JPH05223855A - Micro-wiring current waveform measuring device - Google Patents

Micro-wiring current waveform measuring device

Info

Publication number
JPH05223855A
JPH05223855A JP2694892A JP2694892A JPH05223855A JP H05223855 A JPH05223855 A JP H05223855A JP 2694892 A JP2694892 A JP 2694892A JP 2694892 A JP2694892 A JP 2694892A JP H05223855 A JPH05223855 A JP H05223855A
Authority
JP
Japan
Prior art keywords
wiring
sample
probe
current
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2694892A
Other languages
Japanese (ja)
Inventor
Soichi Hama
壮一 濱
Kazuyuki Ozaki
一幸 尾崎
Shinichi Wakana
伸一 若菜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2694892A priority Critical patent/JPH05223855A/en
Publication of JPH05223855A publication Critical patent/JPH05223855A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To provide an extra-thin wiring current waveform measuring device, which measures the waveform of a current flowing through an extra thin wiring. CONSTITUTION:A wiring loop 28 is formed round the probe 24 of an inter- atomic power microscope, and the electromotive force induced in this wiring loop 28 in the condition that the probe 24 is approached to a wiring 16a formed on a specimen, is sensed through leads 26A, 26B formed on a cantilever 22. This electromotive power is integrated with the time, and the current flowing through the wiring 16a is determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体チップ上等の微
細配線に流れる電流の波形を計測する微細配線電流波形
計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine wiring current waveform measuring device for measuring the waveform of a current flowing through a fine wiring on a semiconductor chip or the like.

【0002】[0002]

【従来の技術】半導体チップ上の微細配線の信号波形計
測手段としては、電子ビームテスタやレーザビームテス
タが開発されている。これら計測手段は、配線の電圧波
形を計測することができるが、電流波形を計測すること
ができない。
2. Description of the Related Art Electron beam testers and laser beam testers have been developed as means for measuring signal waveforms of fine wiring on a semiconductor chip. These measuring means can measure the voltage waveform of the wiring, but cannot measure the current waveform.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、微細
配線に流れる電流の波形を計測することが可能な微細配
線電流波形計測装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a fine wiring current waveform measuring device capable of measuring the waveform of a current flowing through a fine wiring.

【0004】[0004]

【課題を解決するための手段及びその作用】本発明に係
る微細配線電流波形計測装置を、実施例図中の対応する
構成要素の符号を引用して説明する。
A fine wiring current waveform measuring apparatus according to the present invention will be described with reference to the reference numerals of corresponding constituent elements in the drawings of the embodiments.

【0005】この微細配線電流波形計測装置は、例えば
図1及び図2に示す如く、一端が固定され他端が自由端
とされリード線26A、26Bが形成されたカンチレバ
ー22と、カンチレバー22の自由端に設けられ、端部
がリード線26A、26Bと導通した配線ループ28が
形成された探針24と、カンチレバー22の自由端部の
高さ変位を非接触で検出する変位検出器38と、探針2
4に試料16表面を対向させた状態で試料16を3次元
的に微動させる微動ステージ12、14と、試料16に
形成された配線16aに探針24を接近させ、該高さ変
位が所定値になるように微動ステージ12、14を駆動
する走査回路18、20と、試料16に形成された配線
16aに探針24を接近させた状態で配線ループ28に
生じた誘導起電力Eをリード線26A、26Bを介して
検出する起電力検出回路30と、検出された誘導起電力
Eを時間積分して、試料16に形成された配線16aに
流れる電流Iを求める起電力/電流変換手段34とを備
えている。
In this fine wiring current waveform measuring apparatus, as shown in FIGS. 1 and 2, for example, a cantilever 22 having one end fixed and the other end free and having lead wires 26A and 26B formed, and a free cantilever 22. A probe 24 provided at an end and having a wiring loop 28 whose end is electrically connected to the lead wires 26A and 26B, and a displacement detector 38 for detecting the height displacement of the free end of the cantilever 22 in a non-contact manner, Probe 2
4, the fine movement stages 12 and 14 for finely moving the sample 16 three-dimensionally with the surface of the sample 16 facing each other and the wiring 16a formed on the sample 16 are brought close to the probe 24, and the height displacement is a predetermined value. And the scanning circuits 18 and 20 for driving the fine movement stages 12 and 14, and the induced electromotive force E generated in the wiring loop 28 with the probe 24 brought close to the wiring 16a formed on the sample 16. Electromotive force detection circuit 30 for detecting via electromotive force 26A and 26B, and electromotive force / current conversion means 34 for time-integrating the detected induced electromotive force E to obtain a current I flowing through wiring 16a formed on sample 16. Is equipped with.

【0006】本発明によれば、従来計測できなかった微
細配線に流れる電流の波形を計測することが可能とな
る。
According to the present invention, it becomes possible to measure the waveform of the current flowing through the fine wiring, which could not be measured conventionally.

【0007】配線16aが作る電場により配線ループ2
8に誘導電荷が生じ、この誘導電荷が電場から力を受け
て、配線ループ28と配線16aとの間に静電気力が働
く。
The wiring loop 2 is formed by the electric field created by the wiring 16a.
Induced charges are generated in 8, and the induced charges receive a force from the electric field, and an electrostatic force acts between the wiring loop 28 and the wiring 16a.

【0008】そこで、本発明の第1態様では、試料16
に形成された配線16aと探針24との間に働く静電気
力を、上記高さ変位と微動ステージ14の高さ位置とに
基づいて検出し、該静電気力に基づいて配線16aの電
圧を検出する配線電圧検出手段34を備えている。
Therefore, in the first embodiment of the present invention, sample 16
The electrostatic force acting between the wiring 16a formed on the upper surface and the probe 24 is detected based on the height displacement and the height position of the fine movement stage 14, and the voltage of the wiring 16a is detected based on the electrostatic force. The wiring voltage detecting means 34 is provided.

【0009】正確には、配線ループ28に流れる誘導電
流が、配線16aに流れる電流で形成される磁界からロ
ーレンツ力を受ける。
To be precise, the induced current flowing in the wiring loop 28 receives the Lorentz force from the magnetic field formed by the current flowing in the wiring 16a.

【0010】そこで、静電気力に基づいて微細配線の電
圧をより正確に計測するために、本発明の第2態様で
は、配線電圧検出手段34は、試料16に形成された配
線16aに流れる電流が作る磁界と探針24に形成され
た配線ループ28に流れる誘導電流との間に働くローレ
ンツ力を、上記求められた電流Iに基づいて算出し、試
料16に形成された配線16aと探針24との間に働く
力から該ローレンツ力を差し引いて上記静電気力を求め
る。
Therefore, in order to more accurately measure the voltage of the fine wiring based on the electrostatic force, in the second aspect of the present invention, the wiring voltage detecting means 34 causes the current flowing in the wiring 16a formed on the sample 16 to be The Lorentz force acting between the magnetic field created and the induced current flowing in the wiring loop 28 formed in the probe 24 is calculated based on the obtained current I, and the wiring 16a formed in the sample 16 and the probe 24 are calculated. The Lorentz force is subtracted from the force acting between and to obtain the electrostatic force.

【0011】[0011]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1は、原子間力顕微鏡(Atomic Force M
icroscope :AFM)に適用された微細配線電流波形計測装
置を示す。
FIG. 1 shows an atomic force microscope (Atomic Force M).
icroscope: AFM) shows a fine wiring current waveform measuring device.

【0013】ベース10の下部上にはX−Y圧電ステー
ジ12が配置され、X−Y圧電ステージ12上にはZ圧
電ステージ14が配置され、Z圧電ステージ14上には
試料16が載置されている。X−Y圧電ステージ12及
びZ圧電ステージ14は、圧電素子の対向面に電極膜が
被着されて構成されている。X−Y圧電ステージ12
は、X−Y走査回路18からの駆動電圧に応じて図1の
紙面に垂直なX−Y面内で試料16を微動させる。Z圧
電ステージ14は、Z走査回路20からの駆動電圧に応
じてX−Y面に垂直なZ方向に試料16を微動させる。
試料16は、表面に集積回路が形成された半導体チップ
であり、その表面形状、微細配線の電圧波形及び電流波
形が計測対象となっている。
An XY piezoelectric stage 12 is arranged on the lower portion of the base 10, a Z piezoelectric stage 14 is arranged on the XY piezoelectric stage 12, and a sample 16 is mounted on the Z piezoelectric stage 14. ing. Each of the XY piezoelectric stage 12 and the Z piezoelectric stage 14 is configured by depositing an electrode film on the facing surface of the piezoelectric element. XY piezoelectric stage 12
Causes the sample 16 to finely move in the XY plane perpendicular to the paper surface of FIG. 1 according to the drive voltage from the XY scanning circuit 18. The Z piezoelectric stage 14 finely moves the sample 16 in the Z direction perpendicular to the XY plane according to the drive voltage from the Z scanning circuit 20.
The sample 16 is a semiconductor chip having an integrated circuit formed on its surface, and its surface shape, voltage waveforms and current waveforms of fine wiring are measured.

【0014】ベース10の柱部にはカンチレバー22の
一端が固定され、カンチレバー22の自由端にはZ方向
に延びた探針24が形成されている。図2に示す如く、
カンチレバー22上には互いに平行な一対のリード線2
6A及び26Bが形成され、探針24上には三角形状の
配線ループ28が形成され、配線ループ28の一端がリ
ード線26Aと導通し、配線ループ28の他端がリード
線26Bと導通している。カンチレバー22及び探針2
4は、例えば通常のAFMと同様に、SiO2膜やSi
3 4 膜等で形成される。また、リード線26A、26
B及び配線ループ28は、リゾグラフィー技術を用いて
形成される。図中の配線16aは、試料16の表面に形
成された配線を示す。
One end of the cantilever 22 is fixed to the pillar portion of the base 10, and a probe 24 extending in the Z direction is formed at the free end of the cantilever 22. As shown in Figure 2,
On the cantilever 22, a pair of lead wires 2 parallel to each other
6A and 26B are formed, a triangular wiring loop 28 is formed on the probe 24, one end of the wiring loop 28 is electrically connected to the lead wire 26A, and the other end of the wiring loop 28 is electrically connected to the lead wire 26B. There is. Cantilever 22 and probe 2
4 is a SiO 2 film or Si, similar to a normal AFM, for example.
It is formed of a 3 N 4 film or the like. Also, the lead wires 26A, 26
The B and the wiring loop 28 are formed by using a lithography technique. The wiring 16 a in the figure shows the wiring formed on the surface of the sample 16.

【0015】カンチレバー22の固定端側では、リード
線26A及び26Bが図1に示す起電力検出回路30の
入力端子に接続されている。起電力検出回路30は、配
線ループ28に生じた誘導起電力を、リード線26A、
26Bを介して検出し、これを出力する。この出力は、
A/D変換器32でデジタル化され、信号処理回路34
に供給されて、後述の如く配線16aに流れる電流の波
形及び電圧波形が算出され、その結果がレコーダ36に
供給されて記録される。
On the fixed end side of the cantilever 22, lead wires 26A and 26B are connected to the input terminal of the electromotive force detection circuit 30 shown in FIG. The electromotive force detection circuit 30 outputs the induced electromotive force generated in the wiring loop 28 to the lead wire 26A,
It is detected via 26B and is output. This output is
The signal processing circuit 34 is digitized by the A / D converter 32.
And the waveform of the current and the voltage waveform flowing through the wiring 16a are calculated as described later, and the results are supplied to the recorder 36 and recorded.

【0016】ベース10の上部には、カンチレバー22
の自由端部上面に対向して変位検出器38が配置されて
いる。この変位検出器38は、カンチレバー22の自由
端部の高さ(Z方向)変位を非接触で検出するものであ
り、公知のAFMと同様に、トンネル電流検出法、光波
干渉法又は光てこ法を用いた構成となっている。
A cantilever 22 is provided on the upper portion of the base 10.
The displacement detector 38 is arranged so as to face the upper surface of the free end of the. The displacement detector 38 detects the height (Z direction) displacement of the free end of the cantilever 22 in a non-contact manner, and like the known AFM, the tunnel current detection method, the light wave interference method, or the optical lever method. It is configured using.

【0017】変位検出器38で検出された変位はZ走査
回路20に供給され、Z走査回路20はこの変位が設定
値になるようにZ圧電ステージ14に駆動電圧を供給す
る。
The displacement detected by the displacement detector 38 is supplied to the Z scanning circuit 20, and the Z scanning circuit 20 supplies a drive voltage to the Z piezoelectric stage 14 so that the displacement becomes a set value.

【0018】次に、上記の如く構成された本実施例の動
作を説明する。
Next, the operation of this embodiment constructed as described above will be explained.

【0019】X−Y走査回路18によりX−Y圧電ステ
ージ12を駆動して試料16の表面を探針24で走査し
ながら、変位検出器38の出力が一定値になるようZ圧
電ステージ14を駆動する。X−Y走査回路18及びZ
走査回路20への駆動電圧に比例した電圧がレコーダ3
6に供給されて、試料16の表面形状がレコーダ36に
記録される。
While driving the XY piezoelectric stage 12 by the XY scanning circuit 18 to scan the surface of the sample 16 with the probe 24, the Z piezoelectric stage 14 is moved so that the output of the displacement detector 38 becomes a constant value. To drive. XY scanning circuit 18 and Z
The voltage proportional to the driving voltage to the scanning circuit 20 is recorded by the recorder 3.
6, the surface shape of the sample 16 is recorded on the recorder 36.

【0020】レコーダ36に記録された試料16の表面
形状から、計測対象の配線16aの幅方向中点位置を求
め、この位置を目標位置としてX−Y走査回路18に供
給する。X−Y走査回路18はこれに応答して、探針2
4を配線16aの幅方向中点位置上に位置させる。試料
16にテスト信号を供給する前において、Z走査回路2
0は、試料16の表面形状計測時と同様に、変位検出器
38の出力が設定値になるようにZ圧電ステージ14に
駆動電圧を印加し、安定したところでこの駆動電圧を固
定する。
From the surface shape of the sample 16 recorded on the recorder 36, the width-direction midpoint position of the wiring 16a to be measured is determined, and this position is supplied to the XY scanning circuit 18 as a target position. In response to this, the XY scanning circuit 18 responds to the probe 2
4 is located on the middle position of the wiring 16a in the width direction. Before the test signal is supplied to the sample 16, the Z scanning circuit 2
In the case of 0, as in the case of measuring the surface shape of the sample 16, a drive voltage is applied to the Z piezoelectric stage 14 so that the output of the displacement detector 38 becomes a set value, and this drive voltage is fixed when stable.

【0021】試料16にテスト信号を供給して、配線1
6aに電流を流す。これにより、配線16aの回りに磁
場が形成され、配線ループ28に磁束が鎖交する。磁束
鎖交数の変化により配線ループ28に誘導起電力Eが生
じ、この誘導起電力Eが起電力検出回路30で検出され
る。誘導起電力Eは、配線16aに流れている電流Iの
時間微分値に比例する。そこで、信号処理回路34はこ
の起電力を時間積分することにより、配線16aに流れ
る電流波形を求め、これをレコーダ36に供給して記録
させる。
A test signal is supplied to the sample 16 so that the wiring 1
A current is passed through 6a. As a result, a magnetic field is formed around the wiring 16a, and the magnetic flux is linked to the wiring loop 28. An induced electromotive force E is generated in the wiring loop 28 due to the change in the number of magnetic flux linkages, and the induced electromotive force E is detected by the electromotive force detection circuit 30. The induced electromotive force E is proportional to the time differential value of the current I flowing through the wiring 16a. Therefore, the signal processing circuit 34 obtains the waveform of the current flowing through the wiring 16a by integrating this electromotive force over time, and supplies this to the recorder 36 for recording.

【0022】例えば図3(A)に示すような電流が配線
16aに流れた場合、図3(B)に示すような誘導起電
力が起電力検出回路30で検出される。なお、誘導起電
力Eと電流Iの時間微分値との間の比例定数は、標準試
料に対し既知の電流を流してこれを計測することによ
り、予め求めておく。
For example, when a current as shown in FIG. 3A flows through the wiring 16a, an induced electromotive force as shown in FIG. 3B is detected by the electromotive force detection circuit 30. The constant of proportionality between the induced electromotive force E and the time derivative of the current I is obtained in advance by flowing a known current to the standard sample and measuring it.

【0023】配線ループ28の形状が、一辺が20μm
の正三角形で、この正三角形の重心と配線16aとの間
隔が8.7μmで、図3(A)に示すような波形の電流
を配線16aに流した場合、誘導起電力Eは2.1pV
となる。
The shape of the wiring loop 28 is 20 μm on each side.
If the distance between the center of gravity of the equilateral triangle and the wiring 16a is 8.7 μm and a current having a waveform as shown in FIG. 3A is applied to the wiring 16a, the induced electromotive force E is 2.1 pV.
Becomes

【0024】電流検出能を高める必要がある場合には、
配線ループ28の巻き数を増やし又は配線ループ28の
内側に高透磁率の薄膜を被着する。配線ループ28の巻
き数は、多層配線構造とし又は探針24の両面に配線ル
ープ28を形成することによって増やすことができる。
When it is necessary to enhance the current detection capability,
The number of windings of the wiring loop 28 is increased or a thin film having a high magnetic permeability is applied to the inside of the wiring loop 28. The number of turns of the wiring loop 28 can be increased by forming a multilayer wiring structure or by forming the wiring loop 28 on both surfaces of the probe 24.

【0025】配線16aが作る電場により配線ループ2
8に誘導電荷が生じ、この誘導電荷が電場から力を受け
て、配線ループ28と配線16aとの間に静電気力が働
く。そこで、試料16にテスト信号を供給する前の上記
安定した平衡状態からの変位を変位検出器38で検出
し、この変位に基づいて、静電気力と原子間力との和を
求め、この和から原子間力を差し引いて静電気力を求
め、この静電気力から配線16aの電圧を求め、これを
レコーダ36に供給する。この原子間力は、予め求めて
おいた原子間力と原子間距離との関係から算出する。
The wiring loop 2 is formed by the electric field created by the wiring 16a.
Induced charges are generated in 8, and the induced charges receive a force from the electric field, and an electrostatic force acts between the wiring loop 28 and the wiring 16a. Therefore, the displacement from the stable equilibrium state before the test signal is supplied to the sample 16 is detected by the displacement detector 38, the sum of the electrostatic force and the atomic force is obtained based on this displacement, and from this sum The atomic force is subtracted to obtain the electrostatic force, the voltage of the wiring 16a is obtained from this electrostatic force, and this is supplied to the recorder 36. This interatomic force is calculated from the relationship between the interatomic force and the interatomic distance that has been obtained in advance.

【0026】正確には、配線ループ28に流れる誘導電
流が、配線16aに流れる電流で形成される磁界からロ
ーレンツ力を受けるので、静電気力に基づいて配線16
aの電圧をより正確に計測するには、カンチレバー22
が追従して動く程度に配線16aに流れる電流の変化が
遅い場合、このローレンツ力を上記計測電流Iに基づい
て算出し、カンチレバー22の受ける力から、このロー
レンツ力を上記原子間力と共に差し引く。
To be precise, since the induced current flowing in the wiring loop 28 receives the Lorentz force from the magnetic field formed by the current flowing in the wiring 16a, the wiring 16 is based on the electrostatic force.
To measure the voltage of a more accurately, the cantilever 22
When the change in the current flowing through the wiring 16a is slow enough to move in accordance with, the Lorentz force is calculated based on the measured current I, and the Lorentz force is subtracted from the force received by the cantilever 22 together with the atomic force.

【0027】なお、上記実施例では探針24のある平衡
状態からの自由端部変位に基づいて静電気力を求める場
合を説明したが、この変位が設定値になるようにZ走査
回路20からZ圧電ステージ14に駆動電圧を供給し、
この駆動電圧に基づいて静電気力を求めてもよいことは
勿論である。
In the above embodiment, the electrostatic force is calculated based on the displacement of the free end portion of the probe 24 from a certain equilibrium state. However, the Z scanning circuit 20 outputs the Z force so that the displacement becomes a set value. The drive voltage is supplied to the piezoelectric stage 14,
Of course, the electrostatic force may be obtained based on this drive voltage.

【0028】[0028]

【発明の効果】以上説明した如く、本発明に係る微細配
線電流波形計測装置によれば、従来計測できなかった微
細配線に流れる電流の波形を計測することが可能となる
という優れた効果を奏する。
As described above, according to the fine wiring current waveform measuring apparatus of the present invention, it is possible to measure the waveform of the current flowing through the fine wiring which could not be measured by the conventional technique. ..

【0029】本発明の上記第1態様によれば、微細配線
に流れる電流の波形のみならず、微細配線の電圧波形を
も計測することが可能となるという効果を奏する。
According to the first aspect of the present invention, not only the waveform of the current flowing through the fine wiring but also the voltage waveform of the fine wiring can be measured.

【0030】本発明の上記第2態様によれば、微細配線
の電圧波形をより正確に計測することが可能となるとい
う効果を奏する。
According to the second aspect of the present invention, it is possible to measure the voltage waveform of the fine wiring more accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】原子間力顕微鏡に適用された微細配線電流波形
計測装置の構成図である。
FIG. 1 is a configuration diagram of a fine wiring current waveform measuring apparatus applied to an atomic force microscope.

【図2】カンチレバー及び探針に形成された配線パター
ンを示す斜視図である。
FIG. 2 is a perspective view showing a wiring pattern formed on a cantilever and a probe.

【図3】試料の配線に流す電流と検出用配線ループに生
ずる誘導起電力との関係を示す線図である。
FIG. 3 is a diagram showing the relationship between the current flowing in the sample wiring and the induced electromotive force generated in the detection wiring loop.

【符号の説明】[Explanation of symbols]

10 ベース 16 試料 16a 配線 22 カンチレバー 24 探針 26A、26B リード線 28 配線ループ 10 base 16 sample 16a wiring 22 cantilever 24 probe 26A, 26B lead wire 28 wiring loop

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一端が固定され他端が自由端とされリー
ド線(26A、26B)が形成されたカンチレバー(2
2)と、 該カンチレバーの該自由端に設けられ、端部が該リード
線と導通した配線ループ(28)が形成された探針(2
4)と、 該カンチレバーの自由端部の高さ変位を非接触で検出す
る変位検出器(38)と、 該探針に試料(16)の表面を対向させた状態で該試料
を3次元的に微動させる微動ステージ(12、14)
と、 該試料に形成された配線に該探針を接近させ、該高さ変
位が所定値になるように該微動ステージを駆動する走査
回路(18、20)と、 該試料に形成された配線に該探針を接近させた状態で該
配線ループに生じた誘導起電力を該リード線を介して検
出する起電力検出回路(30)と、 検出された該誘導起電力を時間積分して、該試料に形成
された該配線に流れる電流を求める起電力/電流変換手
段(34)と、 を有することを特徴とする微細配線電流波形計測装置。
1. A cantilever (2) having one end fixed and the other free end formed with lead wires (26A, 26B).
2) and a probe (2) which is provided at the free end of the cantilever and has a wiring loop (28) whose end is electrically connected to the lead wire.
4), a displacement detector (38) for detecting the height displacement of the free end of the cantilever in a non-contact manner, and the sample (16) in a three-dimensional manner with the surface of the sample (16) facing the probe. Fine movement stage (12, 14)
A scanning circuit (18, 20) for driving the fine movement stage so that the probe is brought close to the wiring formed on the sample and the height displacement becomes a predetermined value, and the wiring formed on the sample An electromotive force detection circuit (30) for detecting an induced electromotive force generated in the wiring loop via the lead wire in a state where the probe is brought close to A fine wiring current waveform measuring device comprising: an electromotive force / current converting means (34) for obtaining a current flowing through the wiring formed on the sample.
【請求項2】 前記試料に形成された配線と前記探針
(24)との間に働く静電気力を、前記高さ変位と前記
微動ステージ(12、14)の高さ位置とに基づいて検
出し、該静電気力に基づいて該配線の電圧を検出する配
線電圧検出手段(34)、 を有することを特徴とする請求項1記載の微細配線電流
波形計測装置。
2. The electrostatic force acting between the wiring formed on the sample and the probe (24) is detected based on the height displacement and the height position of the fine movement stage (12, 14). The fine wiring current waveform measuring device according to claim 1, further comprising: a wiring voltage detecting means (34) for detecting a voltage of the wiring based on the electrostatic force.
【請求項3】 前記配線電圧検出手段(34)は、前記
試料(16)に形成された配線に流れる電流が作る磁界
と前記探針(24)に形成された配線ループ(28)に
流れる誘導電流との間に働くローレンツ力を、前記求め
られた電流に基づいて算出し、該試料に形成された配線
と該探針との間に働く力から該ローレンツ力を差し引い
て前記静電気力を求めることを特徴とする請求項2記載
の微細配線電流波形計測装置。
3. The wiring voltage detecting means (34) induces a magnetic field generated by an electric current flowing in a wiring formed in the sample (16) and an induction flowing in a wiring loop (28) formed in the probe (24). The Lorentz force acting between the current and the current is calculated based on the obtained current, and the Lorentz force is subtracted from the force acting between the wiring formed on the sample and the probe to obtain the electrostatic force. The fine wiring current waveform measuring device according to claim 2, wherein
JP2694892A 1992-02-13 1992-02-13 Micro-wiring current waveform measuring device Withdrawn JPH05223855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2694892A JPH05223855A (en) 1992-02-13 1992-02-13 Micro-wiring current waveform measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2694892A JPH05223855A (en) 1992-02-13 1992-02-13 Micro-wiring current waveform measuring device

Publications (1)

Publication Number Publication Date
JPH05223855A true JPH05223855A (en) 1993-09-03

Family

ID=12207381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2694892A Withdrawn JPH05223855A (en) 1992-02-13 1992-02-13 Micro-wiring current waveform measuring device

Country Status (1)

Country Link
JP (1) JPH05223855A (en)

Similar Documents

Publication Publication Date Title
US6215318B1 (en) Micromechanical magnetic field sensor
US8278919B2 (en) MEMS oscillating magnetic sensor and method of making
JP2945090B2 (en) Encoder
JPH06281658A (en) Integrated chip distortion sensor
JPH06507718A (en) How to assemble integrated and aligned tunnel chip pairs
JP2006343213A (en) Fine structural body, cantilever, scanning probe microscope, and method for measuring amount of deformation of the fine structural body
JPH04337403A (en) Photointegration type displacement sensor
JP2001522045A (en) Electrostatic force detector with cantilever for electrostatic force microscope
US8869311B2 (en) Displacement detection mechanism and scanning probe microscope using the same
EP0745858B1 (en) Acceleration sensor
US4397033A (en) Device for measuring characteristic parameters of the speed of handwriting
JP2002156409A (en) Measuring sonde for detecting electrical signal in integrated circuit, method for using the measuring sonde, method for manufacturing the measuring sonde and measuring system by the measuring sonde
JPH05223855A (en) Micro-wiring current waveform measuring device
JP2000206026A (en) Scanning probe microscope
JP4327263B2 (en) Multi-probe test head
CN115856725A (en) Magnetic sensor
JPH0854403A (en) Conductive cantilever structure of compound microscope
JPH0412547A (en) Film thickness distribution measuring device
KR20030013235A (en) Scanning Probe Microscope
US6208151B1 (en) Method and apparatus for measurement of microscopic electrical characteristics
JP3276389B2 (en) Voltage measuring device
JP4050194B2 (en) Magnetic field detection method, magnetic field detection device, and information storage
JPH085642A (en) Integrated multifunction spm sensor
KR100408522B1 (en) Vertical axis magnetometer
JP2960592B2 (en) Shape measuring probe and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518