10 is governed by the outlet pressure of the impeller 4 and may vary depending on operating conditions, but the amount of the cooling gas 10 is small. Therefore, equilibration takes place in an extremely short time, and fluctuations in the cooling gas flow due to pressure fluctuations do not adversely affect the cooling effect.

【0018】図3は本発明の他の実施例を示すもので、
前記回転軸1に螺旋溝14を形成することに代えて、ケ
ーシングフランジ15の内周面に螺旋溝14を形成する
ようにしている。
FIG. 3 shows another embodiment of the present invention.
Instead of forming the spiral groove 14 on the rotary shaft 1, the spiral groove 14 is formed on the inner peripheral surface of the casing flange 15.

【0019】図3の実施例においても、図1、2と同様
の作用によって電動機を冷却することができる。
Also in the embodiment of FIG. 3, the electric motor can be cooled by the same operation as in FIGS.

【0020】尚、本発明は前記実施例にのみ限定される
ものではなく、螺旋溝を設ける位置は任意に選定し得る
こと、その他本発明の要旨を逸脱しない範囲内に於いて
種々変更を加え得ることは勿論である。
The present invention is not limited to the above-mentioned embodiment, but the position where the spiral groove is provided can be arbitrarily selected, and various modifications are made within the scope not departing from the gist of the present invention. Of course you can get it.

【0021】[0021]

【発明の効果】前記した本発明のクローポール型電動機
によれば、回転軸の外周面とケーシングフランジの内周
面との少なくとも一方に形成した螺旋溝により、回転軸
の一端側から他端側に向かう冷却ガスの流れを形成さ
せ、且つ冷却ガスを循環使用するようにして、電動機を
冷却するようにしているので、圧縮機で圧縮されたガス
を冷却のために使用せず、従って圧縮機の効率を高める
ことができ、且つ冷却ガスの循環に要する動力も小さく
押さえることができる等の優れた効果を奏し得る。
According to the above-described claw pole type electric motor of the present invention, the spiral groove formed on at least one of the outer peripheral surface of the rotary shaft and the inner peripheral surface of the casing flange allows one end side to the other end side of the rotary shaft. Since the electric motor is cooled by forming the flow of the cooling gas toward the air and circulating the cooling gas, the gas compressed by the compressor is not used for cooling, and therefore the compressor is not used. The efficiency can be improved, and the power required to circulate the cooling gas can be suppressed to be small.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す切断正面図である。FIG. 1 is a cut front view showing an embodiment of the present invention.

【図2】図1の要部の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a main part of FIG.

【図3】本発明の他の実施例を示す要部の拡大断面図で
ある。
FIG. 3 is an enlarged cross-sectional view of a main part showing another embodiment of the present invention.

【図4】従来のクローポール型電動機の一例を示す切断
正面図である。
FIG. 4 is a cut front view showing an example of a conventional claw pole type electric motor.

【符号の説明】[Explanation of symbols]

1 回転軸 10 冷却ガス 13 ガス冷却器 14 螺旋溝 15 ケーシングフランジ 16 冷却ガス循環流路 1 rotating shaft 10 cooling gas 13 gas cooler 14 spiral groove 15 casing flange 16 cooling gas circulation flow path

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 クローポール型電動機の回転軸の外周面
と、該回転軸を包囲するケーシングフランジの内周面と
の少なくとも何れか一方に、回転軸の回転により回転軸
の一端側から他端側に向かう冷却ガスの流れを形成する
螺旋溝を形成し、前記回転軸の一端側と他端側との間
を、途中にガス冷却器を備えた冷却ガス循環流路で接続
したことを特徴とするクローポール型電動機。
1. At least one of an outer peripheral surface of a rotating shaft of a claw pole type electric motor and an inner peripheral surface of a casing flange surrounding the rotating shaft is rotated from one end side to the other end of the rotating shaft by rotation of the rotating shaft. A spiral groove that forms a flow of the cooling gas toward the side is formed, and one end side and the other end side of the rotating shaft are connected by a cooling gas circulation flow path provided with a gas cooler in the middle. Claw pole type electric motor.
JP5931592A 1992-02-13 1992-02-13 Claw-pole type motor Pending JPH05227700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5931592A JPH05227700A (en) 1992-02-13 1992-02-13 Claw-pole type motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5931592A JPH05227700A (en) 1992-02-13 1992-02-13 Claw-pole type motor

Publications (1)

Publication Number Publication Date
JPH05227700A true JPH05227700A (en) 1993-09-03

Family

ID=13109810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5931592A Pending JPH05227700A (en) 1992-02-13 1992-02-13 Claw-pole type motor

Country Status (1)

Country Link
JP (1) JPH05227700A (en)

Similar Documents

Publication Publication Date Title
US7942646B2 (en) Miniature high speed compressor having embedded permanent magnet motor
JP6671858B2 (en) Electric motor driven compressor with bidirectional coolant passage
CN109072928B (en) Turbo compressor comprising an intercooler
US7704056B2 (en) Two-stage vapor cycle compressor
CN101473514B (en) Method and device for cooling an electric machine
KR100730970B1 (en) High-pressure multi-stage centrifugal compressor
US3891355A (en) Cooling arrangement for a motor driven compressor
US20080199326A1 (en) Two-stage vapor cycle compressor
US8125110B2 (en) Two-stage cooling fan for an electric generator
JP2002064956A (en) High speed-revolution motor and cooling method therefor
KR100481600B1 (en) Turbo machine
AU8767791A (en) Methods and apparatus for ventilating electric machines
US10036404B2 (en) Turbo machine system
KR20000047862A (en) Gas-cooled electrical machine having an axial fan
JP3650351B2 (en) Cage type induction motor rotor and cage type induction motor
KR102508011B1 (en) Turbo compressor with bearing cooling channel
JP2002138962A (en) Compressor driving high speed motor and cooling method therefor
JPH08251872A (en) Cooler of motor
WO2000049296A1 (en) Centrifugal compressor aggregate and electric motor
JPH05236690A (en) Squirrel-cage induction motor for railway vehicle
JPH05227700A (en) Claw-pole type motor
JPH09308189A (en) Turbo type air compressor
JPH06280771A (en) Cooling method for crow pole type electric motor
JP3119532B2 (en) Turbo compressor
JP2001271797A (en) High speed motor driven compressor and its cooling method