JPH05225872A - Manufacture of board-type temperature fuse - Google Patents

Manufacture of board-type temperature fuse

Info

Publication number
JPH05225872A
JPH05225872A JP5696192A JP5696192A JPH05225872A JP H05225872 A JPH05225872 A JP H05225872A JP 5696192 A JP5696192 A JP 5696192A JP 5696192 A JP5696192 A JP 5696192A JP H05225872 A JPH05225872 A JP H05225872A
Authority
JP
Japan
Prior art keywords
flux
temperature fuse
alloy piece
nozzle
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5696192A
Other languages
Japanese (ja)
Other versions
JP3152984B2 (en
Inventor
Norisuke Hattori
教祐 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP05696192A priority Critical patent/JP3152984B2/en
Publication of JPH05225872A publication Critical patent/JPH05225872A/en
Application granted granted Critical
Publication of JP3152984B2 publication Critical patent/JP3152984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fuses (AREA)

Abstract

PURPOSE:To ensure smooth spheroidal parting of a fused alloy during temperature fuse operation by applying flux onto a low-melting-point fusible alloy piece which is bridged between a pair of foil electrodes on an insulation bard under pressurized condition. CONSTITUTION:A spacer 522 with a small hole 521 at the center is mounted at the lower end of a flux container 51 supported by the up-and-down piston of a cylinder 53, and a nozzle 52 with a flux space 54 is attached to the lower end. Next, a pair of foil electrodes are provided on an insulation board to transfer a board type temperature fuse main part B1, for which a low-melting- point fusible alloy piece is bridged between the electrodes, along a transfer passage 6 for stopping the main part B1 right under the nozzle 52. The nozzle 52 is lowered by the cylinder 53 to put the nozzle opening 50 in contact with the upper face of the main part B1, an electromagnetic valve 57 is opened, flux in the container 51 is pressurized by pressurizing gas supplied from a pressurizing gas tank 55 to deliver flux solution into the space 54, and the flux in the container 54 is pressurized to apply the flux onto the alloy piece and then to apply resin liquid thereto.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は基板型温度ヒュ−ズの製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a substrate type temperature fuse.

【0002】[0002]

【従来の技術】合金型温度ヒュ−ズにおいては、ヒュ−
ズエレメントに低融点可溶合金片を使用しており、その
基本的な構成は、一対のリ−ド導体間に低融点可溶合金
片を橋設し、その低融点可溶合金片上にフラックスを塗
布し、このフラックス塗布低融点可溶合金片を絶縁樹脂
で被覆した構造である。
2. Description of the Related Art In alloy type temperature fuses,
A low melting point fusible alloy piece is used for the element, and the basic structure is to bridge the low melting point fusible alloy piece between a pair of lead conductors, and set the flux on the low melting point fusible alloy piece. Is applied, and this flux-coated low melting point fusible alloy piece is covered with an insulating resin.

【0003】この合金型温度ヒュ−ズの作動機構は、保
護しようとする電気機器が過電流により発熱すると、そ
の発生熱の受熱により低融点可溶合金片が溶融し、この
溶融金属が界面張力により球状化し、この球状化の進行
により溶融金属が分断し、この分断により機器への通電
を遮断することにある。
In this alloy-type temperature fuse operating mechanism, when the electric equipment to be protected generates heat due to overcurrent, the low melting point fusible alloy piece is melted by receiving the generated heat, and the molten metal has an interfacial tension. The molten metal is divided by the progress of the spheroidization by the spheroidization, and the electric current to the equipment is cut off by this division.

【0004】この場合、上記フラックスにおいては、そ
の融点が合金型温度ヒュ−ズの融点よりも低く、低融点
可溶合金片が溶融したときには既に溶融状態にあり、溶
融合金が溶融フラックスに接触し、この接触状態のため
に溶融合金が界面力学上、球状化し易い状態におかれ
る。従って、合金型温度ヒュ−ズにおいて、その作動
上、低融点可溶合金片とフラックスとの界面状態は極め
て重要な要件である。
In this case, the melting point of the above flux is lower than that of the alloy type temperature fuse, and when the low melting point fusible alloy piece is melted, it is already in a molten state and the molten alloy comes into contact with the molten flux. Due to this contact state, the molten alloy is easily spheroidized due to interfacial mechanics. Therefore, in the operation of the alloy type temperature fuse, the interface state between the low melting point fusible alloy piece and the flux is a very important factor in its operation.

【0005】合金型温度ヒュ−ズとして、図4の(イ)
に示すような基板型温度ヒュ−ズが公知である。図4の
(イ)において、1’は片面に一対の箔状電極2’,
2’を設けた絶縁基板を、4’は電極2’,2’間に橋
設した低融点可溶合金片を、aは低融点可溶合金片4’
上に塗布したフラックスを、3’は電極2’に接続した
リ−ド線を、7’は絶縁基板1’の片面側に被覆した樹
脂層をそれぞれ示している。
As an alloy type temperature fuse, FIG.
Substrate type temperature fuses as shown in (1) are known. In FIG. 4A, 1'is a pair of foil-shaped electrodes 2'on one side,
2'is an insulating substrate, 4'is a low melting point soluble alloy piece bridged between electrodes 2'and 2 ', and a is a low melting point soluble alloy piece 4'.
The flux applied to the upper portion, 3'denotes a lead wire connected to the electrode 2 ', and 7'denotes a resin layer coated on one side of the insulating substrate 1'.

【0006】[0006]

【発明が解決しようとする課題】従来、上記基板型温度
ヒュ−ズにおけるフラックスの塗布には、滴下塗布方式
が使用されている。この方法では、ノズル先端と被塗装
面との間が所定の間隙で隔てられ、被塗装面にフラック
スが実質上無加圧状態で接触する。
Conventionally, a drop coating method has been used for coating the flux in the above-mentioned substrate type temperature fuse. In this method, the tip of the nozzle and the surface to be coated are separated by a predetermined gap, and the flux contacts the surface to be coated in a substantially non-pressurized state.

【0007】しかし、上記箔状電極2’と絶縁板1’と
の境界には、図4の(イ)のロ−ロ断面を示す図4の
(ロ)のように箔状電極の厚さのために段差20’が存
在し、また、図4の(イ)のハ−ハ断面を示す図4の
(ハ)のように箔状電極2’と低融点可溶合金片4’と
の境界40’にも段差が存在し、更にまた、図4の
(イ)のニ−ニ断面を示す図4の(ニ)のように低融点
可溶合金片4’と絶縁基板1’との間に微小間隙bが存
在するから、上記無加圧状態のフラックスでは、この段
差または間隙を完全に埋めることが困難であり、図4の
(イ)の点線で示す経路の細孔通路が残ったままでフラ
ックス層aが固化してしまうことが往々にしてある。
However, at the boundary between the foil-shaped electrode 2'and the insulating plate 1 ', the thickness of the foil-shaped electrode is as shown in FIG. Due to the presence of the step 20 ', and the foil electrode 2'and the low melting point fusible alloy piece 4'as shown in FIG. 4C showing the cross section of FIG. There is also a step on the boundary 40 ', and further, as shown in FIG. 4D showing the cross section of FIG. 4A, the low melting point fusible alloy piece 4'and the insulating substrate 1'. Since there is a minute gap b between them, it is difficult to completely fill this step or gap with the flux in the non-pressurized state, and the pore passage of the route shown by the dotted line in (a) of FIG. 4 remains. The flux layer a is often solidified as it is.

【0008】上記フラックス塗布後での樹脂被覆におい
ては、その被覆時、フラックスが流動変形することのな
いように、常温下で行うことが必要であり、通常、常温
下での浸漬塗装または滴下塗装を使用しているので、上
記細孔通路の存在下では、樹脂液が毛細管現象のために
細孔通路に浸透する畏れがある。
In coating the resin after applying the flux, it is necessary to perform the coating at room temperature so that the flux is not flow-deformed during coating. Usually, dip coating or drop coating is performed at room temperature. Therefore, in the presence of the pore passage, there is a fear that the resin liquid permeates into the pore passage due to the capillary phenomenon.

【0009】而して、この樹脂液の浸透のもとでは、温
度ヒュ−ズの作動時、溶融した低融点可溶合金片の一部
が溶融フラックスに接触せずに樹脂と接触したままとな
り、上記した溶融合金の球状化に支障となって合金型温
度ヒュ−ズの円滑な作動を保証し難い。
Under the permeation of the resin liquid, a part of the melted low melting point fusible alloy piece remains in contact with the resin without contacting the molten flux during the operation of the temperature fuse. However, it hinders the spheroidization of the molten alloy, and it is difficult to guarantee the smooth operation of the alloy type temperature fuse.

【0010】本発明の目的は、基板型温度ヒュ−ズにお
いて、低融点可溶合金片へのフラックスの良好な界面接
触状態を保証し、良品質の基板型温度ヒュ−ズを容易に
製造できる方法を提供することにある。
An object of the present invention is to ensure a good interfacial contact state of the flux to the low melting point fusible alloy piece in the substrate type temperature fuse and to easily manufacture a good quality substrate type temperature fuse. To provide a method.

【0011】[0011]

【課題を解決するための手段】本発明の基板型温度ヒュ
−ズの製造方法は、片面に一対の箔状電極を設けた絶縁
基板のその箔状電極の先端部間に低融点可溶合金片を橋
設し、その合金片上にフラックスを塗布し、そのフラッ
クス塗布上に樹脂を被覆する合金型温度ヒュ−ズの製造
方法において、フラックス被塗装面に接する位置におけ
るフラックスを加圧状態にして上記フラックスの塗布を
行うことを特徴とする構成である。
A method of manufacturing a substrate-type temperature fuse according to the present invention comprises a low melting point fusible alloy between the tip portions of an insulating substrate having a pair of foil electrodes on one side thereof. In the method of manufacturing an alloy type temperature fuse in which a piece is bridged, flux is applied on the alloy piece, and the resin is coated on the flux application, the flux at the position in contact with the flux coated surface is pressurized. The above-mentioned flux is applied.

【0012】[0012]

【作用】箔状電極と絶縁板との境界の段差、箔状電極と
低融点可溶合金片との境界の段差、低融点可溶合金片と
絶縁基板との微小間隙が加圧フラックスによって完全に
埋められ、フラックス層下に、低融点可溶合金片に至る
細孔通路が形成されることがなく、この細孔通路に樹脂
液が浸透することによる低融点可溶合金片への樹脂の接
触を回避できる。
[Function] The step at the boundary between the foil electrode and the insulating plate, the step at the boundary between the foil electrode and the low melting point fusible alloy piece, and the minute gap between the low melting point fusible alloy piece and the insulating substrate are completely removed by the pressurized flux. Embedded in the flux layer, a pore passage leading to the low melting point fusible alloy piece is not formed, and the resin liquid permeates the pore passage to prevent the resin from being melted into the low melting point fusible alloy piece. Avoid contact.

【0013】[0013]

【実施例】以下、本発明の実施例を図面により説明す
る。本発明を実施するには、図1に示すように、絶縁基
板1上に一対の箔状電極2,2を設け、各電極2にリ−
ド線3を接続し、電極2,2間に低融点可溶合金片4を
橋設した基板型温度ヒュ−ズ本体Aを、まず、前半の工
程で製造する。
Embodiments of the present invention will be described below with reference to the drawings. In order to carry out the present invention, as shown in FIG. 1, a pair of foil-shaped electrodes 2 and 2 are provided on an insulating substrate 1 and each electrode 2 is re-attached.
First, a substrate type temperature fuse main body A in which a lead wire 3 is connected and a low melting point fusible alloy piece 4 is bridged between the electrodes 2 and 2 is manufactured in the first half step.

【0014】この場合、絶縁基板1には、セラミックス
板等の無機質板、硬質合成樹脂板を使用することができ
る。箔状電極2には、厚み20〜300μmの銅箔を使
用でき、片面銅箔絶縁板の銅箔エッチングによって電極
を形成することができる。低融点可溶合金片4には、通
常、直径0.3mm〜0.6mmの円形線又はこの円形
線の圧延線を使用でき、低融点可溶合金片の材質は温度
ヒュ−ズの作動温度に応じて選択する。各箔状電極2の
先端部の外側は、図1に示すように切り欠いて絶縁基板
の端縁11に至る距離を長くすることが溶融フラックス
に対するシ−ル距離を確保するうえに有利である。
In this case, the insulating substrate 1 may be an inorganic plate such as a ceramic plate or a hard synthetic resin plate. A copper foil having a thickness of 20 to 300 μm can be used for the foil electrode 2, and the electrode can be formed by etching a copper foil of a single-sided copper foil insulating plate. As the low melting point fusible alloy piece 4, a circular wire having a diameter of 0.3 mm to 0.6 mm or a rolled wire of this circular wire can be used, and the material of the low melting point fusible alloy piece is a temperature fuse operating temperature. Select according to. As shown in FIG. 1, it is advantageous to cut out the outside of the tip of each foil electrode 2 to increase the distance to the edge 11 of the insulating substrate in order to secure the seal distance for the molten flux. ..

【0015】上記の基板型温度ヒュ−ズ本体には、図2
に示すように帯状絶縁体10に所定間隔ごとに切断用線
12を入れて絶縁基板片1の連設体を形成し、各絶縁基
板片に一対の箔状電極を設け、各電極にリ−ド線を接続
し、電極間に低融点可溶合金片を橋設したものを使用す
ることもできる。
The above-mentioned substrate type temperature fuse main body is shown in FIG.
As shown in FIG. 5, cutting wires 12 are inserted into the strip-shaped insulator 10 at predetermined intervals to form a continuous body of the insulating substrate pieces 1. A pair of foil-shaped electrodes is provided on each insulating substrate piece, and a lead is provided on each electrode. It is also possible to use the one in which a low melting point fusible alloy piece is bridged between electrodes by connecting a lead wire.

【0016】図3は本発明の後半の製造工程において使
用する製造装置を示している。図3の(イ)において、
5はフラックス塗布装置を示し、フラックス容器51の
下端にノズル52を取付け、フラックス容器51をシリ
ンダ−53の上下動ピストンで支持し、全体を上下に可
動に支持してある。ノズル52内には、容器51内のフ
ラックス溶液(溶剤溶液)が自重で流下するのを防止す
るために、図3の(ロ)〔図3の(イ)におけるロ−ロ
断面図〕にも示すように、中心に小孔521を有するスペ
−サ522を装着し、ノズル52の下端部にフラックスチ
ャ−ジ空間54を設けてある。また、フラックスチャ−
ジ空間54の内郭をフラックスの塗布内郭に合わせた形
状・寸法にしてある。55はフラックス容器51に可撓
性チュ−ブ56により連通した加圧ガスタンク、57は
電磁弁である。6は移送路である。
FIG. 3 shows a manufacturing apparatus used in the latter manufacturing process of the present invention. In (a) of FIG.
Reference numeral 5 denotes a flux coating device, in which a nozzle 52 is attached to the lower end of a flux container 51, the flux container 51 is supported by a vertically moving piston of a cylinder-53, and the whole is movably supported vertically. In order to prevent the flux solution (solvent solution) in the container 51 from flowing down by its own weight, the nozzle 52 also has a cross section (b) in FIG. 3 [a cross-sectional view taken along line (a) in FIG. 3]. As shown, a spacer 522 having a small hole 521 at the center is mounted, and a flux charge space 54 is provided at the lower end of the nozzle 52. Also, the flux char
The inner space of the space 54 is shaped and dimensioned to match the inner space of the flux coating. Reference numeral 55 is a pressurized gas tank communicating with the flux container 51 by a flexible tube 56, and 57 is a solenoid valve. 6 is a transfer path.

【0017】上記した基板型温度ヒュ−ズ本体Aを製作
したのちは、この温度ヒュ−ズ本体を移送路6で移送
し、最前の温度ヒュ−ズ本体B1がノズル52の直下に
達すると温度ヒュ−ズ本体の移送を停止し(移送路6の
走行を停止)、シリンダ−53の作動によりノズル52
を降下させ、ノズル開口50を温度ヒュ−ズ本体B1
上面に接触させ、この接触状態を短時間保持し、この間
に電磁弁57を開にし、容器51内フラックスを加圧ガ
スタンク55からの加圧ガスで加圧し、フラックス容器
51内のフラックス溶液をノズル下端部のフラックスチ
ャ−ジ空間54に送り込むと共にこのチャ−ジ空間54
内フラックスを上記のガス圧により加圧状態にする。
After the above-mentioned substrate type temperature fuse main body A is manufactured, this temperature fuse main body is transferred through the transfer path 6, and when the frontmost temperature fuse main body B 1 reaches just below the nozzle 52. The transfer of the temperature fuse main body is stopped (the traveling of the transfer path 6 is stopped), and the nozzle 52 is activated by the operation of the cylinder 53.
And the nozzle opening 50 is brought into contact with the upper surface of the temperature fuse main body B 1 and this contact state is maintained for a short time, while the solenoid valve 57 is opened, and the flux in the container 51 is discharged from the pressurized gas tank 55. The flux solution in the flux container 51 is pressurized by the pressurized gas and is sent to the flux charge space 54 at the lower end of the nozzle and the charge space 54
The internal flux is pressurized by the above gas pressure.

【0018】従って、温度ヒュ−ズ本体B1のフラック
ス塗布面にフラックスを加圧状態で接触させ得、箔状電
極と絶縁板との境界の段差、箔状電極と低融点可溶合金
片との境界の段差、低融点可溶合金片と絶縁基板との間
の微小間隙を加圧フラックスによって完全に埋めること
ができ、フラックス層下に、低融点可溶合金片に至る細
孔通路が生じるのを排除できる。
Therefore, the flux can be brought into contact with the flux-applied surface of the temperature fuse main body B 1 under pressure, and the level difference at the boundary between the foil electrode and the insulating plate, the foil electrode and the low melting point fusible alloy piece The step of the boundary between the low melting point fusible alloy pieces and the minute gap between the low melting point fusible alloy piece and the insulating substrate can be completely filled with the pressurized flux, and a pore passage leading to the low melting point fusible alloy piece is formed under the flux layer. Can be eliminated.

【0019】上記した温度ヒュ−ズ本体B1とノズル開
口50との接触を短時間保持したのちは、シリンダ−5
3の上昇作動によりノズル52を温度ヒュ−ズ本体B1
より離隔させ、次いで移送路6の再走行によりフラック
ス塗布済みの温度ヒュ−ズ本体をノズル直下より脱出さ
せ、次ぎの温度ヒュ−ズ本体B2がノズル直下に達する
と、再度移送路6の走行を停止し、以後、上記した操作
を繰り返して行く。
After the contact between the temperature fuse main body B 1 and the nozzle opening 50 is maintained for a short time, the cylinder-5
By the raising operation of No. 3, the nozzle 52 is moved to the temperature fuse main body B 1
When the main body of the flux fuse is ejected from just below the nozzle by re-running the transfer path 6 again, and then the next temperature fuse body B 2 reaches directly below the nozzle, the transfer path 6 is run again. Stop, and then repeat the above operation.

【0020】上記において、温度ヒュ−ズ本体からノズ
ルが上昇離隔する際、ノズルのフラックスチャ−ジ空間
内のフラックスがその粘着力により温度ヒュ−ズ本体側
に移着され、低融点可溶合金片上へのフラックスの塗着
が行われる。この場合、フラックスチャ−ジ空間の高さ
が高すぎると、チャ−ジ空間内のフラックス量が多くな
り、温度ヒュ−ズ本体上へのフラックス移着量が多量に
なって、その塗着フラックスが流動し易く、フラックス
の塗着輪郭を一定にし難くなるので、チャ−ジ空間の高
さは、低融点可溶合金片の高さの1.1〜3.0倍とす
ることが望ましい。
In the above, when the nozzle is lifted and separated from the temperature fuse main body, the flux in the flux charge space of the nozzle is transferred to the temperature fuse main body side by its adhesive force, and the low melting point fusible alloy The flux is applied onto one side. In this case, if the height of the flux charge space is too high, the amount of flux in the charge space will increase, and the amount of flux transferred onto the temperature fuse main body will increase, resulting in the coating flux. Since it easily flows and it becomes difficult to make the flux coating contour constant, it is desirable that the height of the charge space is 1.1 to 3.0 times the height of the low melting point fusible alloy piece.

【0021】上記のように低融点可溶合金片上にフラッ
クスを塗着したのちは、温度ヒュ−ズ本体の片面側(低
融点可溶合金片を設けた側)に樹脂液を塗布し(温度ヒ
ュ−ズ本体が図に示すような連設体の場合は、切断用線
で分割したのちに塗布する)、これにて基板型温度ヒュ
−ズの製造を終了する。
After the flux is applied on the low melting point soluble alloy piece as described above, the resin liquid is applied on one side of the temperature fuse body (the side on which the low melting point soluble alloy piece is provided) (temperature). In the case where the fuse main body is a continuous body as shown in the figure, it is applied after being divided by a cutting line), and the manufacturing of the substrate temperature fuse is completed.

【0022】この樹脂の塗布においては、フラックス塗
布層が溶融・変形することのないように、常温,無加圧
で行う必要があり、通常、常温で硬化する樹脂液、例え
ば常温硬化性エポキシ樹脂液の滴下塗装又は浸漬塗装に
よって樹脂の塗布が行われる。
The application of this resin needs to be carried out at room temperature and without pressure so that the flux coating layer is not melted or deformed. Usually, a resin liquid which is cured at room temperature, for example, a room temperature curable epoxy resin is used. The resin is applied by dripping or dipping the liquid.

【0023】[0023]

【発明の効果】本発明の基板型温度ヒュ−ズの製造方法
においては、上述した通り、絶縁基板上の一対の箔状電
極間に橋設した低融点可溶合金片上へのフラックスの塗
布を加圧状態で行っているから、箔状電極と絶縁板との
境界の段差、箔状電極と低融点可溶合金片との境界の段
差、低融点可溶合金片と絶縁基板との微小間隙をフラッ
クスで完全に埋めることができ、従って、フラックス層
下での細孔通路の生成を排除でき、よって、その細孔通
路への樹脂液の浸透による低融点可溶合金片への樹脂の
接触を防止し得、温度ヒュ−ズ作動時の溶融合金のスム
−ズな球状化分断を保証できる。従って、本発明によれ
ば、基板型温度ヒュ−ズを歩留まりよく製造できる。
As described above, in the method for manufacturing a substrate type temperature fuse of the present invention, the flux is applied onto the low melting point fusible alloy piece bridged between the pair of foil electrodes on the insulating substrate. Since it is carried out under pressure, the step at the boundary between the foil electrode and the insulating plate, the step at the boundary between the foil electrode and the low melting point fusible alloy piece, and the small gap between the low melting point fusible alloy piece and the insulating substrate Can be completely filled with the flux, and thus the generation of pore passages under the flux layer can be eliminated, and therefore, the resin contact with the low melting point meltable alloy piece due to the penetration of the resin liquid into the pore passages. And the smooth spheroidization of the molten alloy during temperature fuse operation can be guaranteed. Therefore, according to the present invention, the substrate type temperature fuse can be manufactured with high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において使用する温度ヒュ−ズ本体を示
す上面図である。
FIG. 1 is a top view showing a temperature fuse main body used in the present invention.

【図2】本発明において使用する上記とは別の温度ヒュ
−ズ本体を示す上面図である。
FIG. 2 is a top view showing another temperature fuse main body used in the present invention.

【図3】図3の(イ)は本発明において使用するフラッ
クス塗布装置を示す説明図、図3の(ロ)は図3の
(イ)におけるロ−ロ断面図である。
3 (A) is an explanatory view showing a flux coating device used in the present invention, and FIG. 3 (B) is a cross-sectional view taken along line (B) of FIG.

【図4】図4の(イ)は基板型温度ヒュ−ズを示す上面
説明図、図4の(ロ)は図4の(イ)におけるロ−ロ断
面図、図4の(ハ)は図4の(イ)におけるハ−ハ断面
図、図4の(ニ)は図4の(イ)におけるニ−ニ断面図
である。
4 (a) is an explanatory plan view showing a substrate-type temperature fuse, FIG. 4 (b) is a cross-sectional view taken along the line of FIG. 4 (a), and FIG. 4A is a sectional view taken along the line of FIG. 4A, and FIG. 4D is a sectional view taken along the line of FIG.

【符号の説明】[Explanation of symbols]

1 絶縁基板 2 箔状電極 4 低融点可溶合金片 52 ノズル 1 Insulating substrate 2 Foil-shaped electrode 4 Low melting point fusible alloy piece 52 Nozzle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】片面に一対の箔状電極を設けた絶縁基板の
その箔状電極の先端部間に低融点可溶合金片を橋設し、
その合金片上にフラックスを塗布し、そのフラックス塗
布上に樹脂を被覆する合金型温度ヒュ−ズの製造方法に
おいて、フラックス被塗装面に接する位置におけるフラ
ックスを加圧状態にして上記フラックスの塗布を行うこ
とを特徴とする基板型温度ヒュ−ズの製造方法。
1. A low melting point fusible alloy piece is bridged between the tip portions of the foil electrodes of an insulating substrate provided with a pair of foil electrodes on one surface,
In the method for producing an alloy-type temperature fuse in which flux is applied on the alloy piece and resin is applied on the flux application, the flux at the position in contact with the surface to be coated with the flux is pressed to apply the flux. A method of manufacturing a substrate-type temperature fuse, comprising:
JP05696192A 1992-02-07 1992-02-07 Manufacturing method of substrate type temperature fuse Expired - Fee Related JP3152984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05696192A JP3152984B2 (en) 1992-02-07 1992-02-07 Manufacturing method of substrate type temperature fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05696192A JP3152984B2 (en) 1992-02-07 1992-02-07 Manufacturing method of substrate type temperature fuse

Publications (2)

Publication Number Publication Date
JPH05225872A true JPH05225872A (en) 1993-09-03
JP3152984B2 JP3152984B2 (en) 2001-04-03

Family

ID=13042135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05696192A Expired - Fee Related JP3152984B2 (en) 1992-02-07 1992-02-07 Manufacturing method of substrate type temperature fuse

Country Status (1)

Country Link
JP (1) JP3152984B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183428A (en) * 2014-09-04 2014-12-03 常州常利来电子有限公司 Insertion sheet press-fit die

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183428A (en) * 2014-09-04 2014-12-03 常州常利来电子有限公司 Insertion sheet press-fit die

Also Published As

Publication number Publication date
JP3152984B2 (en) 2001-04-03

Similar Documents

Publication Publication Date Title
US3610874A (en) Laser welding technique
US7021521B2 (en) Bump connection and method and apparatus for forming said connection
JPS58151980A (en) Method and apparatus for welding rail of railroad
US4860941A (en) Ball bonding of aluminum bonding wire
JPH0666314B2 (en) Bump forming method and apparatus
ITUD950054A1 (en) CIRCUIT SUPPORT
JPH05225872A (en) Manufacture of board-type temperature fuse
JPS60227432A (en) Ball forming device of bonding wire
JP3152985B2 (en) Manufacturing method of substrate type temperature fuse
JPH1140937A (en) Method and apparatus for feeding solder
JP2003133410A (en) Method of forming through wiring and metal filling method
JP2010197165A (en) Thin-film temperature sensor and method for manufacturing the same
JP4112297B2 (en) Thermo protector and method of manufacturing thermo protector
US5883352A (en) Welding process
US3504411A (en) Process for producing an electrode tip
JP3307262B2 (en) Method of forming solder bumps
JPS63204630A (en) Manufacture of wiring structure
JP2607103B2 (en) Method for forming cavity of resin-sealed resonator
JPS6215810A (en) Method of connecting insulated covered electric wire to terminal
JPH08203909A (en) Bump forming method of semiconductor device
JP2002064166A (en) Semiconductor device, manufacturing method thereof, and resin sealing apparatus
JPH07192593A (en) Alloy type thermal fuse and its manufacture
JPH0436035Y2 (en)
JPH05259166A (en) Dendrite bump and its manufacturing method
JPS60134430A (en) Semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees