JPH05224163A - Light transmitter - Google Patents

Light transmitter

Info

Publication number
JPH05224163A
JPH05224163A JP4027755A JP2775592A JPH05224163A JP H05224163 A JPH05224163 A JP H05224163A JP 4027755 A JP4027755 A JP 4027755A JP 2775592 A JP2775592 A JP 2775592A JP H05224163 A JPH05224163 A JP H05224163A
Authority
JP
Japan
Prior art keywords
signal
optical
modulator
low frequency
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4027755A
Other languages
Japanese (ja)
Other versions
JP2630536B2 (en
Inventor
Hiroshi Nishimoto
央 西本
Takatoshi Minami
隆敏 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4027755A priority Critical patent/JP2630536B2/en
Priority to CA002083219A priority patent/CA2083219C/en
Priority to US07/979,491 priority patent/US5359449A/en
Priority to EP96105232A priority patent/EP0725299A3/en
Priority to EP92119707A priority patent/EP0547394B1/en
Priority to DE69221839T priority patent/DE69221839T2/en
Publication of JPH05224163A publication Critical patent/JPH05224163A/en
Application granted granted Critical
Publication of JP2630536B2 publication Critical patent/JP2630536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops

Abstract

PURPOSE:To lower the driving voltage of an optical modulator, to stabilize the operation against mark rate variation and the temperature variation and secular change of the optical modulator, and to prevent the waveform of modulation output light from deteriorating. CONSTITUTION:This transmitter is equipped with a light source 1 such as a semiconductor laser and a Mach-Zehnder type optical modulator 2 provided with signal electrodes and a bias electrode 4 which are electrically separated from two light guides, and has a modulator driving circuit 5 which applies a driving signal to one-end sides of the signal electrodes 3 and terminators 6 which are connected to the other-end side of the signal electrodes 3. Further, is provided with an operation point control circuit 7 which applies a bias voltage for operation point stabilization to the bias electrode 4, a low-frequency superposing circuit 8 which superposes a low-frequency signal for operation point stabilization on the driving signal, and a low-frequency oscillator 9 which generates the low-frequency signal and equipped with an optical branching circuit 10 which branches part of the modulation output light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、外部光変調方式の光送
信装置に関する。近年の光通信システムに於いては、光
ファイバの波長分散の影響を受けにくい光変調方式とし
て外部変調方式の開発が進められている。例えば、Li
NbO3マッハツェンダ(Mach −Zehnder)型の光変
調器が、優れた変調特性と耐波長分散特性とを有するこ
とから注目されている。このような外部光変調方式を用
いた光送信装置に於いては、(1)光変調器の動作点安
定化制御、(2)光変調器の低電圧駆動、(3)駆動回
路と光変調器の電極との間及び該電極と終端器との間の
それぞれのコンデンサによる波形歪の低減、(4)マー
ク率の急変に伴う変調特性の変化等の低減等の要求があ
る。又チャーピング(chirping) の有無を選択できるこ
とが要望されている。例えば、光ファイバの零分散波長
とほぼ一致した波長を用いて長距離伝送を行う場合のよ
うに、分散が正負の何れの値もとりうる場合は、チャー
ピング無しが適しており、又光ファイバの波長分散の正
負が明らかで、分散の符号に対応したチャーピングによ
り光パルス圧縮を生じさせることができる場合は、チャ
ーピング有りが適している。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an external light modulation type optical transmitter. In recent years, in an optical communication system, an external modulation method is being developed as an optical modulation method that is less susceptible to the chromatic dispersion of an optical fiber. For example, Li
NbO 3 Mach-Zehnder type optical modulators have attracted attention because they have excellent modulation characteristics and wavelength dispersion resistance characteristics. In the optical transmitter using such an external light modulation method, (1) operation point stabilization control of the light modulator, (2) low voltage drive of the light modulator, (3) drive circuit and light modulation There is a demand for reduction of waveform distortion due to the capacitors between the electrodes of the detector and between the electrodes and the terminator, and (4) reduction of change in modulation characteristics due to sudden change in mark ratio. It is also desired to be able to select whether or not chirping is present. For example, when dispersion can take positive or negative values, such as when performing long-distance transmission using a wavelength that is substantially the same as the zero-dispersion wavelength of the optical fiber, no chirping is suitable, and When the positive / negative of the chromatic dispersion is clear and the optical pulse compression can be generated by the chirping corresponding to the sign of the dispersion, the chirping is suitable.

【0002】[0002]

【従来の技術】図11は従来例の説明図であり、71は
半導体レーザ等からなる光源、72はマッハツェンダ型
の光変調器、73は信号用電極、74は光分岐回路、7
5は変調器駆動回路、76は終端器、77は動作点制御
回路、78は低周波重畳回路、79は低周波発振器、8
0,81はバイアスティ、L,Cはバイアスティを構成
するインダクタンスとコンデンサである。
2. Description of the Related Art FIG. 11 is an explanatory view of a conventional example. Reference numeral 71 is a light source made of a semiconductor laser or the like, 72 is a Mach-Zehnder type optical modulator, 73 is a signal electrode, 74 is an optical branching circuit, and 7
5 is a modulator drive circuit, 76 is a terminator, 77 is an operating point control circuit, 78 is a low frequency superimposing circuit, 79 is a low frequency oscillator, 8
0 and 81 are bias tees, and L and C are inductances and capacitors that constitute the bias tees.

【0003】マッハツェンダ型の光変調器72は、例え
ば、ZカットのLiNbO3 基板にTiを拡散して、分
岐,結合するパターンの光導波路を形成し、分岐された
光導波路に電界を印加する信号用電極73と接地用電極
(図示せず)とを形成する。そして、信号用電極73の
一端に駆動信号を印加し、他端をバイアスティ81のコ
ンデンサCを介して、例えば、50Ωの終端器76によ
り終端し、光導波路に伝搬される光と同一方向に駆動信
号による電界が伝搬する進行波型に構成されている。
The Mach-Zehnder type optical modulator 72 is, for example, a signal for diffusing Ti into a Z-cut LiNbO 3 substrate to form an optical waveguide having a pattern for branching and coupling, and applying an electric field to the branched optical waveguide. The electrodes 73 and grounding electrodes (not shown) are formed. Then, a drive signal is applied to one end of the signal electrode 73, and the other end is terminated by a terminator 76 of, for example, 50Ω via the capacitor C of the bias tee 81, and is in the same direction as the light propagated to the optical waveguide. It is of a traveling wave type in which an electric field due to a drive signal propagates.

【0004】このような構成の光変調器72は、変調動
作を行う動作点に温度変化や経時変化が生じる。そこ
で、低周波発振器79からの低周波信号を低周波重畳回
路78に加えて、例えば、数Gb/sの入力信号に従っ
た変調器駆動回路75からの駆動信号に低周波信号を重
畳し、バイアスティ80のコンデンサCを介して信号用
電極73に印加し、光源71からの光を低周波信号が重
畳された駆動信号によって変調する。
In the optical modulator 72 having such a configuration, a change in temperature and a change with time occur at the operating point where the modulation operation is performed. Therefore, the low-frequency signal from the low-frequency oscillator 79 is added to the low-frequency superimposing circuit 78 to superimpose the low-frequency signal on the drive signal from the modulator driving circuit 75 according to the input signal of several Gb / s, It is applied to the signal electrode 73 via the capacitor C of the bias tee 80, and the light from the light source 71 is modulated by the drive signal on which the low frequency signal is superimposed.

【0005】光変調器72により変調された出力光は、
光分岐回路74により一部分岐されて動作点制御回路7
7に加えられ、電気信号に変換されて低周波発振器79
からの低周波信号により同期検波される。光変調器72
は、バイアス電圧によって動作点の制御が可能であるか
ら、動作点制御回路77は、同期検波出力の低周波信号
成分が最小となるように、バイアス電圧をバイアスティ
81のインダクタンスLを介して信号用電極73に印加
する。このような従来例は、例えば、1990年電子情
報通信学会 春季全国大会 論文集 B−976「マッ
ハツェンダ型光変調器用自動バイアス制御回路の検
討」、又は特願平2−50189号に開示されている。
The output light modulated by the optical modulator 72 is
The operating point control circuit 7 is partially branched by the optical branch circuit 74.
7 is added to the low frequency oscillator 79 and converted into an electric signal.
Is synchronously detected by the low frequency signal from. Light modulator 72
Since the operating point can be controlled by the bias voltage, the operating point control circuit 77 sends the bias voltage to the signal via the inductance L of the bias tee 81 so that the low frequency signal component of the synchronous detection output is minimized. It is applied to the electrode 73 for. Such a conventional example is disclosed, for example, in the 1990 Spring National Conference of the Institute of Electronics, Information and Communication Engineers, B-976, "Study on Automatic Bias Control Circuit for Mach-Zehnder Type Optical Modulator", or Japanese Patent Application No. 2-50189. ..

【0006】又光変調器の信号用電極に印加する電圧値
の低減と、変調出力光のチャープレスとを図る為に、対
称2電極駆動型のマッハツェンダ型光変調器が提案され
ている。即ち、分岐された光導波路にそれぞれ信号用電
極を設けて、逆位相の駆動電圧を印加し、対称変調を行
うものである。例えば、1989年 「TechnicalDig
est of IOOC’89」19D4−2の「Perfectly
Chirpless LowDrive Voltage Ti:LiNb
3 Mach-Zehnder Modulator withTwo Travelin
g−Wave Electrodes 」に開示されている。
A symmetrical two-electrode drive type Mach-Zehnder type optical modulator has been proposed in order to reduce the voltage value applied to the signal electrode of the optical modulator and to perform the chirp reduction of the modulated output light. That is, each of the branched optical waveguides is provided with a signal electrode, and a drive voltage having an opposite phase is applied to perform symmetrical modulation. For example, in 1989, "Technical Digi
est of IOOC '89 "19D4-2" Perfectly "
Chirpless Low Drive Voltage Ti: LiNb
O 3 Mach-Zehnder Modulator with Two Travelin
g-Wave Electrodes ".

【0007】[0007]

【発明が解決しようとする問題点】図11に示す従来例
に於いては、バイアスティ80,81のコンデンサCを
介して駆動信号を信号用電極73に印加するものである
から、このコンデンサCにより駆動信号の低周波成分が
遮断され、マーク率が急変した時に変調出力光の信号波
形が歪む欠点がある。動作点制御回路77は、マーク率
が1/2以外の場合でも適正な動作点となるように制御
することになるが、この動作点制御回路77の時定数と
同程度以上からコンデンサCにより遮断される周波数に
対応する時定数との間で生じるようなマーク率変動の速
さの場合に、動作点が適正な点からずれる欠点がある。
又バイアスティ80,81のコンデンサCの周波数特性
が充分でない場合は、数Gb/sの高速の駆動信号の波
形がコンデンサCにより歪むことになり、それによって
変調出力光の波形が歪む問題があった。又分岐された二
つの光導波路の一方にのみ信号用電極73を形成した構
成であるから、変調効率が低く、その為に駆動用の電圧
を低減できなかった。
In the conventional example shown in FIG. 11, since the drive signal is applied to the signal electrode 73 via the capacitor C of the bias tees 80 and 81, this capacitor C is used. As a result, the low-frequency component of the drive signal is blocked, and the signal waveform of the modulated output light is distorted when the mark ratio changes abruptly. The operating point control circuit 77 controls so that the operating point becomes an appropriate operating point even when the mark ratio is other than 1/2. However, since the time constant of the operating point control circuit 77 is about the same or more, it is cut off by the capacitor C. There is a drawback in that the operating point deviates from the proper point in the case of the speed of the change of the mark ratio that occurs with the time constant corresponding to the frequency to be set.
If the frequency characteristics of the capacitor C of the bias tees 80 and 81 are not sufficient, the waveform of the high-speed drive signal of several Gb / s will be distorted by the capacitor C, which causes the problem of distorted waveform of the modulated output light. It was Further, since the signal electrode 73 is formed only on one of the two branched optical waveguides, the modulation efficiency is low, and therefore the driving voltage cannot be reduced.

【0008】又図11に示す従来例の非対称変調の構成
を改善する為に、対称2電極駆動型のマッハツェンダ型
光変調器は、対称変調となることにより、駆動電圧の低
減を図ることができるが、動作点の安定化を含む光送信
装置としての検討が充分に進められていないのが現状で
ある。本発明は、コンデンサによる問題を除去すると共
に、マーク率の急変に対しても安定な制御を可能とし、
且つチャーピングの有無の選択も容易にすることを目的
とする。
In order to improve the configuration of the asymmetrical modulation of the conventional example shown in FIG. 11, the symmetrical two-electrode drive type Mach-Zehnder type optical modulator is symmetrically modulated, so that the driving voltage can be reduced. However, the present situation is that the study as an optical transmitter including the stabilization of the operating point has not been sufficiently advanced. INDUSTRIAL APPLICABILITY The present invention eliminates the problem caused by the capacitor and enables stable control even against a sudden change in the mark ratio,
Moreover, the purpose is to facilitate the selection of the presence or absence of chirping.

【0009】[0009]

【課題を解決するための手段】本発明の光送信装置は、
図1を参照して説明すると、半導体レーザ等の光源1か
らの光を入力して2本の光導波路に分岐し、これらの光
導波路にそれぞれ独立して電圧を印加する信号用電極3
とバイアス用電極4とを有するマッハツェンダ型の光変
調器2と、この光変調器2の2本の光導波路対応の信号
用電極3と直流接続し、入力信号に従った駆動信号を印
加して、光変調器2から変調した出力光を送出する為の
変調器駆動回路5と、光変調器2の信号用電極3に直流
接続して終端する終端器6と、バイアス用電極4に直流
接続して光変調器2の動作点を制御する動作点制御回路
7とを備えたものである。
The optical transmitter of the present invention comprises:
Explaining with reference to FIG. 1, a signal electrode 3 for inputting light from a light source 1 such as a semiconductor laser, branching it into two optical waveguides, and applying a voltage to each of these optical waveguides independently.
A Mach-Zehnder type optical modulator 2 having a bias electrode 4 and a signal electrode 3 corresponding to two optical waveguides of the optical modulator 2 is connected by direct current, and a drive signal according to an input signal is applied. , A modulator driving circuit 5 for transmitting the modulated output light from the optical modulator 2, a terminator 6 for terminating the signal electrode 3 of the optical modulator 2 by direct current connection, and a direct current connection for the bias electrode 4. Then, an operating point control circuit 7 for controlling the operating point of the optical modulator 2 is provided.

【0010】又変調器駆動回路5から信号用電極3に印
加する駆動信号に低周波信号を重畳する為の低周波重畳
回路8を設け、動作点制御回路7を、光変調器2の出力
光に含まれる低周波信号の成分が最小となるように、バ
イアス用電極4に印加するバイアス電圧を制御する構成
としたものである。又9は低周波発振器、10は光分岐
回路である。
Further, a low frequency superimposing circuit 8 for superimposing a low frequency signal on the drive signal applied from the modulator driving circuit 5 to the signal electrode 3 is provided, and an operating point control circuit 7 is provided for the output light of the optical modulator 2. The bias voltage applied to the biasing electrode 4 is controlled so that the component of the low-frequency signal included in is minimized. Further, 9 is a low frequency oscillator, and 10 is an optical branch circuit.

【0011】又変調器駆動回路5を差動増幅器により構
成し、この差動増幅器の電流源を低周波信号により変調
する構成としたものである。
Further, the modulator drive circuit 5 is constituted by a differential amplifier, and the current source of this differential amplifier is modulated by a low frequency signal.

【0012】又変調器駆動回路5を差動増幅器により構
成し、この差動増幅器の電流源を低周波信号により変調
すると共に、信号電極3の一方に直接、他方に減衰器を
介して駆動信号をそれぞれ印加し、バイアス用電極に、
低周波信号をバイアス電圧と共に印加する構成としたも
のである。
Further, the modulator driving circuit 5 is constituted by a differential amplifier, the current source of this differential amplifier is modulated by a low frequency signal, and the driving signal is directly applied to one of the signal electrodes 3 and to the other via an attenuator. Is applied to the bias electrodes,
The low frequency signal is applied together with the bias voltage.

【0013】又変調器駆動回路5を、信号用電極3対応
の2個の差動増幅器により構成し、この2個の差動増幅
器のそれぞれの電流源を低周波信号により変調する構成
としたものである。
The modulator drive circuit 5 is composed of two differential amplifiers corresponding to the signal electrodes 3, and the current sources of the two differential amplifiers are modulated by low frequency signals. Is.

【0014】[0014]

【作用】光変調器2の2本の光導波路対応の信号用電極
3とバイアス用電極4とは、電気的に分離されて形成さ
れているから、変調器駆動回路5と信号用電極3とを直
流接続し、且つ信号用電極3と終端器6とを直流接続し
て対称変調を行うことができる。従って、コンデンサを
介した交流接続の必要がないから、コンデンサによる波
形歪等の問題や、マーク率の急変による動作点のずれが
生じないことになる。又バイアス用電極4に対しても直
流接続により動作点制御回路7からバイアス電圧を印加
することができる。従って、インダクタンスとコンデン
サ等からなるバイアスティを省略することができる。
Since the signal electrode 3 and the bias electrode 4 corresponding to the two optical waveguides of the optical modulator 2 are electrically separated from each other, the modulator drive circuit 5 and the signal electrode 3 are separated from each other. , And the signal electrode 3 and the terminator 6 are DC-connected to perform symmetrical modulation. Therefore, since it is not necessary to make an AC connection via a capacitor, problems such as waveform distortion due to the capacitor and a shift in the operating point due to a sudden change in the mark ratio will not occur. Further, a bias voltage can be applied to the bias electrode 4 from the operating point control circuit 7 by connecting a direct current. Therefore, the bias tee including the inductance and the capacitor can be omitted.

【0015】又変調器駆動回路5から信号用電極3に印
加する駆動信号に、低周波重畳回路8により低周波発振
器9からの低周波信号を重畳し、光変調器2の2本の光
導波路に伝搬する光を変調して合成して変調出力光と
し、この変調出力光の一部を光分岐回路10により分岐
して動作点制御回路7に入力し、変調出力光に含まれる
低周波信号成分が最小となるように、バイアス用電極4
にバイアス電圧を印加する。それによって、光変調器2
は適正な動作点に於いて対称変調が行われることにな
る。
Further, the low frequency signal from the low frequency oscillator 9 is superposed by the low frequency superposition circuit 8 on the drive signal applied from the modulator drive circuit 5 to the signal electrode 3, and the two optical waveguides of the optical modulator 2 are provided. The light propagating in the light is modulated and combined into a modulated output light, a part of the modulated output light is branched by the optical branching circuit 10 and input to the operating point control circuit 7, and a low frequency signal included in the modulated output light is output. Biasing electrode 4 so that the component is minimized
A bias voltage is applied to. Thereby, the optical modulator 2
Will be symmetrically modulated at the proper operating point.

【0016】又変調器駆動回路5を構成する差動増幅器
の電流源を低周波信号により変調することにより、低周
波重畳回路8を構成することができる。又差動増幅器に
逆位相の入力信号を加えることにより、光変調器2の信
号用電極3に逆位相の駆動信号を印加して、対称変調を
行うことができる。
Further, the low frequency superimposing circuit 8 can be constructed by modulating the current source of the differential amplifier constituting the modulator driving circuit 5 with a low frequency signal. Further, by applying an input signal of opposite phase to the differential amplifier, a drive signal of opposite phase can be applied to the signal electrode 3 of the optical modulator 2 to perform symmetrical modulation.

【0017】又変調器駆動回路5を構成する差動増幅器
の電流源を低周波信号により変調すると共に、差動増幅
器の一方の出力の駆動信号を信号電極3の一方に直接印
加し、差動増幅器の他方の出力の駆動信号を信号電極3
の他方に減衰器を介して印加する。従って、光変調器2
は非対称駆動となるからチャーピングが生じる。このチ
ャーピングは、光送信装置からの変調出力光を伝送する
光ファイバの分散の符号に対応して選定するもので、そ
れにより、光パルスの圧縮が可能となり、長距離伝送を
行うことができる。又低周波信号を重畳して信号用電極
3に印加し、変調出力光からその低周波信号成分を抽出
し、その低周波信号成分が最小となるように、バイアス
用電極4に印加するバイアス電圧を制御することによ
り、光変調器2の動作点を適正化することができる。
Further, the current source of the differential amplifier which constitutes the modulator drive circuit 5 is modulated with a low frequency signal, and the drive signal of one output of the differential amplifier is directly applied to one of the signal electrodes 3 to generate The drive signal of the other output of the amplifier is applied to the signal electrode 3
Is applied to the other of the two via an attenuator. Therefore, the optical modulator 2
Is asymmetrical driving, so chirping occurs. This chirping is selected according to the code of dispersion of the optical fiber that transmits the modulated output light from the optical transmission device, which enables compression of the optical pulse and enables long-distance transmission. .. A low-frequency signal is superimposed and applied to the signal electrode 3, the low-frequency signal component is extracted from the modulated output light, and a bias voltage applied to the bias electrode 4 so that the low-frequency signal component is minimized. The operating point of the optical modulator 2 can be optimized by controlling the.

【0018】又変調器駆動回路5を、2個の信号用電極
3に対応して2個の差動増幅器により構成し、それぞれ
の電流源を低周波信号により変調することにより、低周
波信号を重畳した駆動信号を信号用電極3に印加するこ
とができると共に、各差動増幅器の電流源の電流値を設
定することにより、対称変調と非対称変調とを選択する
ことができる。即ち、光ファイバの波長分散特性に対応
して、チャーピング無しと有りとを選択することができ
る。
Further, the modulator driving circuit 5 is composed of two differential amplifiers corresponding to the two signal electrodes 3, and the respective low frequency signals are modulated by modulating the respective current sources with the low frequency signals. The superimposed drive signal can be applied to the signal electrode 3, and symmetric modulation and asymmetric modulation can be selected by setting the current value of the current source of each differential amplifier. That is, it is possible to select the absence or presence of chirping according to the wavelength dispersion characteristic of the optical fiber.

【0019】[0019]

【実施例】図2は本発明の一実施例の要部説明図であ
り、11は入力ポート、12は出力ポート、13,14
は分岐光導波路、15,16は信号用電極、17,18
はバイアス用電極、19,20は接地用電極、21は変
調器駆動回路、22は反転回路、23,24は差動増幅
器を構成するトランジスタ、25は電流源、26は演算
増幅器、27,28は終端器を構成する抵抗、29,3
0は抵抗である。入力ポート11と出力ポート12と分
岐光導波路13,14と信号用電極15,16とバイア
ス用電極17,18と接地用電極19,20とにより、
図1に於けるマッハツェンダ型の光変調器2が構成さ
れ、入力ポート11に図示を省略した半導体レーザ等の
光源からの光が入射され、出力ポート12から変調出力
光が送出される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 is an explanatory view of essential parts of an embodiment of the present invention, in which 11 is an input port, 12 is an output port, and 13 and 14.
Is a branch optical waveguide, 15 and 16 are signal electrodes, and 17 and 18
Is a bias electrode, 19 and 20 are ground electrodes, 21 is a modulator driving circuit, 22 is an inverting circuit, 23 and 24 are transistors forming a differential amplifier, 25 is a current source, 26 is an operational amplifier, and 27 and 28 are transistors. Is the resistance that constitutes the terminator, 29, 3
0 is a resistance. By the input port 11, the output port 12, the branch optical waveguides 13 and 14, the signal electrodes 15 and 16, the bias electrodes 17 and 18, and the ground electrodes 19 and 20,
The Mach-Zehnder type optical modulator 2 in FIG. 1 is configured, light from a light source such as a semiconductor laser (not shown) is incident on the input port 11, and modulated output light is transmitted from the output port 12.

【0020】分岐光導波路13,14対応にそれぞれ電
気的に分離された信号用電極15,16とバイアス用電
極17,18とが形成され、接地用電極19,20は、
図示を省略しているが相互に接続されている。又信号用
電極15,16の一端と変調器駆動回路21とが直流接
続され、信号用電極15,16の他端に終端器を構成す
る抵抗27,28が接地用電極19,20との間に直流
接続されている。又動作点制御回路からのバイアス電圧
Vbがバイアス用電極17に印加され、反転回路22に
より反転されたバイアス電圧がバイアス用電極18に印
加される。従って、信号用電極15,16に駆動信号を
印加すると、接地用電極19,20との間の電界が分岐
光導波路13,14に印加されることになる。同様に、
バイアス用電極17,18にバイアス電圧を印加する
と、接地用電極19,29との間の電界が分岐光導波路
13,14に印加されることになる。
Signal electrodes 15 and 16 and bias electrodes 17 and 18 which are electrically separated corresponding to the branched optical waveguides 13 and 14, respectively, are formed, and the ground electrodes 19 and 20 are
Although not shown, they are connected to each other. Further, one ends of the signal electrodes 15 and 16 and the modulator driving circuit 21 are DC-connected, and resistors 27 and 28 forming a terminator are connected to the ground electrodes 19 and 20 at the other ends of the signal electrodes 15 and 16, respectively. DC connected to. Further, the bias voltage Vb from the operating point control circuit is applied to the bias electrode 17, and the bias voltage inverted by the inversion circuit 22 is applied to the bias electrode 18. Therefore, when a drive signal is applied to the signal electrodes 15 and 16, an electric field between the signal electrodes 15 and 16 and the ground electrodes 19 and 20 is applied to the branched optical waveguides 13 and 14. Similarly,
When a bias voltage is applied to the bias electrodes 17 and 18, an electric field between the bias electrodes 17 and 18 and the ground electrodes 19 and 29 is applied to the branch optical waveguides 13 and 14.

【0021】変調器駆動回路21の差動増幅器を構成す
るトランジスタ23,24のゲートに、逆位相の入力信
号Vin,*Vinが加えられ、一方のトランジスタ2
3のドレインに信号用電極15が接続され、他方のトラ
ンジスタ24のドレインに信号用電極16が接続される
から、信号用電極15,16には逆位相の駆動信号が加
えられる。又電圧Eが加えられる電流源25に低周波信
号Fmが加えられるから、入力信号に対応した変調器駆
動回路21からの駆動信号は、低周波信号Fmにより変
調されたものとなり、低周波信号Fmを対称重畳するこ
とができる。
Input signals Vin and * Vin having opposite phases are applied to the gates of the transistors 23 and 24, which form the differential amplifier of the modulator driving circuit 21, and one of the transistors 2
Since the signal electrode 15 is connected to the drain of the transistor 3 and the signal electrode 16 is connected to the drain of the other transistor 24, a drive signal having an opposite phase is applied to the signal electrodes 15 and 16. Further, since the low frequency signal Fm is applied to the current source 25 to which the voltage E is applied, the drive signal from the modulator drive circuit 21 corresponding to the input signal is the one modulated by the low frequency signal Fm, and the low frequency signal Fm. Can be symmetrically superimposed.

【0022】従って、入力ポート11に入射された光源
からの光は、分岐導波路13,14を伝搬する過程に於
いて駆動信号に従って位相変調され、出力ポート12に
於いて同相又は逆相となるから、加算又は相殺されて強
度変調された変調出力光となる。又低周波信号Fmが駆
動信号に重畳され、光変調器の動作点が適正の場合に、
変調出力光は、低周波信号Fmの周波数fmの2倍の周
波数で振幅変調されたものとなり、従って、変調出力光
に低周波信号Fmの成分が含まれないものとなる。又光
変調器の動作点がずれると、変調出力光に低周波信号F
mの成分が含まれるから、この低周波信号Fmの成分を
最小とするようにバイアス電圧Vbを加えることによ
り、動作点を適正に維持することができる。
Therefore, the light from the light source incident on the input port 11 is phase-modulated according to the drive signal in the process of propagating through the branch waveguides 13 and 14, and becomes in-phase or anti-phase at the output port 12. Therefore, the modulated output light is intensity-modulated by being added or canceled. When the low frequency signal Fm is superimposed on the drive signal and the operating point of the optical modulator is appropriate,
The modulated output light is amplitude-modulated at a frequency that is twice the frequency fm of the low-frequency signal Fm, and thus the modulated output light does not include the component of the low-frequency signal Fm. If the operating point of the optical modulator is deviated, the low-frequency signal F
Since the m component is included, the operating point can be properly maintained by applying the bias voltage Vb so as to minimize the component of the low frequency signal Fm.

【0023】図3は本発明の一実施例の説明図であり、
図2と同一符号は同一部分を示し、31は光源としての
DFB(分布帰還型)レーザ、32はアイソレータ、3
3は光分岐回路、34はフォトダイオード等からなる光
電変換回路、35は増幅回路、36は同期検波回路、3
7は低域通過フィルタ、38は増幅回路、39は低周波
発振器、40は演算増幅器、41,42は抵抗である。
光電変換回路34と増幅回路35と同期検波回路36と
低域通過フィルタ37と増幅回路38と反転回路22と
により、図1の動作点制御回路7が構成され、変調器駆
動回路21の電流源25により、図1の低周波重畳回路
8が構成されている。
FIG. 3 is an explanatory view of an embodiment of the present invention.
The same reference numerals as those in FIG. 2 indicate the same parts, 31 is a DFB (distributed feedback type) laser as a light source, 32 is an isolator, 3
3 is an optical branch circuit, 34 is a photoelectric conversion circuit including a photodiode, 35 is an amplifier circuit, 36 is a synchronous detection circuit, 3
Reference numeral 7 is a low pass filter, 38 is an amplifier circuit, 39 is a low frequency oscillator, 40 is an operational amplifier, and 41 and 42 are resistors.
The photoelectric conversion circuit 34, the amplification circuit 35, the synchronous detection circuit 36, the low-pass filter 37, the amplification circuit 38, and the inverting circuit 22 constitute the operating point control circuit 7 of FIG. 1, and the current source of the modulator drive circuit 21. 25 configures the low frequency superimposing circuit 8 of FIG.

【0024】DFBレーザ31からの光はアイソレータ
32を介して光変調器の入力ポート11に入射され、光
変調器の出力ポート12から変調出力光が、送信光信号
として出力される。又光分岐回路33により一部分岐さ
れて光電変換回路34に加えられ、電気信号に変換され
る。この電気信号は同期検波回路36に於いて低周波発
振器39からの低周波信号により同期検波されて、低周
波信号Fmの成分が直流信号として出力され、低域通過
フィルタ37を介して増幅回路38に加えられ、増幅出
力がバイアス電圧Vbとなる。このバイアス電圧Vbは
バイアス用電極17にそのまま、又バイアス用電極18
には反転回路22により反転されて、それぞれ印加され
る。
The light from the DFB laser 31 is incident on the input port 11 of the optical modulator through the isolator 32, and the modulated output light is output from the output port 12 of the optical modulator as a transmission optical signal. Further, a part of the light is branched by the light branching circuit 33 and added to the photoelectric conversion circuit 34, where it is converted into an electric signal. This electric signal is synchronously detected by the low frequency signal from the low frequency oscillator 39 in the synchronous detection circuit 36, the component of the low frequency signal Fm is output as a DC signal, and the amplification circuit 38 is passed through the low pass filter 37. And the amplified output becomes the bias voltage Vb. The bias voltage Vb is directly applied to the bias electrode 17 or the bias electrode 18
Are inverted by the inverting circuit 22 and applied to each of them.

【0025】図4は本発明の一実施例の動作説明図であ
り、(a)は“1”,“0”交互の場合を例とした入力
信号Vin、(b)は低周波信号Fm、(c)は一方の
信号用電極15に印加される駆動信号、(d)は他方の
信号用電極16に印加される駆動信号、(e)は一方の
分岐光導波路13の出力位相φ1、(f)は他方の分岐
導波路14の出力位相φ2、(g)は一方と他方との分
岐光導波路13,14の出力光の位相差(φ1−φ2)
を示す。
FIG. 4 is a diagram for explaining the operation of one embodiment of the present invention. (A) is an input signal Vin in the case of alternating "1" and "0", and (b) is a low frequency signal Fm. (C) is a drive signal applied to one signal electrode 15, (d) is a drive signal applied to the other signal electrode 16, (e) is an output phase φ1 of one branch optical waveguide 13, ( f) is the output phase φ2 of the other branching waveguide 14, and (g) is the phase difference (φ1-φ2) of the output light of the branching optical waveguides 13 and 14 between the one and the other.
Indicates.

【0026】入力信号Vinに従って一方と他方との信
号用電極15,16に印加される駆動信号は、(c),
(d)に示すように、位相が反転し、且つ低周波信号F
mが対称重畳されて対称変調が行われ、一方と他方との
分岐光導波路13,14の出力光の位相差(φ1−φ
2)は、0〜πの位相差となり、位相差の中心は、分岐
光導波路13,14の出力光の基準位相をφ10,φ20
すると、(φ10−φ20)となる。そして、出力ポート1
2に於いて合成されることにより、強度変調された変調
出力光となる。
The drive signals applied to the one and the other signal electrodes 15 and 16 according to the input signal Vin are (c),
As shown in (d), the phase is inverted and the low frequency signal F
Symmetric modulation is performed by superimposing m symmetrically, and the phase difference between the output light of the branch optical waveguides 13 and 14 (φ1−φ
2) is a phase difference of 0 to π, and the center of the phase difference is (φ 10 −φ 20 ) when the reference phases of the output light of the branch optical waveguides 13 and 14 are φ 10 and φ 20 . And output port 1
By being combined in 2, the intensity-modulated modulated output light is obtained.

【0027】光変調器の入出力特性は、出力光電力をそ
のピーク値で、又駆動電圧をVπでそれぞれ正規化する
と、次式で表すことができる。 P(V)=〔1−cos{π(V−Vd)}〕/2 …(1) 但し、P=正規化された出力光電力、V=正規化された
駆動電圧、Vd=正規化された動作点ドリフト電圧であ
る。
The input / output characteristics of the optical modulator can be expressed by the following equation when the output optical power is normalized by its peak value and the driving voltage is normalized by Vπ. P (V) = [1-cos {π (V−Vd)}] / 2 (1) where P = normalized output optical power, V = normalized driving voltage, and Vd = normalized Operating point drift voltage.

【0028】振幅Vπの信号に対して周波数f0 =ω0
/2π、変調度mで低周波重畳を行うと、“0”レベル
と“1”レベルとに対する駆動電圧V0 ,V1 は、 V0 =m・sin(ω0 t) …(2) V1 =1−m・sin(ω0 t) …(3) となる。この時の出力光電力P0 ,P1 は、変調度mが
充分に小さいとすると、 P0 =P(V0 ) ≒〔1−cos(πVd)−π・m・sin(ω0 t)sin(πVd)〕/2 …(4) P1 =P(V1 ) ≒〔1+cos(πVd)−π・m・sin(ω0 t)sin(πVd)〕/2 …(5) と近似できる。又立上り及び立下り時間に於ける平均電
力P2 は、 P2 =1/(V1 −V0 )∫(V1) (V0)P(V)dV =(1/2)−〔cos(πV0 )sin(πVd)〕/〔π(1−2V0 )〕 ≒(1/2)−〔sin(πVd)/π〕〔1+2m・sin(ω0 t)〕 …(6) となる。但し、「∫(V1) (V0)」は、V0 からV1 までの
積分を示す。
Frequency f 0 = ω 0 for a signal of amplitude Vπ
When low frequency superimposition is performed at / 2π and the modulation factor m, the drive voltages V 0 and V 1 for the "0" level and the "1" level are: V 0 = m · sin (ω 0 t) (2) V 1 = 1−m · sin (ω 0 t) (3) The output optical powers P 0 and P 1 at this time are: P 0 = P (V 0 ) ≈ [1-cos (πVd) −π · m · sin (ω 0 t), assuming that the modulation degree m is sufficiently small. sin (πVd)] / 2 (4) P 1 = P (V 1 ) ≈ [1 + cos (πVd) −π · m · sin (ω 0 t) sin (πVd)] / 2 (5) .. The average power P 2 at the rise and fall times is P 2 = 1 / (V 1 −V 0 ) ∫ ( V 1 ) (V 0) P (V) dV = (1/2) − [cos (πV 0 ) sin (πVd)] / [π (1-2V 0 )] ≈ (1/2)-[sin (πVd) / π] [1 + 2m · sin (ω 0 t)] (6) However, “∫ (V1) (V0) ” indicates the integration from V 0 to V 1 .

【0029】入力信号のマーク率をM、立上り/立下り
時間をr(1/fb)(但し、fb=入力信号のビット
レート)とすると、低周波信号Fmの周期(1/f0
より充分に短い時間で平均した出力光電力Pavは、 Pav=〔r(1−M)2 +(1−r)(1−M)〕P0 +〔rM2 +(1−r)M〕P1 +2r(1−M)MP2 ≡K0 0 +K1 1 +K2 2 …(7) となる。この平均出力光電力Pavに含まれる低周波信号
Fmの周波数f0 の成分をPf0とすると、 Pf0=−〔{[r(1−M)2 +(1−r)(1−M)] +[rM2 +(1−r)M]}(π/2) +2r(1−M)M(π/2)〕×m・sin(πVd)sin(ω0 t) …(8) となる。
When the mark ratio of the input signal is M and the rising / falling time is r (1 / fb) (where fb = bit rate of the input signal), the cycle of the low frequency signal Fm (1 / f 0 ).
The output optical power P av averaged more sufficiently short time, P av = [r (1-M) 2 + (1-r) (1-M) ] P 0 + [rM 2 + (1-r) M] P 1 + 2r (1-M) MP 2 ≡K 0 P 0 + K 1 P 1 + K 2 P 2 (7) Letting P f0 be the component of the frequency f 0 of the low-frequency signal Fm contained in this average output optical power P av , P f0 = − [{[r (1-M) 2 + (1-r) (1-M )] + [RM 2 + (1-r) M]} (π / 2) + 2r (1-M) M (π / 2)] × m · sin (πVd) sin (ω 0 t) (8) Becomes

【0030】従って、動作点ドリフトの方向によって位
相が180°異なり、これを基準周波数sin(ω
0 t)と乗算すると、動作点ドリフトの方向に応じた正
負の直流成分が得られるから、この直流成分を零とする
ように制御することにより、動作点を適正な位置に保持
することができる。又(8)式からPf0=0となるの
は、Vd=0の時であり、入力信号Vinのマーク率M
や立上り/立下り時間rに依存せずに、前述の実施例は
動作点を最適位置に制御することができる。
Therefore, the phase differs by 180 ° depending on the direction of the operating point drift, and this is changed to the reference frequency sin (ω
When multiplied by 0 t), positive and negative DC components according to the direction of the operating point drift are obtained. Therefore, the operating point can be held at an appropriate position by controlling the DC component to be zero. .. Further, from the equation (8), P f0 = 0 is established when Vd = 0, and the mark ratio M of the input signal Vin is
In the above-described embodiment, the operating point can be controlled to the optimum position without depending on the rising / falling time r.

【0031】これに対して、低周波の非対称重畳の場合
の一例として、 V0 =0 …(9) V1 =1−m・sin(ω0 t) …(10) とすると、即ち、2本の分岐光導波路の一方のみに駆動
信号を印加した場合、 P0 =〔1−cos(πVd)〕/2 …(11) P1 =P(V1 ) ≒〔1+cos(πVd)−π・m・sin(ω0 t)sin(πVd)〕/2 …(12) P2 =1/(V1 −V0 )∫(V1) (V0)P(V)dV =(1/2)−〔sin {π(V1 −Vd)}+sin(πVd)〕/2πV1 ≒(1/2)−〔sin(πVd)/π〕 −(m/2)〔πcos(πVd)+2sin(πVd)〕sin(ω0 t) −(1/2)cos(πVd)〔m・sin(ω0 t)〕2 …(13) Pav=〔r(1−M)2 +(1−r)(1−M)〕P0 +〔rM2 +(1−r)M〕P1 +2r(1−M)MP2 ≡K0 0 +K1 1 +K2 2 …(14) Pf0=−〔K1 (π/2)sin(πVd) +K2 (1/2π){πcos(πVd)+2sin(πVd)}〕 ×m・sin(ω0 t) =K・m・sin(πVd+θ)sin(ω0 t) …(15) 但し、 K=〔(K2 /2)2 +(πK1 /2+K2 /π)2 1/2 …(16) θ=tan -1〔πK2 /(π2 1 +2K2 )〕 …(17) となる。
On the other hand, as an example in the case of asymmetrical superposition of low frequencies, if V 0 = 0 (9) V 1 = 1-m · sin (ω 0 t) (10), that is, 2 When a drive signal is applied to only one of the two branched optical waveguides, P 0 = [1-cos (πVd)] / 2 (11) P 1 = P (V 1 ) ≈ [1 + cos (πVd) −π · m · sin (ω 0 t) sin (πVd)] / 2 (12) P 2 = 1 / (V 1 −V 0 ) ∫ (V1) (V0) P (V) dV = (1/2) − [Sin {π (V 1 −Vd)} + sin (πVd)] / 2πV 1 ≈ (1/2) − [sin (πVd) / π] − (m / 2) [πcos (πVd) + 2sin (πVd)] sin (ω 0 t) − (1/2) cos (πVd) [m · sin (ω 0 t)] 2 (13) P av = [r (1-M) 2 + (1-r) (1 -M)] P 0 + [rM 2 + (1-r) M ] P 1 + 2r (1-M ) MP 2 ≡ 0 P 0 = + K 1 P 1 + K 2 P 2 ... (14) P f0 - [K 1 (π / 2) sin (πVd) + K 2 (1 / 2π) {πcos (πVd) + 2sin (πVd)} ] × m · sin (ω 0 t) = K · m · sin (πVd + θ) sin (ω 0 t) ... (15) However, K = [(K 2/2) 2 + (πK 1/2 + K 2 / π) 2 ] 1/2 (16) θ = tan −1 [πK 2 / (π 2 K 1 + 2K 2 )] (17)

【0032】(8)式に対応する(15)式より、Pf0
=0となるのは、sin(πVd+θ)=0の時であり、最
適動作点から−θ/πだけずれた動作点へ制御しようと
する為、消光比及び波形が劣化する。ここで、θは、立
上り/立下り時間r及びマーク率Mの関数であり、従っ
て、対称変調に比較して非対称変調の場合は、立上り/
立下り時間及びマーク率によって最適動作点からずれた
点に制御されることになる。
From equation (15) corresponding to equation (8), P f0
= 0 is when sin (πVd + θ) = 0, and the extinction ratio and the waveform are deteriorated because control is performed to an operating point that is deviated from the optimum operating point by −θ / π. Here, θ is a function of the rise / fall time r and the mark ratio M, and thus rises / rises in the case of asymmetrical modulation as compared to symmetric modulation.
It is controlled to a point deviated from the optimum operating point depending on the fall time and the mark rate.

【0033】前述の実施例に於いては、動作点制御の為
の低周波信号Fmは、差動増幅器の電流源25を変調す
ることにより対称重畳され、又変調器駆動回路21の差
動増幅器のトランジスタ23,24の出力の駆動信号が
信号用電極15,16に加えられるから、対称変調が行
われる。従って、光変調の為の駆動電圧を低減し、又チ
ャーピングが生じることなく、且つマーク率の急変に対
しても動作点のずれを防止することができる。又バイア
スティのコンデンサを必要としないので、信号波形の歪
が生じることがなく、安定動作の外部変調方式としての
光送信装置を提供することができる。
In the above-described embodiment, the low frequency signal Fm for controlling the operating point is symmetrically superimposed by modulating the current source 25 of the differential amplifier, and the differential amplifier of the modulator driving circuit 21. Since the drive signals output from the transistors 23 and 24 are applied to the signal electrodes 15 and 16, symmetrical modulation is performed. Therefore, it is possible to reduce the drive voltage for light modulation, to prevent chirping, and to prevent the shift of the operating point even when the mark ratio suddenly changes. Further, since the bias-tee capacitor is not required, the signal waveform is not distorted, and the optical transmitter as an external modulation system for stable operation can be provided.

【0034】図5は本発明の他の実施例の原理説明図で
あり、図1と同一符号は同一部分をを示し、43は減衰
器である。この減衰器43により一方の信号用電極3に
印加する駆動信号を減衰させて、他方の信号用電極3に
印加する駆動信号とを非対称とし、又低周波発振器9か
らの低周波信号をバイアス用電極4に加えることによ
り、駆動信号に重畳した低周波信号が減衰器43に減衰
された分を補償し、低周波信号を対称重畳するものであ
る。それによって、マーク率の急変によっても、光変調
器の動作を安定化し、又非対称変調によりチャーピング
を生じさせて、光ファイバを伝送する光信号のパルス幅
を圧縮できるようにするものである。
FIG. 5 is a diagram for explaining the principle of another embodiment of the present invention. The same symbols as those in FIG. 1 indicate the same parts, and 43 is an attenuator. This attenuator 43 attenuates the drive signal applied to one of the signal electrodes 3 to make it asymmetric with the drive signal applied to the other signal electrode 3, and uses the low frequency signal from the low frequency oscillator 9 for biasing. By adding to the electrode 4, the low frequency signal superimposed on the drive signal is compensated for being attenuated by the attenuator 43, and the low frequency signal is symmetrically superimposed. As a result, the operation of the optical modulator is stabilized even by a sudden change in the mark ratio, and the chirping is caused by the asymmetrical modulation so that the pulse width of the optical signal transmitted through the optical fiber can be compressed.

【0035】図6は本発明の他の実施例の説明図であ
り、図5を更に詳細に示すもので、図3及び図5と同一
符号は同一部分を示し、44はコンデンサ、45は抵抗
である。減衰器43を、変調器駆動回路21のトランジ
スタ24と信号用電極16との間に接続した場合を示
し、この減衰器43を接続した信号用電極16側のバイ
アス用電極18に、低周波発振器39からの低周波信号
をコンデンサ44を介して印加する。又変調器駆動回路
21のトランジスタ23と信号用電極17とは直接接続
し、差動増幅器を構成するトランジスタ23,24の電
流源25を、低周波信号Fmにより変調する。光変調器
に対する変調動作や、低周波信号重畳による動作点の安
定化制御は、前述の実施例と同様であり、重複した説明
を省略する。
FIG. 6 is an explanatory view of another embodiment of the present invention, which shows FIG. 5 in more detail. The same reference numerals as those in FIGS. 3 and 5 indicate the same parts, 44 is a capacitor and 45 is a resistor. Is. The case where the attenuator 43 is connected between the transistor 24 of the modulator driving circuit 21 and the signal electrode 16 is shown, and the low frequency oscillator is connected to the bias electrode 18 on the signal electrode 16 side to which the attenuator 43 is connected. The low frequency signal from 39 is applied via capacitor 44. Further, the transistor 23 of the modulator driving circuit 21 and the signal electrode 17 are directly connected to each other, and the current source 25 of the transistors 23 and 24 constituting the differential amplifier is modulated by the low frequency signal Fm. The modulation operation for the optical modulator and the stabilization control of the operating point by superimposing the low-frequency signal are the same as those in the above-described embodiment, and the duplicated description will be omitted.

【0036】図7は本発明の他の実施例の動作説明図で
あり、(a)は“1”,“0”の繰り返しによる入力信
号Vin、(b)は低周波信号Fm、(c)は一方の信
号用電極15に印加される駆動信号、(d)は他方の信
号用電極16に印加される駆動信号、(e)はバイアス
用電極18に印加される低周波信号、(f)は一方の分
岐光導波路の出力光の位相φ1、(g)は他方の分岐光
導波路の出力光の位相φ2、(h)は一方と他方との分
岐光導波路の出力光の位相差(φ1−φ2)を示す。
FIG. 7 is a diagram for explaining the operation of another embodiment of the present invention. (A) is an input signal Vin by repeating "1" and "0", (b) is a low frequency signal Fm, (c). Is a drive signal applied to one signal electrode 15, (d) is a drive signal applied to the other signal electrode 16, (e) is a low-frequency signal applied to the bias electrode 18, and (f). Is the phase φ1 of the output light of one branch optical waveguide, (g) is the phase φ2 of the output light of the other branch optical waveguide, and (h) is the phase difference (φ1- of the output light of one branch optical waveguide and the other). φ2) is shown.

【0037】図7の(c)と(d)との振幅の和は、図
4の(c)と(d)との振幅の和と等しくする必要があ
る為、図7の(c)の振幅は、図4の(c)の振幅より
大きくする必要がある。又信号用電極16に印加される
駆動信号は、(d)に示すように、減衰器43により減
衰されたものとなる。従って、分岐光導波路14の出力
光位相φ2の位相変化は、(g)に示すように、分岐光
導波路13の出力光位相φ1の位相変化より小さくなる
と共に、バイアス用電極18に低周波信号を重畳して印
加するから、その低周波信号に対応した位相変化とな
る。分岐光導波路13,14の出力光の位相差(φ1−
φ2)は、(h)に示すように、0〜πの間の位相変化
となり、又バイアス用電極18への低周波重畳により出
力光の位相差に於いては低周波が対称に重畳される。そ
して、出力ポート12から強度変調された変調出力光が
得られる。
Since the sum of the amplitudes of (c) and (d) of FIG. 7 needs to be equal to the sum of the amplitude of (c) and (d) of FIG. 4, the sum of (c) of FIG. The amplitude needs to be larger than the amplitude shown in FIG. The drive signal applied to the signal electrode 16 is attenuated by the attenuator 43 as shown in (d). Therefore, as shown in (g), the phase change of the output optical phase φ2 of the branch optical waveguide 14 is smaller than the phase change of the output optical phase φ1 of the branch optical waveguide 13, and a low frequency signal is applied to the bias electrode 18. Since the signals are superimposed and applied, the phase changes corresponding to the low frequency signal. Phase difference of the output light of the branched optical waveguides 13 and 14 (φ1-
φ2) is a phase change between 0 and π as shown in (h), and low frequency is superimposed symmetrically on the phase difference of the output light due to the low frequency superimposition on the bias electrode 18. .. Then, intensity-modulated modulated output light is obtained from the output port 12.

【0038】図8は本発明の更に他の実施例の原理説明
図であり、図1と同一符号は同一部分を示し、5a,5
bは駆動回路、8a,8bは低周波重畳回路である。こ
の実施例は、変調器駆動回路5を、光変調器2の信号用
電極3対応の駆動回路5a,5bを設けたものであり、
駆動回路5a,5bからの駆動信号を制御することによ
り、対称変調と非対称変調とを選択することができる。
FIG. 8 is an explanatory view of the principle of still another embodiment of the present invention. The same reference numerals as those in FIG.
Reference numeral b is a drive circuit, and 8a and 8b are low frequency superposition circuits. In this embodiment, the modulator drive circuit 5 is provided with drive circuits 5a and 5b corresponding to the signal electrodes 3 of the optical modulator 2.
By controlling the drive signals from the drive circuits 5a and 5b, symmetrical modulation and asymmetrical modulation can be selected.

【0039】図9は本発明の更に他の実施例の説明図で
あり、図8を更に詳細に示すものであり、駆動回路5a
は、差動増幅器を構成するトランジスタ51,52と電
流源53を有し、又駆動回路5bは差動増幅器を構成す
るトランジスタ54,55と電流源56とを有するもの
で、低周波発振器39からの低周波信号Fmがそれぞれ
電流源53,56に入力されて、図8に於ける低周波重
畳回路8a,8bが構成される。
FIG. 9 is an explanatory view of still another embodiment of the present invention, which shows FIG. 8 in more detail, and shows a drive circuit 5a.
Includes transistors 51 and 52 and a current source 53 that form a differential amplifier, and the drive circuit 5b includes transistors 54 and 55 and a current source 56 that form a differential amplifier. The low-frequency signal Fm is input to the current sources 53 and 56, respectively, and the low-frequency superimposing circuits 8a and 8b in FIG. 8 are configured.

【0040】駆動回路5aの一方のトランジスタ51の
ゲートに入力信号Vin、他方のトランジスタ52のゲ
ートに反転した入力信号*Vinがそれぞれ加えられ、
トランジスタ51のドレインに信号用電極15が接続さ
れる。又駆動回路5bの一方のトランジスタ54のゲー
トに入力信号Vin、他方のトランジスタ55のゲート
に反転した入力信号*Vinがそれぞれ加えられ、トラ
ンジスタ55のドレインに信号用電極16が接続され
る。従って、駆動回路5a,5bを同一特性とすると、
低周波信号Fmが重畳された駆動信号により対称変調が
行われ、図3に示す実施例と同様に動作することにな
る。又駆動回路5a,5bの特性を、電流源53,56
の電流値等により異ならせることにより、非対称変調と
なってチャーピングを発生させることができる。又光変
調器の動作点の安定化の制御は、前述の各実施例と同様
に、重畳された低周波信号を検出することにより行われ
る。
An input signal Vin is applied to the gate of one transistor 51 of the drive circuit 5a, and an inverted input signal * Vin is applied to the gate of the other transistor 52,
The signal electrode 15 is connected to the drain of the transistor 51. The input signal Vin is applied to the gate of one transistor 54 of the driving circuit 5b, and the inverted input signal * Vin is applied to the gate of the other transistor 55, and the signal electrode 16 is connected to the drain of the transistor 55. Therefore, if the drive circuits 5a and 5b have the same characteristics,
Symmetrical modulation is performed by the drive signal on which the low-frequency signal Fm is superimposed, and the same operation as in the embodiment shown in FIG. 3 is performed. In addition, the characteristics of the drive circuits 5a and 5b are compared with those of the current sources 53 and 56.
By changing the current value depending on the current value and the like, it is possible to generate asymmetric modulation and generate chirping. The control of stabilizing the operating point of the optical modulator is performed by detecting the superimposed low frequency signal, as in the above-described embodiments.

【0041】図10は本発明の更に他の実施例の動作説
明図であり、(a)は交互に“1”,“0”の繰り返し
となる入力信号、(b)は低周波信号Fm、(c)は信
号用電極15に印加される駆動信号、(d)は信号用電
極16に印加される駆動信号、(e)は分岐光導波路1
3の出力光位相φ1、(f)は分岐光導波路14の出力
光位相φ2、(g)は分岐光導波路13,14の出力光
位相差(φ1−φ2)を示し、駆動回路5a,5bの特
性を異ならせて、非対称変調を行う場合を示すものであ
る。この場合、電流源53,56に同一の低周波信号F
mが変調入力として加えられるから、低周波信号Fmは
対称重畳されることになる。従って、マーク率の急変に
於いても安定な動作点の制御が可能となる。
FIG. 10 is a diagram for explaining the operation of still another embodiment of the present invention. (A) is an input signal in which "1" and "0" are alternately repeated, (b) is a low frequency signal Fm, (C) is a drive signal applied to the signal electrode 15, (d) is a drive signal applied to the signal electrode 16, and (e) is a branched optical waveguide 1.
3 shows the output light phase φ1, (f) shows the output light phase φ2 of the branch optical waveguide 14, and (g) shows the output light phase difference (φ1−φ2) of the branch optical waveguides 13 and 14, respectively. It shows a case where asymmetrical modulation is performed with different characteristics. In this case, the same low frequency signal F is applied to the current sources 53 and 56.
Since m is added as a modulation input, the low frequency signal Fm will be symmetrically superimposed. Therefore, it is possible to control the stable operating point even when the mark ratio suddenly changes.

【0042】本発明は、前述の各実施例のみに限定され
るものではなく、対称変調と非対称変調とを選択する機
能等を付加することも可能である。
The present invention is not limited to the above-mentioned embodiments, but it is possible to add a function of selecting symmetrical modulation and asymmetrical modulation.

【0043】[0043]

【発明の効果】以上説明したように、本発明は、光変調
器2の2本の光導波路対応の信号用電極3とバイアス用
電極4とを電気的に分離して形成したことにより、従来
例のバイアスティを省略することができる。又低周波信
号を対称重畳することができると共に、2本の光導波路
に対して変調用の駆動信号を印加することになるから、
光変調器2の駆動電圧の低減化,動作点の安定化,マー
ク率変動に対する安定化,変調出力光波形の劣化防止等
の効果を奏することができる。従って、数Gb/s程度
以上の高速入力信号により変調する安定動作の光送信装
置を提供することができる。
As described above, according to the present invention, the signal electrode 3 and the bias electrode 4 corresponding to the two optical waveguides of the optical modulator 2 are electrically separated from each other. The example bias tee can be omitted. Further, since the low frequency signal can be symmetrically superimposed, the driving signal for modulation is applied to the two optical waveguides.
The drive voltage of the optical modulator 2 can be reduced, the operating point can be stabilized, the fluctuation of the mark ratio can be stabilized, and the deterioration of the modulated output light waveform can be prevented. Accordingly, it is possible to provide a stable operation optical transmitter that modulates with a high-speed input signal of several Gb / s or more.

【0044】又対称変調を行うことが容易となり、従っ
て、チャーピング無しの変調を行うことができる。又一
方の信号用電極に減衰器を介して駆動信号を印加するよ
うな構成として、非対称変調を行う場合は、チャーピン
グ有りの変調となり、光信号を伝送する光ファイバの分
散の符号等に対応したチャーピングを生じさせて、光パ
ルス幅の圧縮を可能とし、長距離伝送を行うことができ
る。
Further, it becomes easy to perform the symmetrical modulation, and therefore, the modulation without chirping can be performed. When asymmetrical modulation is performed by applying a drive signal to one of the signal electrodes through an attenuator, modulation with chirping is performed, which corresponds to the sign of dispersion of the optical fiber transmitting the optical signal. By causing the chirping described above, the optical pulse width can be compressed, and long-distance transmission can be performed.

【0045】又変調器駆動回路5を2個の差動増幅器に
より構成した場合、対称変調と非対称変調との何れに対
しても同一構成で実現することが可能となり、光信号を
伝送する光ファイバの特性等を考慮して、光通信システ
ムに於ける光送信装置の特性を最適化することが容易と
なる利点がある。
When the modulator drive circuit 5 is composed of two differential amplifiers, the same structure can be used for both symmetrical modulation and asymmetrical modulation, and an optical fiber for transmitting an optical signal can be realized. There is an advantage that it is easy to optimize the characteristics of the optical transmission device in the optical communication system in consideration of the characteristics and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】本発明の一実施例の要部説明図である。FIG. 2 is an explanatory view of a main part of one embodiment of the present invention.

【図3】本発明の一実施例の説明図である。FIG. 3 is an explanatory diagram of an embodiment of the present invention.

【図4】本発明の一実施例の動作説明図である。FIG. 4 is an operation explanatory diagram of the embodiment of the present invention.

【図5】本発明の他の実施例の原理説明図である。FIG. 5 is a diagram illustrating the principle of another embodiment of the present invention.

【図6】本発明の他の実施例の説明図である。FIG. 6 is an explanatory diagram of another embodiment of the present invention.

【図7】本発明の他の実施例の動作説明図である。FIG. 7 is an operation explanatory diagram of another embodiment of the present invention.

【図8】本発明の更に他の実施例の原理説明図である。FIG. 8 is a principle explanatory view of still another embodiment of the present invention.

【図9】本発明の更に他の実施例の説明図である。FIG. 9 is an explanatory diagram of still another embodiment of the present invention.

【図10】本発明の更に他の実施例の動作説明図であ
る。
FIG. 10 is an operation explanatory diagram of still another embodiment of the present invention.

【図11】従来例の説明図である。FIG. 11 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 光源 2 光変調器 3 信号用電極 4 バイアス用電極 5 変調器駆動回路 6 終端器 7 動作点制御回路 8 低周波重畳回路 9 低周波発振器 10 光分岐回路 1 Light Source 2 Optical Modulator 3 Signal Electrode 4 Biasing Electrode 5 Modulator Drive Circuit 6 Terminator 7 Operating Point Control Circuit 8 Low Frequency Superimposing Circuit 9 Low Frequency Oscillator 10 Optical Branch Circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光源(1)からの光を入力して2本の光
導波路に分岐し、該2本の光導波路にそれぞれ独立して
電圧を印加する信号用電極(3)とバイアス用電極
(4)とを有するマッハツェンダ型の光変調器(2)
と、 該光変調器(2)の前記2本の光導波路対応の信号用電
極(3)と直流接続し、入力信号に従った駆動信号を印
加して、該光変調器(2)から変調した出力光を送出す
る為の変調器駆動回路(5)と、 前記信号用電極(3)に直流接続して終端する終端器
(6)と、 前記バイアス用電極(4)に直流接続して前記光変調器
(2)の動作点を制御する動作点制御回路(7)とを備
えたことを特徴とする光送信装置。
1. A signal electrode (3) and a bias electrode for inputting light from a light source (1), branching the light into two optical waveguides, and independently applying a voltage to the two optical waveguides. (4) Mach-Zehnder type optical modulator having (2)
And a direct current connection to the signal electrodes (3) corresponding to the two optical waveguides of the optical modulator (2), applying a drive signal according to the input signal, and modulating from the optical modulator (2). A modulator drive circuit (5) for sending the output light, a terminator (6) for terminating the signal electrode (3) by direct current connection, and a direct current connection for the bias electrode (4). An optical transmitter comprising: an operating point control circuit (7) for controlling an operating point of the optical modulator (2).
【請求項2】 前記変調器駆動回路(5)から前記信号
用電極(3)に印加する駆動信号に低周波信号を重畳す
る為の低周波重畳回路(8)を設け、 前記動作点制御回路(7)を、前記光変調器(2)の出
力光に含まれる前記低周波信号の成分が最小となるよう
に、前記バイアス用電極(4)に印加するバイアス電圧
を制御する構成としたことを特徴とする請求項1記載の
光送信装置。
2. A low frequency superimposing circuit (8) for superimposing a low frequency signal on a drive signal applied from the modulator driving circuit (5) to the signal electrode (3), the operating point control circuit. (7) is configured to control the bias voltage applied to the bias electrode (4) so that the component of the low-frequency signal included in the output light of the optical modulator (2) is minimized. The optical transmission device according to claim 1, wherein:
【請求項3】 前記変調器駆動回路(5)を差動増幅器
により構成し、該差動増幅器の電流源を前記低周波信号
により変調する構成としたことを特徴とする請求項2記
載の光送信装置。
3. The light according to claim 2, wherein the modulator driving circuit (5) is composed of a differential amplifier, and a current source of the differential amplifier is modulated by the low frequency signal. Transmitter.
【請求項4】 前記変調器駆動回路(5)を差動増幅器
により構成し、該差動増幅器の電流源を前記低周波信号
により変調し、且つ前記信号用電極(3)の一方に直
接、他方に減衰器を介してそれぞれ駆動信号を印加し、
バイアス用電極に、前記低周波信号をバイアス電圧と共
に印加する構成としたことを特徴とする請求項2記載の
光送信装置。
4. The modulator drive circuit (5) is composed of a differential amplifier, the current source of the differential amplifier is modulated by the low frequency signal, and directly on one of the signal electrodes (3). Apply a drive signal to the other via an attenuator,
The optical transmitter according to claim 2, wherein the low frequency signal is applied to a bias electrode together with a bias voltage.
【請求項5】 前記変調器駆動回路(5)を、前記信号
用電極(3)対応の2個の差動増幅器により構成し、該
2個の差動増幅器のそれぞれの電流源を前記低周波信号
により変調する構成としたことを特徴とする請求項2記
載の光送信装置。
5. The modulator driving circuit (5) is composed of two differential amplifiers corresponding to the signal electrodes (3), and respective current sources of the two differential amplifiers are the low frequency. The optical transmitter according to claim 2, wherein the optical transmitter is configured to be modulated by a signal.
JP4027755A 1991-11-19 1992-02-14 Optical transmitter Expired - Lifetime JP2630536B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP4027755A JP2630536B2 (en) 1992-02-14 1992-02-14 Optical transmitter
CA002083219A CA2083219C (en) 1991-11-19 1992-11-18 Optical transmitter having optical modulator
US07/979,491 US5359449A (en) 1991-11-19 1992-11-19 Optical modulator for an optical transmitter
EP96105232A EP0725299A3 (en) 1991-11-19 1992-11-19 Optical transmitter having optical modulator
EP92119707A EP0547394B1 (en) 1991-11-19 1992-11-19 Optical transmitter having optical modulator
DE69221839T DE69221839T2 (en) 1991-11-19 1992-11-19 Optical transmitter with optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4027755A JP2630536B2 (en) 1992-02-14 1992-02-14 Optical transmitter

Publications (2)

Publication Number Publication Date
JPH05224163A true JPH05224163A (en) 1993-09-03
JP2630536B2 JP2630536B2 (en) 1997-07-16

Family

ID=12229835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4027755A Expired - Lifetime JP2630536B2 (en) 1991-11-19 1992-02-14 Optical transmitter

Country Status (1)

Country Link
JP (1) JP2630536B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980363A (en) * 1995-09-11 1997-03-28 Fujitsu Ltd Controller for optical modulator
US7046414B2 (en) 2001-12-13 2006-05-16 Nec Corporation Optical modulation system applying a highly stable bias voltage to an optical modulator
JP2007208472A (en) * 2006-01-31 2007-08-16 Fujitsu Ltd Optical transmitter
JP2010522451A (en) * 2007-03-16 2010-07-01 フォトニックシステムズ, インコーポレイテッド Bidirectional signal interface and apparatus using bidirectional signal interface
JP2012247712A (en) * 2011-05-30 2012-12-13 Fujitsu Ltd Optical transmission device, control method thereof, and optical transmission system
US9946100B2 (en) 2015-03-31 2018-04-17 Sumitomo Osaka Cement Co., Ltd. Waveguide type optical element
US10365534B2 (en) 2015-04-03 2019-07-30 Sumitmo Osaka Cement Co., Ltd. Optical waveguide device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593891A (en) * 1991-10-01 1993-04-16 Nec Corp Waveguide type optical modulator and its driving method
JPH05100194A (en) * 1991-10-09 1993-04-23 Sony Corp Three-dimensional waveguide type optical modulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593891A (en) * 1991-10-01 1993-04-16 Nec Corp Waveguide type optical modulator and its driving method
JPH05100194A (en) * 1991-10-09 1993-04-23 Sony Corp Three-dimensional waveguide type optical modulator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980363A (en) * 1995-09-11 1997-03-28 Fujitsu Ltd Controller for optical modulator
US7046414B2 (en) 2001-12-13 2006-05-16 Nec Corporation Optical modulation system applying a highly stable bias voltage to an optical modulator
JP2007208472A (en) * 2006-01-31 2007-08-16 Fujitsu Ltd Optical transmitter
JP4563944B2 (en) * 2006-01-31 2010-10-20 富士通株式会社 Optical transmitter
JP2010522451A (en) * 2007-03-16 2010-07-01 フォトニックシステムズ, インコーポレイテッド Bidirectional signal interface and apparatus using bidirectional signal interface
JP2012247712A (en) * 2011-05-30 2012-12-13 Fujitsu Ltd Optical transmission device, control method thereof, and optical transmission system
US9946100B2 (en) 2015-03-31 2018-04-17 Sumitomo Osaka Cement Co., Ltd. Waveguide type optical element
US10365534B2 (en) 2015-04-03 2019-07-30 Sumitmo Osaka Cement Co., Ltd. Optical waveguide device

Also Published As

Publication number Publication date
JP2630536B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
EP0547394B1 (en) Optical transmitter having optical modulator
US5170274A (en) Optical transmitter
JP2642499B2 (en) Optical transmitter, optical modulator control circuit, and optical modulation method
US6362913B2 (en) Optical modulation apparatus and method of controlling optical modulator
EP0674210B1 (en) Optical modulator
US6970655B2 (en) Method and circuit for generating single-sideband optical signal
US6671079B2 (en) Method and apparatus for transmitting a modulated optical signal
US6392779B1 (en) Composite second-order bias control schemes
JP2848942B2 (en) Optical transmitter
US10901153B2 (en) Null bias mach-zehnder interferometer with ring resonators
JP4164179B2 (en) Optical modulator, bias control circuit thereof, and optical transmitter including the optical modulator
JP3210061B2 (en) Operating point stabilizer for optical interferometer
JP2003177361A (en) Optical modulating device
US20050008374A1 (en) Optical transmitter
JP3167383B2 (en) Optical transmitter
US20050105917A1 (en) Optical modulating apparatus
JP2630536B2 (en) Optical transmitter
JP4184131B2 (en) Optical SSB modulator
JPH02269309A (en) Optical modulating system
JP2658387B2 (en) Optical modulator, driving method thereof, and optical modulator driving device
JPH08248366A (en) Light transmitter
USRE36088E (en) Optical transmitter
JP2823872B2 (en) Optical transmitter
JP2005309468A (en) Light modulating device and control method for light modulator
JP2002328348A (en) Optical modulator and device for generating pulse made alternating phase

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

EXPY Cancellation because of completion of term