JPH05223759A - Crystal grain fragmentation judgment device for magnesium alloy melt - Google Patents

Crystal grain fragmentation judgment device for magnesium alloy melt

Info

Publication number
JPH05223759A
JPH05223759A JP3135946A JP13594691A JPH05223759A JP H05223759 A JPH05223759 A JP H05223759A JP 3135946 A JP3135946 A JP 3135946A JP 13594691 A JP13594691 A JP 13594691A JP H05223759 A JPH05223759 A JP H05223759A
Authority
JP
Japan
Prior art keywords
crystal
molten metal
magnesium alloy
crystal grain
primary crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3135946A
Other languages
Japanese (ja)
Inventor
Hiroaki Iwabori
弘昭 岩堀
Hatsuo Kusakabe
初夫 日下部
Koji Yonekura
浩司 米倉
Takao Miyamoto
孝夫 宮本
Yukio Otsuka
幸男 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP3135946A priority Critical patent/JPH05223759A/en
Publication of JPH05223759A publication Critical patent/JPH05223759A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PURPOSE:To obtain a crystal grain fragmentation judgment device capable of simply and surely judging the crystal grain fragmentation effect for magnesium alloy melt before injection. CONSTITUTION:A judgment device of crystal grain fragmentation effect for magnesium alloy melt is provided with a means to detect a primary crystal coagulation temperature of the melt before fragmentation processing of the magnesium alloy and/or cooling rate just after the primary crystal coagulation initiation and a means to detect the primary crystal coagulation temperature of the melt after fragmentation processing of the magnesium alloy and/or cooling rate just after the initial crystal coagulation initiation. Also provided is a means to judge the degree of crystal grain fragmentation by comparing the detected primary crystal coagulation temperature of the melt before and after fragmentation processing and/or cooling rate just after the primary crystal coagulation initiation or the difference in the detected value and after fragmentation processing, with a standard value set in advance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マグネシウム合金溶湯
の結晶粒微細化判定装置に関するもので、さらに詳しく
は、注湯前の溶湯の結晶粒微細化効果を確実にかつ簡便
に判定できるマグネシウム合金溶湯の結晶粒微細化判定
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal grain refining determination device for molten magnesium alloy, and more specifically, a magnesium alloy melt for reliably and easily determining the grain refining effect of molten metal before pouring. The present invention relates to a crystal grain refining determination device.

【0002】[0002]

【従来の技術】マグネシウム合金鋳物の引張強さは、結
晶粒径の増大とともに低下する。このため、鋳造する鋳
物の強度を確保するには、結晶粒の微細化処理が不可欠
となる。マグネシウム合金の微細化処理としては、例え
ば、Mg−Al系合金の結晶粒の微細化方法として、8
50〜900℃の高温度に溶湯を過熱し700℃付近ま
で早く降温させる方法や、ヘキサクロルエタン(C2
6 )を添加する方法が行われているが、操作の容易性
等の利点から後者の方法が一般的に行われている。
2. Description of the Related Art The tensile strength of magnesium alloy castings decreases with increasing grain size. Therefore, in order to secure the strength of the casting to be cast, it is necessary to make the crystal grains fine. As the refining treatment of the magnesium alloy, for example, as a refining method of crystal grains of the Mg-Al alloy, 8
A method of heating the molten metal to a high temperature of 50 to 900 ° C. and quickly lowering the temperature to around 700 ° C., hexachloroethane (C 2 C
Although the method of adding l 6 ) is used, the latter method is generally used because of advantages such as ease of operation.

【0003】しかし、マグネシウム合金溶湯に結晶粒の
微細化処理が施された溶湯は、その後溶湯を保持する間
に微細化効果が薄れ、結晶粒の粗大化が進行する。この
ため、鋳物の品質を確保するためには、確実な結晶粒微
細化処理を行い、該溶湯の管理を的確に行うことが重要
である。従って、マグネシウム合金溶湯の微細化処理の
効果を簡単に判定できる方法が望まれていた。
However, in a molten metal obtained by subjecting a magnesium alloy molten metal to a crystal grain refining treatment, the refining effect is weakened while the molten metal is held thereafter, and the crystal grain becomes coarser. Therefore, in order to ensure the quality of the casting, it is important to perform a reliable crystal grain refining treatment and to appropriately manage the molten metal. Therefore, there has been a demand for a method capable of easily determining the effect of the refinement treatment of the molten magnesium alloy.

【0004】従来より、これらマグネシウム合金溶湯の
結晶粒微細化判定方法としては、鋳造された鋳物の凝固
組織を観察する方法(第1の方法)や、該鋳物の破面を
観察する方法(第2の方法)が行われている。
Conventionally, as a method for determining the crystal grain refinement of these magnesium alloy melts, a method of observing the solidification structure of the cast product (first method) and a method of observing the fracture surface of the cast product (first method) 2 method) is performed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記第
1の方法では、マグネシウム鋳物の結晶粒微細化効果を
的確に判定することができるものの、凝固組織の観察は
頗る煩わしく、また時間がかかるという問題を有してい
た。また、この方法は、マグネシウム合金鋳物の結晶粒
微細化判定には有効であるものの、該合金の溶湯そのも
のの結晶粒微細化を判定するものではないため、溶解処
理現場で判定を行うことができないという問題があっ
た。
However, in the first method, although the effect of refining the crystal grains of magnesium casting can be accurately determined, the observation of the solidification structure is very cumbersome and time-consuming. Had. Further, although this method is effective for determining the crystal grain refinement of magnesium alloy castings, it is not possible to determine the crystal grain refinement of the molten metal of the alloy itself, so the determination cannot be performed at the melting treatment site. There was a problem.

【0006】また、前記第2の方法の鋳物の破面観察方
法は、容易に行うことができるが、主観的な判定である
ので判定に個人差がでてバラツキが生じ、必ずしも定量
的、客観的な判定方法とは言えないという問題があっ
た。また、前記第1の方法と同様に、マグネシウム合金
溶湯そのものの結晶粒微細化を判定するものではないた
め、溶解処理現場で判定を行うことができないという問
題があった。
Further, the fracture surface observing method of the casting according to the second method can be easily carried out, but since it is a subjective judgment, there are individual differences in the judgment and variations occur, and therefore it is not always quantitative and objective. There was a problem that it could not be said to be a proper determination method. Further, as in the case of the first method, there is a problem in that it is not possible to make a determination at the melting treatment site because the grain refinement of the molten magnesium alloy itself is not determined.

【0007】そこで、本発明者らは、上述の如き従来技
術の問題点を解決すべく鋭意研究し、各種の系統的実験
を重ねた結果、本発明を成すに至ったものである。
Therefore, the inventors of the present invention have earnestly studied to solve the above-mentioned problems of the prior art, and as a result of various systematic experiments, the present invention has been accomplished.

【0008】本発明の目的は、注湯前のマグネシウム合
金溶湯の結晶粒微細化効果を、簡便にしかも確実に判定
することができる結晶粒微細化判定装置を提供するにあ
る。
An object of the present invention is to provide a crystal grain refining determination apparatus which can easily and reliably determine the crystal grain refining effect of a molten magnesium alloy before pouring.

【0009】本発明者らは、上述の従来技術の問題に対
して、以下のことに着眼した。すなわち、上記従来技術
は何れもマグネシウム合金鋳物の結晶粒微細化の程度を
判定するものであって、該合金の溶湯そのものの結晶粒
微細化効果を判定するものではない。そこで、該合金の
結晶粒微細化効果の判定を溶解現場でも行えるようにす
るために、すなわち、マグネシウム合金の結晶粒微細化
効果の判定を炉前で行うためには、該合金を溶湯の状態
で結晶微細化の程度を判定する必要がある。そこで、該
合金溶湯の結晶粒微細化処理過程における冷却挙動に着
目した。
The present inventors have focused on the following problems with respect to the above-mentioned problems of the prior art. That is, none of the above-described conventional techniques determines the degree of crystal grain refinement of a magnesium alloy casting, and does not determine the crystal grain refinement effect of the molten alloy itself. Therefore, in order to determine the grain refining effect of the alloy even at the melting site, that is, in order to determine the grain refining effect of the magnesium alloy in front of the furnace, the alloy should be in the state of molten metal. It is necessary to judge the degree of crystal refinement. Therefore, attention was paid to the cooling behavior of the molten alloy during the grain refining process.

【0010】そして、熱分析法等により、結晶粒が粗大
化する精錬溶湯および結晶粒が微細化する微細化処理溶
湯について系統的実験を行い現象解明を行った結果、マ
グネシウム合金溶湯の結晶粒微細化の程度を、溶湯の凝
固挙動、すなわち初晶凝固温度及び/又は冷却速度によ
り判定することができることに着眼し、本発明を成すに
至った。
Then, the systematic experiments were conducted on the refined molten metal in which the crystal grains are coarsened and the refined molten metal in which the crystal grains are refined by thermal analysis and the like, and the phenomenon is clarified. The present invention has been accomplished by focusing on the fact that the degree of crystallization can be determined by the solidification behavior of the molten metal, that is, the primary crystal solidification temperature and / or the cooling rate.

【0011】[0011]

【課題を解決するための手段】本発明のマグネシウム合
金溶湯の結晶粒微細化判定装置は、マグネシウム合金溶
湯の結晶粒微細化効果を判定する装置であって、前記マ
グネシウム合金の微細化処理前の溶湯の初晶凝固温度及
び/又は初晶凝固開始直後の冷却速度を検出する手段
と、前記マグネシウム合金の微細化処理後の溶湯の初晶
凝固温度及び/又は初晶凝固開始直後の冷却速度を検出
する手段と、前記検出された微細化処理前後の初晶凝固
温度及び/又は初晶凝固開始直後の冷却速度,あるいは
微細化処理前後の該検出値の差と予め設定された基準値
とを比較し,結晶粒微細化の程度を判定する手段とから
なることを特徴とする。
The crystal grain refining determination apparatus for molten magnesium alloy of the present invention is an apparatus for determining the crystal grain refining effect of molten magnesium alloy, which is before the refining treatment of the magnesium alloy. A means for detecting the primary crystal solidification temperature of the melt and / or the cooling rate immediately after the start of the primary crystal solidification; and the primary crystal solidification temperature of the molten metal after the refinement treatment of the magnesium alloy and / or the cooling rate immediately after the start of the primary crystal solidification. A means for detecting, the detected primary crystal solidification temperature before and after the refining treatment and / or the cooling rate immediately after the start of the primary crystal solidification, or the difference between the detected values before and after the refining treatment and a preset reference value. It is characterized by comprising means for comparing and determining the degree of grain refinement.

【0012】[0012]

【作用】本発明のマグネシウム合金溶湯の結晶粒微細化
判定装置において、先ず、マグネシウム合金の微細化処
理前の溶湯の初晶凝固温度及び/又は初晶凝固開始直後
の冷却速度を検出する。次いで、前記マグネシウム合金
の微細化処理後の溶湯の初晶凝固温度及び/又は初晶凝
固開始直後の冷却速度を検出する。次に、この検出され
た微細化処理前後の初晶凝固温度及び/又は初晶凝固開
始直後の冷却速度、あるいは微細化処理前後の該検出値
の差と予め設定された基準値との差を算出する。これよ
り得られた算出値の大きさが、前記合金の微細化効果の
有無およびその程度を表すことになる。次いで、該算出
値と、予め設定された前記微細化の有無およびその程度
の基準となる値とを比較することにより、前記マグネシ
ウム合金用溶湯の結晶粒微細化の程度を判定することが
できる。
In the crystal grain refining determination apparatus for molten magnesium alloy of the present invention, first, the primary crystal solidification temperature and / or the cooling rate immediately after the initiation of primary crystal solidification of the molten metal before the refinement treatment of the magnesium alloy are detected. Then, the primary crystal solidification temperature and / or the cooling rate immediately after the start of primary crystal solidification of the molten metal after the refinement treatment of the magnesium alloy are detected. Next, the detected primary crystal solidification temperature before and after the refinement treatment and / or the cooling rate immediately after the start of the primary crystal solidification, or the difference between the detected value before and after the refinement treatment and a preset reference value is calculated. calculate. The magnitude of the calculated value obtained from this indicates the presence or absence and the degree of the refinement effect of the alloy. Then, by comparing the calculated value with a preset value for the presence or absence of the refinement and a reference value for the extent thereof, it is possible to determine the degree of refinement of the crystal grains of the molten magnesium alloy.

【0013】[0013]

【発明の効果】本発明のマグネシウム合金溶湯の結晶粒
微細化判定装置により、注湯前のマグネシウム合金溶湯
の結晶粒微細化効果を、簡便にしかも確実に判定するこ
とができる。
EFFECT OF THE INVENTION The crystal grain refining determination apparatus for molten magnesium alloy according to the present invention can easily and reliably determine the crystal grain refining effect of the molten magnesium alloy before pouring.

【0014】[0014]

【実施例】以下に、発明をさらに具体的にした具体例に
ついて説明する。
EXAMPLES Hereinafter, specific examples of the present invention will be described.

【0015】本発明の具体例を、マグネシウム合金溶湯
としてAZ91合金溶湯を用いた場合の例について説明
する。
A specific example of the present invention will be described in which AZ91 alloy melt is used as the magnesium alloy melt.

【0016】本具体例では、AZ91合金溶湯の結晶粒
微細化効果の判定を、1)第1溶湯状態量検出手段によ
り、結晶粒微細化処理前の熱分析を行い、AZ91合金
の微細化処理前の溶湯の初晶凝固温度及び/又は初晶凝
固開始直後の冷却速度を検出する、2)第2溶湯状態量
検出手段により、前記AZ91合金の微細化処理後の溶
湯の初晶凝固温度及び/又は初晶凝固開始直後の冷却速
度を検出する、3)結晶粒微細化判定手段により、前記
検出された微細化処理前後の初晶凝固温度及び/又は初
晶凝固開始直後の冷却速度、あるいは微細化処理前後の
該検出値の差と予め設定された基準値とを比較し、結晶
粒微細化の程度を判定することにより行った。
In this example, the grain refinement effect of the molten AZ91 alloy is determined by 1) performing a thermal analysis before the grain refinement treatment by the first molten metal state amount detecting means to refine the AZ91 alloy. Detecting the primary crystal solidification temperature of the previous molten metal and / or the cooling rate immediately after the start of primary crystal solidification, 2) The secondary crystal state amount detecting means, and the primary crystal solidification temperature of the molten metal after the refinement treatment of the AZ91 alloy and And / or detecting the cooling rate immediately after the start of primary crystal solidification, 3) by the crystal grain refinement determination means, the detected primary crystal solidification temperature before and after the refinement treatment and / or the cooling rate immediately after the start of primary crystal solidification, or The difference between the detected values before and after the refining process was compared with a preset reference value to determine the degree of crystal grain refining.

【0017】先ず、第1溶湯状態量検出手段において、
結晶粒微細化前のAZ91合金溶湯を熱分析用鋳型に注
湯し、溶解過程のAZ91合金の熱分析を行う。なお、
熱分析用鋳型には、キャビティ中心部に有機レジンを粘
結剤として熱電対を配設するなど、AZ91合金の微細
化処理前の溶湯の初晶凝固温度及び/又は初晶凝固開始
直後の冷却速度等の第1状態量を検出するためのセンサ
を配設してある。
First, in the first molten metal state quantity detecting means,
The AZ91 alloy melt before grain refining is poured into a thermal analysis mold, and the AZ91 alloy in the melting process is subjected to thermal analysis. In addition,
In the mold for thermal analysis, a thermocouple is used in the center of the cavity with an organic resin as a binder, and the primary crystal solidification temperature of the melt before refining the AZ91 alloy and / or cooling immediately after the initiation of the primary crystal solidification are performed. A sensor for detecting a first state quantity such as speed is provided.

【0018】このとき、マグネシウム合金溶湯は非常に
燃焼し易いため、十分な防燃雰囲気を作って注湯するこ
とが好ましい。注湯後の熱電対等の第1状態量検出セン
サからの出力は、ペンレコーダ等に記録するか、または
コンピュータの記録部に入力するなどして記録する。得
られた冷却曲線またはこれを示すデータから初晶凝固温
度と初晶凝固開始直後の冷却速度を読み取るか、または
これら情報をコンピュータの演算部等で算出し、これら
情報を一時保存しておく。
At this time, since the magnesium alloy melt is extremely easy to burn, it is preferable to create a sufficient flameproof atmosphere and pour the melt. The output from the first state quantity detection sensor such as a thermocouple after pouring the molten metal is recorded on a pen recorder or the like, or is input to a recording unit of a computer and recorded. The primary crystal solidification temperature and the cooling rate immediately after the initiation of the primary crystal solidification are read from the obtained cooling curve or data indicating this, or the information is calculated by a computer or the like, and the information is temporarily stored.

【0019】なお、溶湯の冷却速度は、溶湯の種類や熱
分析に使用する鋳型寸法によって異なるため、溶湯の種
類や使用する鋳型に適した冷却速度の取り方をすること
が好ましい。また、結晶粒微細化処理前の溶湯の冷却曲
線は、初晶凝固開始直後に過冷・再熱現象が現れ温度停
滞するため、その温度停滞時間で平均冷却速度を算出す
ると良い。なお、該AZ91合金の精錬溶湯の初晶凝固
開始直後の冷却速度は、0°C/s程度となる。
Since the cooling rate of the molten metal differs depending on the type of the molten metal and the size of the mold used for thermal analysis, it is preferable to take a cooling rate suitable for the type of the molten metal and the mold used. Further, in the cooling curve of the molten metal before the crystal grain refining treatment, the supercooling / reheating phenomenon appears immediately after the start of solidification of the primary crystals and the temperature becomes stagnant. The cooling rate of the AZ91 alloy refining melt immediately after the start of primary crystal solidification is about 0 ° C / s.

【0020】次に、第2溶湯状態量検出手段において、
結晶粒微細化後のAZ91合金溶湯を熱分析用鋳型に注
湯し、AZ91合金の熱分析を行う。なお、使用する熱
分析用鋳型は、同じ寸法のものを用いることが好まし
い。また、熱分析用鋳型として、加熱手段を有する鋳型
を用い、第1溶湯状態量検出手段において第1状態量を
検出した後、AZ91合金溶湯を入れたまま、該熱分析
用鋳型内において溶湯の結晶粒微細化処理を施し、その
後に第2溶湯状態量検出手段により、第2状態量を検出
することもできる。なお、熱電対等の第2状態量検出セ
ンサ(第1状態量検出センサと同じでもよい)からの出
力は、ペンレコーダ等に記録するか、またはコンピュー
タの記録部に入力するなどして記録する。得られた冷却
曲線またはこれを示すデータから初晶凝固温度と初晶凝
固開始直後の冷却速度を読み取るか、またはこれら情報
をコンピュータの演算部等で算出し、これら情報を一時
保存しておく。なお、冷却速度は、結晶粒微細化処理前
の溶湯の初晶凝固開始直後の温度停滞時間と同じ時間の
平均冷却速度を取ると良い。
Next, in the second molten metal state quantity detecting means,
The AZ91 alloy molten metal after grain refinement is poured into a thermal analysis mold to perform thermal analysis of the AZ91 alloy. The thermal analysis molds used preferably have the same size. Further, a mold having a heating means is used as the thermal analysis mold, and after the first state quantity is detected by the first molten metal state quantity detecting means, the molten metal in the thermal analysis mold is kept in the molten AZ91 alloy. It is also possible to perform the crystal grain refining process and then detect the second state quantity by the second molten metal state quantity detection means. The output from the second state quantity detection sensor such as a thermocouple (may be the same as the first state quantity detection sensor) is recorded in a pen recorder or the like, or is input to a recording unit of a computer and recorded. The primary crystal solidification temperature and the cooling rate immediately after the initiation of the primary crystal solidification are read from the obtained cooling curve or data indicating this, or the information is calculated by a computer or the like, and the information is temporarily stored. It should be noted that the cooling rate is preferably an average cooling rate of the same time as the temperature stagnation time immediately after the start of solidification of the primary crystal of the molten metal before the grain refinement treatment.

【0021】次に、結晶粒微細化判定手段において、前
記検出された微細化処理前後の初晶凝固温度及び/又は
初晶凝固開始直後の冷却速度、あるいは微細化処理前後
の該検出値の差と予め設定された基準値とを比較し、結
晶粒微細化の程度を判定する。すなわち、前記第1溶湯
状態量検出手段および第2溶湯状態量検出手段において
得られた第1状態量および第2状態量、例えばマグネシ
ウム合金の微細化処理前または/および後の初晶凝固温
度、初晶凝固開始直後の冷却速度、または微細化処理前
後のこれら検出値の差と、それぞれの値に対応して設定
された基準値とを比較し、結晶粒微細化の効果の程度が
十分か、不十分か、またはその程度についてなどの結晶
粒微細化の程度を判定する。
Next, in the grain refinement determination means, the detected primary crystal solidification temperature before and after the refinement treatment and / or the cooling rate immediately after the start of the primary crystal solidification or the difference between the detected values before and after the refinement treatment. Is compared with a preset reference value to determine the degree of grain refinement. That is, the first state quantity and the second state quantity obtained by the first molten metal state quantity detecting means and the second molten metal state quantity detecting means, for example, the primary crystal solidification temperature before or / and after the refinement treatment of the magnesium alloy, The cooling rate immediately after the start of solidification of the primary crystals or the difference between these detected values before and after the refining process is compared with the reference value set corresponding to each value, and whether the degree of grain refining effect is sufficient. The degree of grain refinement is determined, such as whether the grain size is insufficient or insufficient.

【0022】基準値との比較・判定の具体的一例を示す
と、以下のようである。先ず、初晶凝固温度は、結晶粒
微細化処理前の値と結晶粒微細化処理後の値とを比較
し、初晶凝固温度の差を求める。また、それぞれの結晶
粒微細化処理前後の初晶凝固開始直後の冷却速度を用い
る。そして、これらの値を、予め設定してある結晶粒微
細化のための基準値と比較する。求めた値が基準値を満
足していればこの溶湯は結晶粒微細化効果があると判定
できる。しかし、基準値を満足していない場合は、結晶
粒微細化効果が不十分と判定され、再度の結晶粒微細化
処理が必要となる。再度結晶微細化処理した溶湯は、も
う一度、前記と同様にして結晶粒微細化の判定を行い、
結晶粒微細化の効果を確認する。
A specific example of comparison / judgment with the reference value is as follows. First, as for the primary crystal solidification temperature, the value before the crystal grain refining treatment and the value after the crystal grain refining treatment are compared to obtain the difference in the primary crystal solidification temperature. Further, the cooling rate immediately after the start of primary crystal solidification before and after each grain refining treatment is used. Then, these values are compared with preset reference values for grain refinement. If the obtained value satisfies the reference value, it can be determined that this molten metal has a grain refining effect. However, when the standard value is not satisfied, it is determined that the grain refining effect is insufficient, and the grain refining process is required again. The molten metal subjected to the crystal refining treatment again, the grain refining was judged in the same manner as described above,
Confirm the effect of grain refinement.

【0023】結晶粒微細化の判定に必要な基準値は、次
のようにして求める。先ず、使用する鋳型は、熱分析用
鋳型と同じものを用いる。溶湯は、精錬および精錬後結
晶粒微細化剤の添加量を変えて、または結晶粒微細化処
理後溶湯保持時間を変えてなど、結晶粒微細化の程度が
異なる状態で熱分析をする。得られた冷却曲線から初晶
凝固温度および初晶凝固開始直後の冷却速度を読み取
り、また同時に熱分析した試料の凝固組織観察を行い、
結晶粒径を測定する。そして、初晶凝固温度および初晶
凝固開始直後の冷却速度の変化と結晶粒径の関係を求め
る。結晶粒径は、結晶粒微細化処理後の溶湯の初晶凝固
温度が結晶粒微細化処理前の溶湯の初晶凝固温度より高
くなるとともに小さくなり、所定温度以上になると結晶
粒径は一定となる。また、冷却速度が大きくなるととも
に結晶粒径は小さくなり、所定速度以上で結晶粒径が一
定となる。これらの関係を求めることにより、結晶粒径
が微細一定となる初晶凝固温度および初晶凝固開始前後
の冷却速度を微細化のための基準値として設定する。
The reference value required for determining the grain refinement is determined as follows. First, the same template as the template for thermal analysis is used. The molten metal is subjected to thermal analysis in a state in which the degree of crystal grain refining is different, such as by changing the amount of refining and addition of the crystal grain refining agent after refining, or changing the molten metal holding time after the crystal grain refining treatment. From the obtained cooling curve, the primary crystal solidification temperature and the cooling rate immediately after the start of primary crystal solidification are read, and at the same time, the solidification structure of the sample subjected to thermal analysis is observed,
Measure the crystal grain size. Then, the relationship between the change in the primary crystal solidification temperature and the cooling rate immediately after the start of the primary crystal solidification and the crystal grain size is obtained. The crystal grain size becomes smaller as the primary crystal solidification temperature of the melt after the crystal grain refining treatment becomes higher than the primary crystal solidification temperature of the melt before the crystal grain refining treatment, and the crystal grain size becomes constant when the temperature exceeds a predetermined temperature. Become. Further, as the cooling rate increases, the crystal grain size decreases, and the crystal grain size becomes constant at a predetermined rate or higher. By obtaining these relationships, the primary crystal solidification temperature at which the crystal grain size becomes fine and constant and the cooling rate before and after the start of primary crystal solidification are set as reference values for refinement.

【0024】なお、Al−Si−Mg、Al−Si−C
u系合金では、Na、Srなどによる共晶組織微細化の
判定にAEメータが使用されている。これは、熱電対を
設置したシェル鋳型に溶湯を注湯し、得られた冷却曲線
の共晶凝固温度を読み取り、微細化の有無を判定するも
のである。しかし、Al−Si−Mg、Al−Si−C
u系合金の共晶温度は、Si、Cu量によっても変化す
るため、得られた冷却曲線から共晶凝固温度を直読する
だけでは、微細化効果判定の確実性に欠ける。しかし、
本発明では、先に述べたように、結晶粒微細化処理前の
溶湯の熱分析を行い、その後結晶粒微細化処理後の溶湯
の熱分析を行い、必要な値を、同じ溶湯を用いて予め熱
分析データを解析して求めた基準値と比較することによ
り結晶粒微細化効果の程度の判定を行うため、組成変動
からくる凝固温度の違いに影響されず、的確な結晶粒微
細化効果の判定を行うことができる。また、初晶凝固開
始直後の冷却速度には組成変動は影響せず、予め結晶粒
微細化のための基準値を求めておけば、的確にその効果
を判定することができる。
Al-Si-Mg, Al-Si-C
In u-based alloys, an AE meter is used to determine the refinement of the eutectic structure due to Na, Sr, or the like. In this method, the molten metal is poured into a shell mold provided with a thermocouple, the eutectic solidification temperature of the obtained cooling curve is read, and the presence or absence of refinement is determined. However, Al-Si-Mg, Al-Si-C
Since the eutectic temperature of the u-based alloy also changes depending on the amounts of Si and Cu, just by directly reading the eutectic solidification temperature from the obtained cooling curve, the certainty of the refinement effect determination cannot be ensured. But,
In the present invention, as described above, the thermal analysis of the molten metal before the grain refining treatment, the thermal analysis of the molten metal after the grain refining treatment, the required value, using the same molten metal Since the degree of grain refining effect is judged by comparing with the reference value obtained by analyzing the thermal analysis data in advance, the precise grain refining effect is not affected by the difference in solidification temperature caused by the composition variation. Can be determined. Further, the composition change does not affect the cooling rate immediately after the start of the primary crystal solidification, and the effect can be accurately determined if the reference value for grain refinement is obtained in advance.

【0025】このように、結晶粒微細化効果の判定は、
初晶凝固温度あるいは初晶凝固開始直後の冷却速度の何
れでも、溶湯の結晶粒微細化効果を判定することが可能
であるが、この二つを同時に基準値として用いれば、微
細化効果判定に二重のチェックを行うことができ、微細
化効果の判定により信頼性を持たせることができる。
Thus, the judgment of the grain refining effect is
It is possible to determine the grain refining effect of the molten metal at either the primary crystal solidification temperature or the cooling rate immediately after the start of primary crystal solidification, but if these two are used as reference values at the same time, it is possible to determine the refinement effect. A double check can be performed, and reliability can be provided by determining the miniaturization effect.

【0026】なお、マグネシウム合金は、Mg−Al系
合金のほか、Mg−Zn−R.E.−Zr系合金などの
多種類の合金がある。これらの合金は、何れも結晶粒の
微細化処理が必要であり、その効果の判定は溶解法とと
もに重要な技術であり、熟練した溶解技術者の伎倆にか
かっている。本発明によれば、合金系が異なっても、そ
れぞれの合金で基準値を設けておけば、同様な方法で短
時間に、簡便かつ的確に結晶粒微細化効果を判定するこ
とができる。
The magnesium alloy includes Mg-Al-based alloys, Mg-Zn-R. E. There are many types of alloys such as Zr-based alloys. All of these alloys require a refinement treatment of crystal grains, and the determination of the effect is an important technique together with the melting method, and depends on a skilled melting engineer. According to the present invention, even if the alloy systems are different, if the reference value is set for each alloy, the grain refining effect can be determined easily and accurately by the same method in a short time.

【0027】以上の具体例では、溶解過程の精錬直後の
マグネシウム合金溶湯を注湯すると、凝固した鋳物の結
晶粒は著しく粗大となる。しかし、一方、この溶湯に微
細化処理を施すと、鋳物の結晶粒は著しく微細となる。
しかし、結晶粒微細化処理した後、溶湯をそのまま長時
間保持すると溶湯の結晶粒微細化効果が消滅し、鋳物の
結晶粒は粗大となる。これらの溶湯を熱分析し、得られ
た冷却曲線を詳細に検討すると、結晶粒微細化の程度に
よって初晶凝固挙動に変化のあることが認められた。
In the above specific examples, when the molten magnesium alloy immediately after refining in the melting process is poured, the crystal grains of the solidified casting become remarkably coarse. However, on the other hand, when the molten metal is subjected to a refining treatment, the crystal grains of the casting become extremely fine.
However, if the molten metal is kept as it is for a long time after the crystal grain refining treatment, the crystal grain refining effect of the molten metal disappears, and the crystal grains of the casting become coarse. A thermal analysis of these melts and a detailed examination of the cooling curves obtained revealed that the primary crystal solidification behavior varied depending on the degree of grain refinement.

【0028】図1に、結晶粒が粗大化した精錬溶湯と結
晶粒が著しく微細化した微細化処理直後の溶湯の冷却曲
線の違いを示す。前者の冷却曲線11には、初晶凝固開
始時に過冷・再熱現象が現れる数秒間の温度停滞が現れ
る。後者の冷却曲線12には、初晶凝固開始時に過冷・
再熱現象が現れず、単に凝固開始を示す変曲点が現れる
のみである。
FIG. 1 shows the difference in cooling curves between the refined molten metal having coarse crystal grains and the molten metal immediately after the refining treatment in which the crystal grains are extremely fine. In the former cooling curve 11, there is a temperature stagnation for several seconds in which a supercooling / reheating phenomenon appears at the start of solidification of primary crystals. The latter cooling curve 12 shows that supercooling at the start of primary crystal solidification
The reheating phenomenon does not appear, but only an inflection point indicating the start of solidification appears.

【0029】この冷却曲線の違いから、初晶凝固温度お
よび初晶凝固開始直後の冷却速度の変化を求めると、結
晶粒が微細化した溶湯は微細化しない溶湯に比べ初晶凝
固温度が4〜5°C高くなり、また初晶凝固開始直後の
5秒間の冷却速度も0°C/sから0.7°C/sと大
きくなっていることが認められた。
From the difference in the cooling curves, the change in the primary crystal solidification temperature and the cooling rate immediately after the start of the primary crystal solidification was determined. It was confirmed that the temperature increased by 5 ° C, and the cooling rate for 5 seconds immediately after the start of solidification of the primary crystal increased from 0 ° C / s to 0.7 ° C / s.

【0030】すなわち、図2に示すように、溶湯の結晶
粒微細化効果が大きくなる(結晶粒は小さくなる)ほど
初晶凝固温度は高くなり、また冷却速度も大きくなる。
しかし、溶湯の微細化効果は、結晶粒微細化処理後の初
晶凝固開始直後の初晶凝固温度の上昇が4°C以上、冷
却速度が0.4°C/s以上で変わらず一定となる。こ
の場合、マグネシウム合金の微細化処理後の初晶凝固温
度と微細化処理前の初晶凝固温度との差の基準値として
4°C、結晶粒微細化処理後の初晶凝固開始直後の冷却
速度の基準値として0.4°C/sが適当である。従っ
て、熱分析した冷却曲線の変化を的確に読み取ることに
より、溶湯の結晶粒微細化効果を判定することが可能と
なる。
That is, as shown in FIG. 2, as the effect of refining the crystal grains of the melt increases (the crystal grains decrease), the primary crystal solidification temperature increases and the cooling rate also increases.
However, the refining effect of the molten metal remains constant at an increase of 4 ° C or more in the primary crystal solidification temperature immediately after the start of the primary crystal solidification after the crystal grain refining treatment and a cooling rate of 0.4 ° C / s or more. Become. In this case, 4 ° C as a reference value of the difference between the primary crystal solidification temperature after the refinement treatment of the magnesium alloy and the primary crystal solidification temperature before the refinement treatment, cooling immediately after the start of the primary crystal solidification after the grain refinement treatment. 0.4 ° C / s is suitable as the reference value of the speed. Therefore, it is possible to determine the crystal grain refining effect of the molten metal by accurately reading the change in the cooling curve obtained by thermal analysis.

【0031】本具体例の結晶粒微細化判定装置は、約5
0g〜100gの少量溶湯の熱分析をするもので、その
熱分析時間は約3〜5分と短く、簡単である。このた
め、従来方法のように、切断、研磨、腐食、組織観察の
ような煩わしい操作が不要となり、そのため判定に要す
る時間も著しく短縮することができる。また、破面観察
のような主観的要因も排除されるため、初心者でも確実
に注湯直前のマグネシウム合金溶湯の結晶粒微細化効果
を判定することができる。
The crystal grain refining determination apparatus of this example is about 5
This is a thermal analysis of a small amount of molten metal of 0 to 100 g, and the thermal analysis time is as short as about 3 to 5 minutes, which is simple. Therefore, unlike the conventional method, a troublesome operation such as cutting, polishing, corrosion, and structure observation is not required, and therefore the time required for the determination can be significantly shortened. Further, since subjective factors such as fracture surface observation are eliminated, even a beginner can surely judge the grain refinement effect of the magnesium alloy melt immediately before pouring.

【0032】なお、結晶粒微細化効果が不十分と判定さ
れた場合は、再度微細化処理を施し、その溶湯をもう一
度熱分析し、効果を確認した上で注湯することができ
る。このように、短時間で、簡便かつ確実に注湯直前の
溶湯の結晶粒微細効果を判定することができるため、的
確な溶湯管理が可能となり、結晶粒微細化不良に起因す
る部品の強度低下や品質のバラツキを防止することがで
きる。
If it is determined that the grain refining effect is insufficient, the grain refining treatment can be performed again, the molten metal can be subjected to thermal analysis again, and the effect can be confirmed before pouring. In this way, the crystal grain refining effect of the melt immediately before pouring can be determined easily and reliably in a short period of time, which enables accurate melt control and reduces the strength of parts caused by crystal grain refining defects. And quality variations can be prevented.

【0033】なお、前記具体例では、結晶粒微細化前後
のマグネシウム合金溶湯を、別に用意した熱分析用鋳型
に注湯し、該鋳型に設けられた熱電対等の状態量検出セ
ンサにより状態量を検出し、結晶粒微細化判定を行った
例を示した。しかし、マグネシウム合金の微細化処理装
置、あるいは該微細化処理装置を含む装置またはシステ
ムの適切な箇所に状態量検出センサを配設し、前記のよ
うな熱分析用鋳型を用いずに、リアルタイムでマグネシ
ウム合金溶湯の結晶粒微細化判定を行うことができる。
また、基準値も前述の具体例のように予め設定するので
はなく、得られた情報から得ることもできる。なお、こ
れらの場合は、状態量の検出および/または結晶粒微細
化判定にコンピュータを用いて行うことが好ましい。ま
た、該判定結果をコンピュータを用いて、フィードバッ
クし、適切な生産管理を行うこともできる。
In the above specific example, the molten magnesium alloy before and after the grain refinement is poured into a separately prepared thermal analysis mold, and the state quantity is detected by a state quantity detection sensor such as a thermocouple provided in the mold. An example in which the grain size is detected and the grain refinement is determined is shown. However, the state-quantity detection sensor is provided at an appropriate location of the magnesium alloy refining treatment apparatus or an apparatus or system including the refining treatment apparatus, and the thermal analysis template as described above is not used in real time. It is possible to determine the grain refinement of the molten magnesium alloy.
Further, the reference value can also be obtained from the obtained information instead of being preset as in the above-described specific example. In these cases, it is preferable to use a computer to detect the state quantity and / or determine the grain refinement. Further, the judgment result can be fed back using a computer to perform appropriate production control.

【0034】以下に、本発明の実施例を説明する。第1実施例 Examples of the present invention will be described below. First embodiment

【0035】Mg−9%Al−1%Zn合金150kg
を溶解し、結晶粒微細化判定装置を用い、該装置の評価
を結晶粒微細化効果の確認試験により行った。
Mg-9% Al-1% Zn alloy 150 kg
Was melted, and a grain refinement determination device was used to evaluate the device by a confirmation test of the grain refinement effect.

【0036】まず、バーナ加熱炉の中の鉄ルツボ内に、
AZ91マグネシウム合金(Mg−9%Al−1%Zn
合金)を150kg投入し、溶解用フラックスを散布し
て溶解し、溶落後約715°Cの温度で精錬用フラック
スを添加しながら20分間の攪拌精錬を行った。精錬を
終えた溶湯は、熱分析して第1溶湯としての初晶凝固温
度および初晶凝固開始直後の平均冷却速度を求めた。
First, in the iron crucible in the burner heating furnace,
AZ91 magnesium alloy (Mg-9% Al-1% Zn
150 kg of the alloy) was sprayed, and the melting flux was sprinkled to dissolve the alloy. After the burnout, stirring and refining was performed for 20 minutes while adding the refining flux at a temperature of about 715 ° C. The molten metal that had been refined was subjected to thermal analysis to obtain the primary crystal solidification temperature as the first molten metal and the average cooling rate immediately after the start of primary crystal solidification.

【0037】本実施例で用いた結晶粒微細化判定装置
は、熱電対を配設した熱分析用鋳型と該熱電対からの出
力を記録し、演算するコンピュータ部と、データや演算
結果等を表示する表示部とからなる。熱電対の起電力
は、コンピュータ部に収録するとともに、その温度変化
を表示部のCRTに描き出す。得られた冷却曲線上の第
1の変曲点を初晶凝固温度として読み取る。次いで、初
晶凝固開始から5秒後の温度を読み取り、その5秒間の
平均冷却速度を計算する。この二つのデータは、そのま
まコンピュータ部の記憶部に記録・保存する。
The crystal grain refining determination apparatus used in the present embodiment is a template for thermal analysis in which a thermocouple is arranged, and a computer section for recording and calculating the output from the thermocouple, data, calculation results, etc. And a display unit for displaying. The electromotive force of the thermocouple is recorded in the computer section and the temperature change is drawn on the CRT of the display section. The first inflection point on the obtained cooling curve is read as the primary crystal solidification temperature. Then, the temperature 5 seconds after the start of solidification of the primary crystal is read, and the average cooling rate for 5 seconds is calculated. These two data are recorded / saved in the storage unit of the computer unit as they are.

【0038】一回目の熱分析を終えると、次は、溶湯温
度を740°Cまで昇温させて、同温度でヘキサクロル
エタンを添加し、結晶粒微細化処理を行った。結晶粒微
細化処理を終えた溶湯はそのまま保持し、鋳型の準備が
できたところで、熱分析を行い溶湯の結晶粒微細化効果
を判定した。結晶粒径は、初晶凝固温度の上昇ととも
に、冷却速度の増大とともに微細化するが、本判定装置
では結晶粒径を100ミクロン以下とするための基準値
として、初晶凝固温度の上昇を4°C以上、また冷却速
度を0.4°C/s以上と設定した。
After the first thermal analysis was completed, the temperature of the molten metal was raised to 740 ° C., hexachloroethane was added at the same temperature, and grain refinement treatment was performed. The molten metal that had undergone the grain refining treatment was held as it was, and when the mold was ready, thermal analysis was performed to determine the grain refining effect of the molten metal. The crystal grain size becomes finer with the increase of the primary crystal solidification temperature and the cooling rate, but in the present judgment apparatus, the increase of the primary crystal solidification temperature is set to 4 as a reference value for keeping the crystal grain size below 100 microns. ° C or higher, and the cooling rate was set to 0.4 ° C / s or higher.

【0039】150kgのAZ91合金を10チャージ
溶解したときの溶湯の結晶粒微細化効果判定結果を、表
1に示す。同表中には、組織観察により測定した結晶粒
径も併せて示した。
Table 1 shows the crystal grain refining effect determination results of the molten metal when 150 kg of AZ91 alloy was melted for 10 charges. In the same table, the crystal grain size measured by the structure observation is also shown.

【0040】[0040]

【表1】 [Table 1]

【0041】表1より、結晶粒微細化効果は、3、7チ
ャージ目の溶湯が基準値を下回り、結晶粒微細化効果が
不十分と判定されたが、その他は結晶粒微細化効果あり
と判定された。この判定結果を、結晶粒径を測定して確
認すると、3、7チャージ目の溶湯はそれぞれ120、
150ミクロンで結晶粒の粗大化が進行していたが、そ
れ以外の溶湯は100ミクロン以下であり十分に微細化
されていた。
From Table 1, it was determined that the crystal grain refining effect was insufficient because the melts at the 3rd and 7th charges were below the standard value, but the crystal grain refining effect was insufficient. It was judged. When this determination result was confirmed by measuring the crystal grain size, the molten metal at the 3rd and 7th charges was 120,
The coarsening of the crystal grains proceeded at 150 microns, but the melts other than that were 100 microns or less and were sufficiently fine.

【0042】すなわち、本実施例の判定装置によれば、
結晶粒径100ミクロンを境にした判定が確実にでき、
極めて有効な判定法であることが確認できた。なお、結
晶粒微細化効果が不十分と判断された3、7チャージ目
の溶湯は、再度の結晶粒微細化処理を施した結果、基準
値を満足した。
That is, according to the determination device of this embodiment,
Judgment can be made reliably when the grain size is 100 microns,
It was confirmed to be an extremely effective judgment method. The melts at the 3rd and 7th charges, for which the grain refinement effect was determined to be insufficient, satisfied the standard value as a result of performing the grain refinement treatment again.

【0043】以上より、本実施例の結晶粒微細化判定装
置を用いて注湯前に溶湯の結晶粒微細化効果を判定する
ことにより、確実に鋳造する鋳物の結晶粒微細化が達成
でき、強度不足による品質のバラツキを防止することが
できることが分かった。第2実施例
From the above, by using the crystal grain refining determination apparatus of this embodiment to determine the crystal grain refining effect of the molten metal before pouring, the crystal grain refining of the casting to be reliably cast can be achieved, and the strength can be improved. It was found that it is possible to prevent variations in quality due to shortage. Second embodiment

【0044】結晶粒微細化判定装置により、結晶粒微細
化処理効果の持続時間の確認試験を行った。
A confirmation test of the duration of the crystal grain refining treatment effect was carried out by a grain refinement judging apparatus.

【0045】使用した熱分析用鋳型は、前記第1実施例
と同様のものを用いた。溶湯は、AZ91合金90kg
を溶解し、前記第1実施例と同様に精錬、結晶粒微細化
処理を施した。熱分析は、精錬溶湯と結晶粒微細化直後
の溶湯、その後30分後に溶湯を採取して行った。
The thermal analysis template used was the same as that used in the first embodiment. Molten metal is AZ91 alloy 90kg
Was melted and subjected to refining and crystal grain refining treatment in the same manner as in the first embodiment. The thermal analysis was carried out by collecting the refined molten metal and the molten metal immediately after the grain refinement, and 30 minutes later.

【0046】図3に、初晶凝固温度と初晶凝固開始直後
の冷却速度の変化を示した。また、同図中には、その時
の鋳物の結晶粒径の変化を併せて示した。結晶粒微細化
直後の溶湯の初晶凝固温度は、精錬溶湯の初晶凝固温度
より5°C上昇し、冷却速度も0.7°C/sと大きく
なっている。この値は、基準値を満足している。溶湯保
持時間120分の溶湯の初晶凝固温度もまだ5°C上昇
しており、この状態でもまだ結晶粒微細化効果がある。
一方、冷却速度は、溶湯保持時間の増加とともに次第に
小さくなっているが、120分保持した後も0.4°C
/sあり、やはり微細化効果があると判定される。しか
し、150分以上保持した溶湯は、初晶凝固温度の上昇
が4°C以下となり、また冷却速度も0.4°C以下と
なり、基準値を満足せず、結晶粒の微細化効果がなくな
ってきていることがわかる。これを測定した結晶粒径で
確認すると、120分までの溶湯は結晶粒径が100ミ
クロン以下であるが、150分以上では結晶粒径が10
0ミクロン以上となり、120分までは溶湯保持しても
溶湯の結晶粒微細化効果があることが分かった。
FIG. 3 shows changes in the primary crystal solidification temperature and the cooling rate immediately after the start of primary crystal solidification. Also, in the figure, the change in the crystal grain size of the casting at that time is also shown. The primary crystal solidification temperature of the molten metal immediately after refinement of the crystal grains was 5 ° C higher than the primary crystal solidification temperature of the refined molten metal, and the cooling rate was as high as 0.7 ° C / s. This value satisfies the standard value. The primary crystal solidification temperature of the molten metal having a molten metal holding time of 120 minutes still rises by 5 ° C., and even in this state, there is still a crystal grain refining effect.
On the other hand, the cooling rate gradually decreased with the increase in the molten metal holding time, but it was 0.4 ° C even after holding for 120 minutes.
/ S, and it is judged that there is still a miniaturization effect. However, in the melt held for 150 minutes or longer, the rise of the primary crystal solidification temperature was 4 ° C or less, and the cooling rate was 0.4 ° C or less, which did not satisfy the standard value and the grain refining effect was lost. You can see that it is coming. When this is confirmed by the measured crystal grain size, the molten metal up to 120 minutes has a crystal grain size of 100 microns or less, but at 150 minutes or more, the crystal grain size is 10 microns or less.
It was found that the particle size was 0 micron or more, and even if the molten metal was kept for up to 120 minutes, there was an effect of refining the crystal grains of the molten metal.

【0047】なお、比較のために、本溶湯で鋳造した鋳
物を破面観察して結晶粒の微細化効果を判定した。破面
の凹凸は結晶粒微細化直後の鋳物を最小として保持時間
の増加とともに粗くなる傾向が見られたが、結晶粒径1
00ミクロンを境にした微細化効果を判定することは不
可能であった。
For comparison, a fractured surface of a casting cast from the main melt was observed to determine the effect of refining the crystal grains. The unevenness of the fracture surface tended to become coarser with the increase in holding time, with the casting immediately after grain refinement being minimized, but the grain size 1
It was impossible to judge the miniaturization effect at the boundary of 00 microns.

【0048】以上より、本実施例の結晶粒微細化判定装
置を用いることにより、溶湯の結晶粒微細化効果の判定
を、短時間、簡便かつ確実にすることができ、極めて有
効な装置であることが確認された。
As described above, by using the crystal grain refining determination apparatus of this embodiment, the determination of the crystal grain refining effect of the molten metal can be made simple and reliable in a short time, and is an extremely effective apparatus. It was confirmed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一具体例における溶湯の冷却曲線を示
す線図である。
FIG. 1 is a diagram showing a cooling curve of molten metal in an example of the present invention.

【図2】本発明の一具体例における溶湯の初晶凝固温度
または冷却速度と結晶粒径との関係を示す線図である。
FIG. 2 is a diagram showing a relationship between a primary crystal solidification temperature or a cooling rate of a molten metal and a crystal grain size in one specific example of the present invention.

【図3】本発明の第2実施例における結晶粒微細化処理
後の溶湯保持時間と温度、粒径速度および結晶粒径との
関係を示す線図である。
FIG. 3 is a diagram showing the relationship between the molten metal holding time after the crystal grain refining treatment and the temperature, the grain size velocity and the crystal grain size in the second example of the present invention.

【符号の説明】[Explanation of symbols]

11 ・・・ 結晶粒が粗大化した精錬溶湯 12 ・・・ 微細化処理直後の溶湯 11 ・ ・ ・ Refined molten metal with coarse crystal grains 12 ・ ・ ・ Molten metal immediately after refining treatment

フロントページの続き (72)発明者 日下部 初夫 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 米倉 浩司 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 宮本 孝夫 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 大塚 幸男 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内Front Page Continuation (72) Inventor Hatsuko Kusakabe, Nagakute-cho, Aichi-gun, Aichi-gun, Nagaminate Yokomichi 1 41, Toyota Central Research Institute Co., Ltd. (72) Inventor, Koji Yonekura, Aichi-gun, Nagakute-machi, Nagakute-machi No. 41 1 Toyota Central Research Institute Co., Ltd. (72) Inventor Takao Miyamoto 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Inventor Yukio Otsuka 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Vehicle Within the corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 マグネシウム合金溶湯の結晶粒微細化効
果を判定する装置であって、 前記マグネシウム合金の微細化処理前の溶湯の初晶凝固
温度及び/又は初晶凝固開始直後の冷却速度を検出する
手段と、 前記マグネシウム合金の微細化処理後の溶湯の初晶凝固
温度及び/又は初晶凝固開始直後の冷却速度を検出する
手段と、 前記検出された微細化処理前後の初晶凝固温度及び/又
は初晶凝固開始直後の冷却速度、あるいは微細化処理前
後の該検出値の差と予め設定された基準値とを比較し、
結晶粒微細化の程度を判定する手段と、からなることを
特徴とするマグネシウム合金溶湯の結晶粒微細化判定装
置。
1. A device for determining a crystal grain refining effect of a magnesium alloy melt, which detects a primary crystal solidification temperature and / or a cooling rate immediately after the start of primary crystal solidification of the melt before the refinement treatment of the magnesium alloy. Means for detecting the primary crystal solidification temperature and / or the cooling rate immediately after the start of primary crystal solidification of the molten metal after the refinement treatment of the magnesium alloy, and the detected primary crystal solidification temperature before and after the refinement treatment and / Or comparing the cooling rate immediately after the start of solidification of the primary crystal, or the difference between the detected values before and after the refining process and a preset reference value,
An apparatus for determining crystal grain refining of a molten magnesium alloy, comprising means for determining the degree of crystal grain refining.
JP3135946A 1991-05-10 1991-05-10 Crystal grain fragmentation judgment device for magnesium alloy melt Pending JPH05223759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3135946A JPH05223759A (en) 1991-05-10 1991-05-10 Crystal grain fragmentation judgment device for magnesium alloy melt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3135946A JPH05223759A (en) 1991-05-10 1991-05-10 Crystal grain fragmentation judgment device for magnesium alloy melt

Publications (1)

Publication Number Publication Date
JPH05223759A true JPH05223759A (en) 1993-08-31

Family

ID=15163543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3135946A Pending JPH05223759A (en) 1991-05-10 1991-05-10 Crystal grain fragmentation judgment device for magnesium alloy melt

Country Status (1)

Country Link
JP (1) JPH05223759A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776740A (en) * 1993-09-07 1995-03-20 Ube Ind Ltd Production of magnesium alloy casting stock suitable for semi-fusion molding
JP2001050920A (en) * 1999-08-11 2001-02-23 Metal Science Kk Method for estimating crystal grain size of aluminum alloy
CN105806878A (en) * 2016-03-08 2016-07-27 西北工业大学 Method for determining initial melting temperature of nickel-based superalloy
JP2021171768A (en) * 2020-04-20 2021-11-01 エコ・システム有限会社 Crystal grain refining determination method from cooling curve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776740A (en) * 1993-09-07 1995-03-20 Ube Ind Ltd Production of magnesium alloy casting stock suitable for semi-fusion molding
JP2001050920A (en) * 1999-08-11 2001-02-23 Metal Science Kk Method for estimating crystal grain size of aluminum alloy
CN105806878A (en) * 2016-03-08 2016-07-27 西北工业大学 Method for determining initial melting temperature of nickel-based superalloy
CN105806878B (en) * 2016-03-08 2018-11-06 西北工业大学 A method of measuring nickel base superalloy initial melting temperature
JP2021171768A (en) * 2020-04-20 2021-11-01 エコ・システム有限会社 Crystal grain refining determination method from cooling curve

Similar Documents

Publication Publication Date Title
Cáceres et al. The deformation and fracture behaviour of an Al Si Mg casting alloy
Cao et al. Hot tearing of ternary Mg− Al− Ca alloy castings
EP0192764B1 (en) A method for producing cast-iron, and in particular cast-iron which contains vermicular graphite
Li et al. Hot tearing of aluminum alloys: a critical literature review
Wang et al. Hot tearing susceptibility of binary Mg–Y alloy castings
Wang et al. An understanding of the hot tearing mechanism in AZ91 magnesium alloy
CN102998324B (en) Thermal analysis and detection method for solidification grain size of magnesium alloy melt
CN101303319A (en) Thermal analysis test method and apparatus of magnesium and magnesium alloy deteriorative processing tissue thinning effect
JP2734490B2 (en) Method for producing CV graphite cast iron
CN105568022A (en) Low-cooling-rate sensitive high-nucleation-capacity AlNbTiBRE composite refining modifier used for aluminum alloy and preparation method of low-cooling-rate sensitive high-nucleation-capacity AlNbTiBRE composite refining modifier used for aluminum alloy
Wang et al. Grain refinement of Al-7Si alloys and the efficiency assessment by recognition of cooling curves
JPH05223759A (en) Crystal grain fragmentation judgment device for magnesium alloy melt
Zhen et al. Hot tearing behaviour of binary Mg–1Al alloy using a contraction force measuring method
WO1992006810A1 (en) Method for the production of ductile cast iron
Górny et al. Effect of Titanium and Boron on the Stability of Grain Refinement of Al-Cu Alloy
Dehnavi et al. Cooling curve analysis in binary Al-Cu alloys: Part I-Effect of cooling rate and copper content on the eutectic formation
El-Sayed et al. Effect of mould type and solidification time on bifilm defects and mechanical properties of Al–7si–0.3 mg alloy castings
JP4298925B2 (en) Method for determining the required amount of structural modifier to be added to cast iron, equipment therefor and computer program product
Li et al. Influence of mold temperature on microstructure and shrinkage porosity of the A357 alloys in gravity die casting
JPH07502819A (en) Method for determining carbon equivalent in texture-modified cast iron
Sui et al. Towards the Ductility Limit of Large Thin-Walled A356 Alloy Castings
Bamberger et al. Some observations on dendritic arm spacing in Al-Si-Mg and Al-Cu alloy chill castings
Fallet et al. Influence of barium addition on the microstructure and the rheological behaviour of partially solidified Al–Cu alloys
JP2798725B2 (en) Method for measuring solid fraction of solid-liquid coexisting metal
Matejka et al. Study of Susceptibility to Tearing of AlSi5Cu2Mg Alloy with Addition of Zr and Ti