JPH05226541A - Control of plating device - Google Patents

Control of plating device

Info

Publication number
JPH05226541A
JPH05226541A JP2855192A JP2855192A JPH05226541A JP H05226541 A JPH05226541 A JP H05226541A JP 2855192 A JP2855192 A JP 2855192A JP 2855192 A JP2855192 A JP 2855192A JP H05226541 A JPH05226541 A JP H05226541A
Authority
JP
Japan
Prior art keywords
plating
pulse
solution
time
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2855192A
Other languages
Japanese (ja)
Other versions
JP2997967B2 (en
Inventor
Retsu Yamakawa
烈 山川
Toshiya Matsubara
俊也 松原
Masahide Kyo
昌英 京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui High Tec Inc
Original Assignee
Mitsui High Tec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui High Tec Inc filed Critical Mitsui High Tec Inc
Priority to JP2855192A priority Critical patent/JP2997967B2/en
Publication of JPH05226541A publication Critical patent/JPH05226541A/en
Application granted granted Critical
Publication of JP2997967B2 publication Critical patent/JP2997967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To provide stable quality and also to enable unmanned operation for an extended hours by inputting various parameters required for desired plating and calculating optimum energy condition through fuzzy inference based upon them so as to operate a plating device under optimum energy condition. CONSTITUTION:A fuzzy calculator 6, based upon input data consisting of plating area S(cm<2>), temperature initial value T( deg.C), plating thickness d(mum), concentration initial value C(g/l), plating hours t(Sec), pulse ON time initial value tauON (mSec) and pulse one cycle(msec), outputs optimum conditions on current value, pulse ON time, pulse OFF time and temperature. Before activation, good quality area is measured at an experiment, and from the measuring result, a representative 4-point good quality value (intermediate value of good quality area between the upper limit and lower limit) is taken to calculate a coefficient by simultaneous equations further to calculate an approximate expression. Based upon this, optimum conditions are calculated using fuzzy inference.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、めっき装置の制御方法
に係り、特に、ファジィ理論を用いてめっきを制御する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a plating apparatus, and more particularly to a method for controlling plating using fuzzy theory.

【0002】[0002]

【従来の技術】IC,LSIなどの半導体装置用リ−ド
フレ−ムは、ダイボンディングやワイヤボンディングを
良好に行うために、インナーリードの先端部分あるいは
半導体素子あるいは半導体素子搭載部に金または銀等の
貴金属めっきが施されている。リードフレームへのめっ
きに際しては、形成されるめっき層の品質の向上のため
に、下地材料の表面を洗浄し、活性化する必要がある。
このため、めっき装置は脱脂槽、酸洗槽、水洗槽等の前
処理槽と、めっき槽との複数の槽からなり、帯状あるい
は短尺状のリードフレームが順次搬送されて、所望のめ
っきがなされるようになっている。
2. Description of the Related Art A lead frame for a semiconductor device such as an IC or an LSI is made of gold, silver or the like at the tip portion of an inner lead or a semiconductor element or a semiconductor element mounting portion in order to favorably perform die bonding or wire bonding. Noble metal plating is applied. When plating the lead frame, it is necessary to clean and activate the surface of the base material in order to improve the quality of the plated layer formed.
Therefore, the plating apparatus is composed of a plurality of tanks including a pretreatment tank such as a degreasing tank, a pickling tank, and a water washing tank, and a plating tank, and a strip-shaped or short-shaped lead frame is sequentially transported to perform desired plating. It has become so.

【0003】所望のめっき層を形成するためには、温
度、電流値、めっき時間、めっき液濃度、めっき厚、め
っき面積等の条件を加味し、条件を設定する必要があ
る。そしてめっき液濃度などの条件は、めっきの進行に
伴い変化するため、従来は、所定の時間毎にめっき液濃
度等のめっき液の状態を監視し、さらにめっき後のリー
ドフレームのめっき状態を検査したり分析したりしなが
ら、電流値やめっき液濃度を最適値に調整しなければな
らず、長時間の無人運転は不可能であり、諸条件の設定
変更のある場合には新しい最適条件の設定に相当の時間
を費やさねばならないという問題があった。
In order to form a desired plating layer, it is necessary to set the conditions in consideration of conditions such as temperature, current value, plating time, plating solution concentration, plating thickness and plating area. Since the plating solution concentration and other conditions change as the plating progresses, conventionally, the plating solution state such as the plating solution concentration is monitored every predetermined time, and the plating state of the lead frame after plating is further inspected. It is necessary to adjust the current value and plating solution concentration to the optimum values while performing analysis and analysis, and unattended operation for a long time is impossible. There was a problem that a considerable amount of time had to be spent on setting.

【0004】また、装置の小形化、薄型化、高集積化が
進み、これに用いられるリードフレームについてもリー
ド幅、リード間隔、板厚ともに小さくなる一方、用途に
応じて、異なる品種のリードフレーム設計がなされ、い
わゆる少量多品種の時代に入ってきており、めっきに際
してもその製品に応じた条件設定が必要となる。
Further, as the device becomes smaller, thinner, and highly integrated, the lead width, lead spacing, and plate thickness used in this device also become smaller, while different types of lead frames are used depending on the application. It has been designed and is in the age of so-called small-quantity, high-mix production, and it is necessary to set conditions according to the product when plating.

【0005】このため、品種が変わるごとに新しい条件
設定をしなければならず、制御に多大な労力が必要であ
った。
Therefore, new conditions must be set every time the product type changes, and a great deal of labor is required for control.

【0006】[0006]

【発明が解決しようとする課題】このように従来は、め
っきを制御するに際し、所定の時間毎にめっき液濃度等
を監視し、さらにめっき後のリードフレームのめっき状
態を検査したり分析したりしながら、電流値やめっき液
濃度等を調整しなければならず、長時間の無人運転は不
可能であり、また諸条件の設定変更のある場合には新し
い最適条件の設定に相当の時間を費やさねばならないと
いう問題があった。
As described above, conventionally, when controlling the plating, the concentration of the plating solution and the like are monitored every predetermined time, and the plating state of the lead frame after plating is inspected and analyzed. However, it is necessary to adjust the current value, plating solution concentration, etc., and unattended operation for a long time is not possible, and if there are changes in the settings of various conditions, it takes a considerable time to set new optimum conditions. There was a problem of having to spend.

【0007】本発明は、前記実情に鑑みてなされたもの
で、温度等の諸条件が変化しても安定した品質を得るこ
とができ、長時間の無人運転が可能なめっき装置の制御
方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a control method of a plating apparatus capable of obtaining stable quality even when various conditions such as temperature change and enabling unmanned operation for a long time. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】そこで本発明の第1で
は、導体表面に電界を印加し、金属イオンを含む溶液に
浸漬することにより、前記導体表面で前記金属イオンを
放電させ、金属膜を形成する電解めっきを行うに際し、
所望のめっきをおこなうのに必要な諸条件を、入力し
て、ファジィ推論により、最適エネルギー条件を算出
し、これらの条件に基づいてめっき装置を起動するよう
にしている。
In the first aspect of the present invention, therefore, an electric field is applied to the surface of a conductor and the surface of the conductor is immersed in a solution containing the metal ions to discharge the metal ions on the surface of the conductor to form a metal film. When performing electrolytic plating to form,
Various conditions necessary for performing desired plating are input, optimal energy conditions are calculated by fuzzy reasoning, and the plating apparatus is started based on these conditions.

【0009】本発明の第2では、導体表面に電界を印加
し、金属イオンを含む溶液に浸漬することにより、前記
導体表面で前記金属イオンを放電させ、金属膜を形成す
る電解めっきを行うに際し、所望のめっきをおこなうの
に必要な諸条件を、入力して起動し、さらに経時的に変
化するめっき液の状態を監視し、該めっき液の状態に応
じて、ファジィ推論により、最適エネルギー条件を算出
し、これら条件を前記めっき装置にフィードバックする
ようにしている。
In the second aspect of the present invention, when an electric field is applied to the surface of the conductor and the surface of the conductor is immersed in a solution containing the metal ions, the metal ions are discharged on the surface of the conductor to perform electrolytic plating for forming a metal film. , The various conditions necessary for performing the desired plating are input and activated, and the state of the plating solution that changes over time is monitored, and the optimum energy condition is determined by fuzzy reasoning according to the state of the plating solution. Is calculated and these conditions are fed back to the plating apparatus.

【0010】また本発明の第3では、導体表面にパルス
を印加し、金属イオンを含む溶液に浸漬することによ
り、前記導体表面で前記金属イオンを放電させ、金属膜
を形成する電解めっきを行うに際し、めっき液の液温、
めっき時間、めっき電流、パルスのオンオフ比等の所望
のめっきをおこなうのに必要な諸条件を入力し、これに
もとづいてめっき装置を起動し、さらに経時的に変化す
るめっき液の状態を監視し、該めっき液の状態に応じ
て、ファジィ推論により、めっき液の液温、めっき時
間、めっき電流、パルスのオンオフ比等の最適条件を算
出し、これら条件をめっき装置にフィードバックするよ
うにしている。
In the third aspect of the present invention, a pulse is applied to the surface of the conductor, and the surface of the conductor is immersed in a solution containing metal ions to discharge the metal ions on the surface of the conductor to perform electrolytic plating for forming a metal film. The temperature of the plating solution,
Input various conditions necessary for performing desired plating such as plating time, plating current, pulse on / off ratio, etc., start the plating equipment based on this, and monitor the state of the plating solution that changes over time. According to the state of the plating solution, fuzzy inference is used to calculate the optimum conditions such as the solution temperature of the plating solution, the plating time, the plating current, and the pulse on / off ratio, and these conditions are fed back to the plating apparatus. ..

【0011】[0011]

【作用】上記第1の方法によれば、ファジイ推論を用い
て最適電流値、最適パルス比などの諸条件を算出し、こ
れにもとづいてめっき装置を起動するするようにしてい
るため、諸条件の設定変更のある場合にも、めっき時
間、パルス電流周期、めっき面積、めっき厚を設定する
だけで、新しい最適条件の設定に時間を費やすこと無く
自動的に安定した品質を得ることができる。
According to the first method, various conditions such as the optimum current value and the optimum pulse ratio are calculated by using fuzzy inference, and the plating apparatus is started based on the calculated conditions. Even when the setting is changed, stable quality can be automatically obtained by setting the plating time, the pulse current period, the plating area, and the plating thickness without spending time for setting new optimum conditions.

【0012】上記第2の方法によれば、ファジイ推論を
用いて最適電流値、最適パルス比などの諸条件を算出
し、これをめっき装置にフィードバックするようにして
いるため、めっき時間、パルス電流周期、めっき面積、
めっき厚を設定するだけで、温度やめっき液濃度等が変
化しても自動的に安定した品質を得ることができる。
According to the second method, various conditions such as the optimum current value and the optimum pulse ratio are calculated by using fuzzy reasoning, and the conditions are fed back to the plating apparatus. Therefore, the plating time and the pulse current are calculated. Period, plating area,
Only by setting the plating thickness, stable quality can be automatically obtained even if the temperature or the concentration of the plating solution changes.

【0013】第3の方法によれば、自動的かつ容易に安
定した品質のめっき層を得ることができる。
According to the third method, it is possible to automatically and easily obtain a plating layer of stable quality.

【0014】[0014]

【実施例】以下、本発明の実施例について、図面を参照
しつつ詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0015】本発明実施例の方法で用いられるめっき装
置は、図1にブロック図を示すように、めっき槽1と、
このめっき槽1の液温を検出する液温検出器2と、めっ
き槽1のめっき液を加熱するヒータ3と、めっき液の銀
イオン濃度を検出する濃度検出器4と、めっき電流を供
給するめっき用電源5と、めっき液の液温、めっき時
間、めっき電流、パルスのオンオフ比等の所望のめっき
をおこなうのに必要な諸条件を入力し、これにもとづい
てめっき装置を起動し、さらに経時的に変化するめっき
液の状態を監視し、該めっき液の状態に応じて、ファジ
ィ推論により、めっき液の液温、めっき時間、めっき電
流、パルスのオンオフ比等の最適条件を算出し、これら
条件をヒータ3や電源5などにフィードバックするファ
ジィ演算装置6を具備したことを特徴とするもので、図
2に示すようなリードフレームに銀めっき層Mを形成す
る。11はダイパッド、12はインナーリード、13は
サポートバー、14はアウターリード、15,16はサ
イドバーである。
The plating apparatus used in the method of the embodiment of the present invention includes a plating tank 1 as shown in the block diagram of FIG.
A liquid temperature detector 2 for detecting the liquid temperature of the plating bath 1, a heater 3 for heating the plating liquid in the plating bath 1, a concentration detector 4 for detecting the silver ion concentration of the plating liquid, and a plating current are supplied. Input various conditions necessary for performing desired plating such as the plating power source 5, the plating solution temperature, the plating time, the plating current, and the pulse on / off ratio, and start the plating apparatus based on these conditions. The state of the plating solution that changes over time is monitored, and in accordance with the state of the plating solution, fuzzy inference is used to calculate optimum conditions such as the plating solution temperature, plating time, plating current, and pulse on / off ratio. The present invention is characterized by being provided with a fuzzy arithmetic unit 6 which feeds back these conditions to the heater 3 and the power source 5, etc., and the silver plating layer M is formed on the lead frame as shown in FIG. 11 is a die pad, 12 is an inner lead, 13 is a support bar, 14 is an outer lead, and 15 and 16 are side bars.

【0016】また、図3にこのめっき装置のフローチャ
ートを示す。
FIG. 3 shows a flow chart of this plating apparatus.

【0017】ここでファジィ演算装置6は、めっき面積
S(cm2 )と、温度初期値T(℃)と、めっき厚d(μ
m )と、濃度初期値C(g/l)と、めっき時間t(s
ec)と、パルスON時間初期値τON(msec)と、パルス
1サイクルτ(msec)とからなる入力データから、電流値
とパルスオン時間とパルスオフ時間と、温度との最適諸
条件を出力するようになっている。
Here, the fuzzy arithmetic unit 6 has a plating area S (cm 2 ), an initial temperature value T (° C.), and a plating thickness d (μ
m), initial concentration C (g / l), and plating time t (s
ec), the pulse ON time initial value τ ON (msec), and the pulse 1 cycle τ (msec) from the input data to output the optimum values of the current value, pulse ON time, pulse OFF time, and temperature. It has become.

【0018】駆動に先立ち、まず実験により良品域を測
定しておきこの測定結果から、代表となる4ポイントの
良品値(良品域の上限と下限の中間値)をとり、連立方
程式により係数を算出し近似式を算出する。そして温
度、濃度、パルスオン時間の3つの条件によって8分割
し、図4に示すように各部分でこの近似式のうち最も近
いものをあてはめる。あてはまらないときは式に重みを
つけて新しい式を作る。入力に際しては、各ルールの前
件部の重みの最小値をとり、後件部の各式の値に掛け算
する。そして8つのルールの後件部の値の和を前件部の
重みの和で割り推論値とする。
Prior to driving, the good product range was first measured by experiments, and from this measurement result, representative four good product values (intermediate value between the upper limit and the lower limit of the good product range) were taken, and the coefficient was calculated by the simultaneous equations. Then, an approximate expression is calculated. Then, it is divided into eight parts according to the three conditions of temperature, concentration and pulse-on time, and the closest one of the approximate expressions is applied to each part as shown in FIG. When not applicable, weight the formula and create a new formula. When inputting, take the minimum value of the antecedent weight of each rule and multiply by the value of each expression of the antecedent. Then, the sum of the values of the consequent part of the eight rules is divided by the sum of the weights of the antecedent parts to obtain an inference value.

【0019】まず、めっき厚さdとめっき面積sと当該
金属の密度とを乗じてめっき金属の重量Wを算出する
(ステップ100)。
First, the weight W of the plated metal is calculated by multiplying the plating thickness d, the plating area s, and the density of the metal (step 100).

【0020】ついで、めっき時間tを矩形波周期τ(mse
c)で割ることによりパルス数nを算出する(ステップ2
00)。
Next, the plating time t is set to a rectangular wave period τ (mse
Calculate the pulse number n by dividing by c) (step 2
00).

【0021】さらに、このめっき金属重量Wをパルス数
nで割る(ステップ300)ことにより、1パルス当た
り消費される金属重量W´が算出される。
Further, by dividing the plating metal weight W by the pulse number n (step 300), the metal weight W'consumed per pulse is calculated.

【0022】これらの値とパルスオン時間の初期値τON
とから、ファラデーの法則により必要電流値Iを算出す
る(I=W´*F/(τON*eq))(ステップ10
2) ついで最適電流値算出ブロックに温度濃度およびτON
初期値を入力し、第1回目の推論値I0 を算出する(ス
テップ001)。
These values and the initial value of the pulse on time τ ON
Then, the required current value I is calculated according to Faraday's law (I = W '* F / (τ ON * eq)) (step 10
2) Next, the temperature concentration and the initial value of τ ON are input to the optimum current value calculation block, and the first inferred value I 0 is calculated (step 001).

【0023】例えば、T=55℃、濃度C=65g/
l、τON=4(ms)が入力されたとする。このとき温度
と濃度とオン時間のメンバーシップ関数は図5に示すご
とくであり、この図と図4とから図6に示すような近似
式がえられ、これから、 電流密度={224×(1/2) +224 ×(1/3) +252 ×(1/2) +185 ×(1/3) +242.4 ×(0) +222.5 ×(0) +185 ×(0)}/(1/2+1/3 +1/2 +1/3 +0 +0 +0 +0) =224.6 A/dm2 を得ることができる。
For example, T = 55 ° C., concentration C = 65 g /
It is assumed that l, τ ON = 4 (ms) is input. At this time, the membership function of temperature, concentration, and on-time is as shown in FIG. 5, and from this figure and FIG. 4, an approximate expression as shown in FIG. 6 is obtained, and from this, current density = {224 × (1 / 2) +224 × (1/3) +252 × (1/2) +185 × (1/3) +242.4 × (0) +222.5 × (0) +185 × (0)} / (1/2 + 1 / It is possible to obtain 3 + 1/2 + 1/3 + 0 + 0 + 0 + 0) = 224.6 A / dm 2 .

【0024】このようにして最適電流値算出ブロック
(ファジィ演算処理装置6)で算出された最適電流値I
0 が装置の最大電流値よりも小さいか否かを判断し(ス
テップ103)、小さくないときはアラームを発生し装
置を停止させる(ステップ104)。一方小さいときは
さらにファラデーの法則により算出された前記必要電流
値Iがこの最適電流値I0 よりも小さいか否かを判断し
(ステップ105)、τONを初期値τONからΔτONだけ
減じた値とする(ステップ106)。
The optimum current value I calculated by the optimum current value calculation block (fuzzy arithmetic processing unit 6) in this way
It is determined whether 0 is smaller than the maximum current value of the device (step 103). If not, an alarm is generated and the device is stopped (step 104). On the other hand, when it is smaller, it is further judged whether or not the required current value I calculated by Faraday's law is smaller than the optimum current value I 0 (step 105), and τ ON is subtracted from the initial value τ ON by Δτ ON. (Step 106).

【0025】一方前記必要電流値Iがこの最適電流値I
0 よりも小さくないときはさらにこの大小関係をみて
(ステップ107)等しいときはそのままこの値をめっ
き電流値としてめっき電源003に出力し、必要電流値
Iがこの最適電流値I0 よりも大きいときは、τONを初
期値τONにΔτONだけ付加した値とする(ステップ10
8)。
On the other hand, the required current value I is the optimum current value I
When it is not smaller than 0, the magnitude relation is further checked (step 107). When it is equal, this value is directly output to the plating power source 003 as the plating current value, and when the required current value I is larger than the optimum current value I 0. is a value obtained by adding only .DELTA..tau oN to an initial value tau oN the tau oN (step 10
8).

【0026】このようにしてτONを増減していき、さら
に、このパルスオン時間τONがそれぞれ良品となるため
の上限τON H および下限τON L を越えているか否かを判
断し(ステップ109)、下限τON L を越えているとき
は温度Tを1℃低くする(ステップ110)。一方上限
τON H を越えているときは温度Tを1℃高くする(ステ
ップ111)。この様にして得られた温度値Tをメモリ
に格納して(ステップ112)、再び最適電流値算出ブ
ロックに入力して再演算する。そしてI=I0となるま
で最適電流値を再演算し、I=I0 となったときのIを
めっき電源の出力、τONをパルスのオン時間、τ−τON
をオフ時間、Tを温度調節ブロック002の出力とす
る。
In this way, τ ON is increased / decreased, and it is further determined whether or not the pulse ON time τ ON exceeds the upper limit τ ON H and the lower limit τ ON L, which are good products (step 109). ), When the lower limit τ ON L is exceeded, the temperature T is lowered by 1 ° C. (step 110). On the other hand, when the upper limit τ ON H is exceeded, the temperature T is increased by 1 ° C. (step 111). The temperature value T thus obtained is stored in the memory (step 112), and is input again to the optimum current value calculation block for recalculation. Then I = I 0 become until then recomputing the optimal current value, I = output of I the plating power source when a I 0, the pulse on-time of τ ON, τ-τ ON
Is the off time and T is the output of the temperature control block 002.

【0027】一方上限τON H も下限τON L も越えていな
いときは、パルスのオン時間τONの値をメモリに格納し
(ステップ113)、めっき電源003に指示を与え、
この値でめっき電源は駆動される。
On the other hand, when neither the upper limit τ ON H nor the lower limit τ ON L is exceeded, the value of the pulse on-time τ ON is stored in the memory (step 113) and an instruction is given to the plating power source 003.
The plating power supply is driven with this value.

【0028】このようにして形成された銀めっき層表面
は極めて平滑で、膜質の良好なめっき層となっている。
The surface of the silver plating layer thus formed is extremely smooth and has a good film quality.

【0029】このようにして形成されたリ―ドフレ―ム
は、ダイパッド11上に半導体チップを接続し、ワイヤ
ボンディング工程を経て樹脂封止を行い、サイドバー1
5,16を切除し、面実装用にアウターリード14を折
り曲げ、実装用基板の配線パターン上に位置決めを行
い、実装用基板側を加熱することにより固着される。
In the lead frame thus formed, the semiconductor chip is connected to the die pad 11, the resin is sealed through the wire bonding process, and the side bar 1
5, 5 and 16 are cut off, the outer leads 14 are bent for surface mounting, positioned on the wiring pattern of the mounting substrate, and the mounting substrate side is heated to fix the same.

【0030】なお、めっき槽005の濃度は1回のめっ
き毎に使用される重量を1ショットごとに差し引いた値
として更新する。なお、濃度検出器を用いてその都度測
定するようにしてもよい。
The concentration of the plating tank 005 is updated as a value obtained by subtracting the weight used for each plating operation for each shot. Alternatively, a concentration detector may be used for each measurement.

【0031】このようにして装置に最適となるようにこ
れらめっき用電源およびヒータの出力が制御され、無人
で高品質のめっきを得ることができる。
In this way, the outputs of the plating power source and the heater are controlled to be optimal for the apparatus, and unattended high quality plating can be obtained.

【0032】また条件が変わる場合にもそのまま演算が
なされるため、無人でかつ短時間で条件設定を行うこと
ができ、めっき厚さおよび品質が一定で優れためっき層
を得ることができる。
Further, since the calculation is performed as it is even when the conditions are changed, the conditions can be set unattended in a short time, and an excellent plating layer having a constant plating thickness and quality can be obtained.

【0033】なお、前記実施例では、初期設定、めっき
中における条件管理共にファジィ制御を用いたが、初期
設定にのみ用いるようにしてもよい。
In the above embodiment, fuzzy control was used for both initial setting and condition management during plating, but it may be used only for initial setting.

【0034】[0034]

【発明の効果】以上説明してきたように、本発明によれ
ば、ファジイ推論を用いて最適電流値、最適パルス比な
どの諸条件を算出し、これをめっき装置にフィードバッ
クするようにしているため、めっき時間、パルス電流周
期、めっき面積、めっき厚等を設定するだけで、温度や
めっき液濃度が変化しても安定した品質を得ることがで
きる。
As described above, according to the present invention, various conditions such as the optimum current value and the optimum pulse ratio are calculated by using fuzzy reasoning, and the conditions are fed back to the plating apparatus. By simply setting the plating time, the pulse current period, the plating area, the plating thickness, etc., stable quality can be obtained even if the temperature or the concentration of the plating solution changes.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例のめっき装置のブロック図FIG. 1 is a block diagram of a plating apparatus according to an embodiment of the present invention.

【図2】本発明実施例の装置で得られるリードフレーム
を示す図
FIG. 2 is a diagram showing a lead frame obtained by the device of the embodiment of the present invention.

【図3】本発明実施例のめっき装置の動作を示すフロー
チャート図
FIG. 3 is a flowchart showing the operation of the plating apparatus according to the embodiment of the present invention.

【図4】本発明実施例で用いられる近似式の一例を示す
FIG. 4 is a diagram showing an example of an approximate expression used in an embodiment of the present invention.

【図5】本発明実施例で用いられるメンバーシップ関数
の一例を示す図
FIG. 5 is a diagram showing an example of a membership function used in the embodiment of the present invention.

【図6】本発明実施例の推論演算を示す図FIG. 6 is a diagram showing an inference operation according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

001 最適電流値算出ブロック 002 温度制御ブロック 003 めっき電源 001 Optimum current value calculation block 002 Temperature control block 003 Plating power supply

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 導体表面に電界を印加し、金属イオンを
含む溶液に浸漬することにより、前記導体表面で前記金
属イオンを放電させ、金属膜を形成する電解めっきを行
うに際し、 所望のめっきをおこなうのに必要な諸条件を入力し、こ
れにもとづいて、ファジィ推論により最適エネルギー条
件を算出し、前記最適エネルギー条件で前記めっき装置
を起動させるようにしたことを特徴とするめっき装置の
制御方法。
1. A desired plating is carried out when electrolytic plating is performed by applying an electric field to the surface of a conductor and immersing the solution in a solution containing metal ions to discharge the metal ions on the surface of the conductor to form a metal film. A method for controlling a plating apparatus, characterized in that various conditions necessary for carrying out are input, based on this, an optimum energy condition is calculated by fuzzy reasoning, and the plating apparatus is activated under the optimum energy condition. ..
【請求項2】 導体表面に電界を印加し、金属イオンを
含む溶液に浸漬することにより、前記導体表面で前記金
属イオンを放電させ、金属膜を形成する電解めっきを行
うに際し、 所望のめっきをおこなうのに必要な諸条件を、入力して
めっき装置を起動し、 さらに経時的に変化するめっき液の状態を監視し、該め
っき液の状態に応じて、ファジィ推論により、最適エネ
ルギー条件を算出し、 前記条件を前記めっき装置にフィードバックするように
したことを特徴とするめっき装置の制御方法。
2. A desired plating is carried out when electrolytic plating is performed by applying an electric field to the surface of the conductor and immersing it in a solution containing metal ions to discharge the metal ions on the surface of the conductor and form a metal film. Input the various conditions necessary to perform the operation, start the plating equipment, monitor the state of the plating solution that changes over time, and calculate the optimum energy condition by fuzzy reasoning according to the state of the plating solution. Then, the condition is fed back to the plating apparatus.
【請求項3】 導体表面にパルスを印加し、金属イオン
を含む溶液に浸漬することにより、前記導体表面で前記
金属イオンを放電させ、金属膜を形成する電解めっきを
行うに際し、 めっき液の液温、めっき時間、めっき電流、パルスのオ
ンオフ比等の所望のめっきをおこなうのに必要な諸条件
を、入力しこれにもとづいてめっき装置を起動し、 さらに経時的に変化するめっき液の状態を監視し、該め
っき液の状態に応じて、ファジィ推論により、めっき液
の液温、めっき時間、めっき電流、パルスのオンオフ比
等の最適条件を算出し、 前記条件を前記めっき装置にフィードバックするように
したことを特徴とするめっき装置の制御方法。
3. A solution of a plating solution for applying electrolysis to form a metal film by applying a pulse to the surface of a conductor and immersing the solution in a solution containing metal ions to discharge the metal ions on the surface of the conductor. Input various conditions necessary for performing desired plating such as temperature, plating time, plating current, pulse on / off ratio, etc., and start the plating equipment based on this, and further determine the state of the plating solution that changes with time. The optimum conditions such as the solution temperature of the plating solution, the plating time, the plating current, the on / off ratio of the pulse, etc. are monitored and monitored according to the state of the plating solution by fuzzy reasoning, and the conditions are fed back to the plating apparatus. A method for controlling a plating apparatus, characterized in that
JP2855192A 1992-02-14 1992-02-14 Control method of plating equipment Expired - Fee Related JP2997967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2855192A JP2997967B2 (en) 1992-02-14 1992-02-14 Control method of plating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2855192A JP2997967B2 (en) 1992-02-14 1992-02-14 Control method of plating equipment

Publications (2)

Publication Number Publication Date
JPH05226541A true JPH05226541A (en) 1993-09-03
JP2997967B2 JP2997967B2 (en) 2000-01-11

Family

ID=12251796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2855192A Expired - Fee Related JP2997967B2 (en) 1992-02-14 1992-02-14 Control method of plating equipment

Country Status (1)

Country Link
JP (1) JP2997967B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19707980A1 (en) * 1997-02-27 1998-09-03 Siemens Ag Method and device for coating a metal strip
DE19707981A1 (en) * 1997-02-27 1998-09-03 Siemens Ag Method and device for coating a metal strip
US7366582B2 (en) 2003-11-27 2008-04-29 Outotec Oyj Method for defining status index in copper electrolysis
KR102192890B1 (en) * 2020-07-10 2020-12-18 김춘옥 Dielectric ceramic filter dipping methodi

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19707980A1 (en) * 1997-02-27 1998-09-03 Siemens Ag Method and device for coating a metal strip
DE19707981A1 (en) * 1997-02-27 1998-09-03 Siemens Ag Method and device for coating a metal strip
WO1998038355A3 (en) * 1997-02-27 1998-12-10 Siemens Ag Method and device for coating a metal strip
DE19707980C2 (en) * 1997-02-27 1999-05-20 Siemens Ag Method and device for coating a metal strip
US6235178B1 (en) 1997-02-27 2001-05-22 Siemens Aktiengesellschaft Method and device for coating a metal strip
US7366582B2 (en) 2003-11-27 2008-04-29 Outotec Oyj Method for defining status index in copper electrolysis
KR102192890B1 (en) * 2020-07-10 2020-12-18 김춘옥 Dielectric ceramic filter dipping methodi

Also Published As

Publication number Publication date
JP2997967B2 (en) 2000-01-11

Similar Documents

Publication Publication Date Title
US5141602A (en) High-productivity method and apparatus for making customized interconnections
JP2759322B2 (en) Control method of electroless plating bath
EP1295312A2 (en) Tuning electrodes used in a reactor for electrochemically processing a microelectronic workpiece
JP3534211B2 (en) Automatic developing system for photosensitive lithographic printing plate
KR20020047028A (en) Feedback controlled airfoil stripping system with integrated water management and acid recycling system
EP0257197A2 (en) Method and apparatus for controlling the organic contamination level in an electroless plating bath
JPH10132646A (en) Liquid phase surface treatment device, and method for measuring change in mass of a body to be treated using it
JPH05226541A (en) Control of plating device
US5273642A (en) Apparatus and method for electroplating wafers
EP0180090A2 (en) System and method for automatically monitoring and maintaining desired concentrations of metal plating baths
JP2987661B2 (en) Plating apparatus and plating method using the same
JP2000150447A (en) Method and device for managing concentration of chemical and chemical processing device
JPH01172577A (en) Adjustment of electroless plating bath
JP2004307917A (en) Method and apparatus for controlling concentration of electrolytic treatment liquid
US6780253B2 (en) Gradient dragout system in a continuous plating line
JPH05263299A (en) Power source device for electroplating
JP2022107939A (en) Method for determining optimum use number of submodules of semiconductor manufacturing apparatus comprising substrate processing module having multiple submodules, and semiconductor manufacturing apparatus
US20040262164A1 (en) Method and apparatus for managing plating interruptions
JP3509471B2 (en) Partial plating equipment
JPH07173700A (en) Divided anode plating device and current value determining method
JPH06240474A (en) Method and device for etching copper or copper alloy
US20080156650A1 (en) Electrode chemical control system and method
JP4037784B2 (en) Etching method of copper-clad circuit board with hydrogen peroxide / sulfuric acid based etchant
JP2011029443A (en) Method and system for wet processing
JP2734785B2 (en) Jig for electrolytic plating

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees