JPH05223742A - Plasma emission analysis - Google Patents

Plasma emission analysis

Info

Publication number
JPH05223742A
JPH05223742A JP2808492A JP2808492A JPH05223742A JP H05223742 A JPH05223742 A JP H05223742A JP 2808492 A JP2808492 A JP 2808492A JP 2808492 A JP2808492 A JP 2808492A JP H05223742 A JPH05223742 A JP H05223742A
Authority
JP
Japan
Prior art keywords
sample
intensity
spectral intensity
plasma emission
target element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2808492A
Other languages
Japanese (ja)
Inventor
Takeshi Uemura
健 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2808492A priority Critical patent/JPH05223742A/en
Publication of JPH05223742A publication Critical patent/JPH05223742A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To maintain an analysis accuracy and greatly reduce a time required for the analysis by measuring spectral intensity of a matrix element in a dissolution acid liquid of a metal sample and obtaining an element content from a spectral intensity ratio of an objective element to a matrix element when the intensity exceeds a specified value as a content of the dissolution liquid. CONSTITUTION:A dissolution acid liquid 5 of 1ml is added to a hole 4 of a sample 1. At the same time, the liquid 5 within the hole 4 via a suction capillary and a liquid to be inspected with a certain concentration (1g/100ml) are introduced into a plasma emission analysis device 7. After that, a spectral intensity of iron which is a matrix element is automatically monitored by a computer 8. Then, the spectral intensity of a target element and that of iron which is the matrix element are measured for three seconds after the spectrum of the iron exceeds 1g/100ml as a concentration of iron. The computer 8 calculates the content of the target element within steel by using the relationship between the intensity ratio which is obtained previously and a target element content, namely a calibration curve according to the spectral intensity ratio between the target element and iron.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属試料をプラズマ発
光分析法で分析する際の分析時間の短縮化に好適なプラ
ズマ発光分析方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma emission analysis method suitable for shortening the analysis time when a metal sample is analyzed by plasma emission analysis.

【0002】[0002]

【従来の技術】金属を製造する工程で、精錬工程中の溶
融金属の化学成分を迅速に測定し、精錬をコントロール
したり、成分調整することは、非常に重要なことであ
る。従来、溶融金属の化学成分を迅速に測定するために
は種々の方法があり利用されているが、その多くは物理
的分析方法であり、分析精度上の問題がある。
2. Description of the Related Art In the process of producing a metal, it is very important to quickly measure the chemical composition of the molten metal during the refining process to control the refining and adjust the composition. Conventionally, various methods have been used to measure the chemical composition of molten metal rapidly, but most of them are physical analysis methods, and there is a problem in analysis accuracy.

【0003】一方、プラズマ発光分析法は分析精度が良
く、研究実験室内で広く利用されている。しかし、迅速
性で劣ることから、精錬工程中の溶融金属の化学成分の
分析には利用しにくいものであった。この迅速性に欠け
る原因は、特にプラズマ発光分析用試料溶液の作成に長
時間を要するためである。即ち、上記試料溶液は、金
属試片(対象母材)からドリル等で微少片の試料を得
る、上記試料を1g正しく秤量する、この秤量試料
をビーカーに移す、ビーカーに溶解用酸(塩酸、硝
酸、硫酸、過塩素酸等)を20ml添加する、これらを
加熱して試料を完全に溶解する、完全溶解後、溶解液
を冷却する、溶解液を100mlのメスフラスコに移し
純水で100mlに正確に薄める、この1g/100ml
の濃度の試料溶液をビーカーに移す、8工程を経て作成
される。
On the other hand, the plasma emission spectrometry has high analytical accuracy and is widely used in research laboratories. However, since it is inferior in speed, it is difficult to use for analysis of chemical components of molten metal during refining process. The reason for this lack of swiftness is that it takes a long time to prepare a sample solution for plasma emission analysis. That is, for the sample solution, a sample of a minute piece is obtained from a metal test piece (target base material) by a drill, 1 g of the sample is accurately weighed, the weighed sample is transferred to a beaker, and a dissolving acid (hydrochloric acid, Add 20 ml of nitric acid, sulfuric acid, perchloric acid, etc., heat these to completely dissolve the sample, after complete dissolution, cool the solution, transfer the solution to a 100 ml volumetric flask and bring it to 100 ml with pure water. Accurately dilute this 1g / 100ml
The sample solution having the concentration of is transferred to a beaker, and is prepared through 8 steps.

【0004】プラズマ発光分析法では、このようにして
作成されたビーカー内の試料溶液をプラズマ発光分析装
置に導入し、目的元素のスペクトル強度を測定し、標準
試料について同様の操作をして、予め作成していた検量
線により、目的元素の試料中含有率に換算するものであ
る。
In the plasma emission spectrometry, the sample solution thus prepared in the beaker is introduced into a plasma emission analyzer, the spectral intensity of the target element is measured, and the same operation is performed on the standard sample in advance. The prepared calibration curve is used to convert the content of the target element into the sample.

【0005】図6は従来のプラズマ発光分析状況を示し
たものであり、前記のようにして作成されたビーカー9
内の試料溶液10中に発光分析装置7の吸引細管6を入
れると、試料溶液10は細管6を介してプラズマトーチ
(図示せず)に至り、プラズマ炎中で励起発光し、スペ
クトル強度が測定され、電算機8にて計算処理され、目
的元素の試料中含有率を得る。
FIG. 6 shows a conventional plasma emission analysis situation. The beaker 9 prepared as described above.
When the suction thin tube 6 of the emission analyzer 7 is put into the sample solution 10 in the sample solution 10, the sample solution 10 reaches the plasma torch (not shown) through the thin tube 6, is excited to emit light in the plasma flame, and the spectral intensity is measured. Then, the computer 8 calculates the content of the target element in the sample.

【0006】例えば、図7は溶鋼から得た鋳込み試料
(高さ50mm、上面径35mmφ、下面径30mmφの円錐
台状鋼試料)から、ドリルで微少片を採取し、これを1
g正確に測り取り、溶解酸液(容積比で塩酸2:硝酸1
8:水20の混合液)を20ml添加し、加熱して試料片
を完全に溶解し、溶解した液を室温まで冷却し、純水で
100mlに正確に薄め、この試料溶液をビーカーに移
し、ビーカー9内の試料溶液10をプラズマ発光分析装
置7に吸引細管6を介して導入してからの時間とスペク
トル強度の関係を示したものである。
For example, in FIG. 7, a minute piece is sampled with a drill from a cast sample obtained from molten steel (a truncated cone-shaped steel sample having a height of 50 mm, an upper surface diameter of 35 mmφ, and a lower surface diameter of 30 mmφ).
Accurately measure and dissolve acid solution (volume ratio of hydrochloric acid 2: nitric acid 1
8: 20 ml of water) was added and heated to completely dissolve the sample piece, the dissolved solution was cooled to room temperature, diluted to 100 ml with pure water, and transferred to a beaker. 2 shows the relationship between the time and the spectral intensity after the sample solution 10 in the beaker 9 was introduced into the plasma emission spectrometer 7 through the suction capillary 6.

【0007】通常、プラズマ発光分析装置7のプラズマ
トーチ(図示せず)へは吸引細管6より純水が導入され
ており、図7に示すように、試料溶液10が導入開始さ
れ、試料溶液10がプラズマトーチ(図示せず)へ達す
るのに、例えば3秒かかり、更に純水と完全に置換され
るのに例えば3〜4秒かかり、従ってスペクトル強度が
安定するのに、試料溶液導入開始から6〜7秒かかるの
で、例えば試料溶液導入後、8〜11秒の目的元素のス
ペクトル強度の測定から、予め標準試料によって同様の
操作で求めた検量線を用いて目的元素の試料中含有率を
電算機8により求める。このような分析値が得られるま
でに消費される試料溶液量は、図7に示すように、0.
5ml程度である。このように試料溶液10をプラズマ発
光分析装置7へ導入後は極めて短時間で、目的元素の試
料中含有率を得ることができるが、試料溶液を作成する
のに、上記〜の8工程を要し、20分前後の長時間
を要するものである。
[0007] Normally, pure water is introduced into the plasma torch (not shown) of the plasma emission spectrometer 7 through the suction capillary tube 6, and as shown in FIG. It takes, for example, 3 seconds to reach the plasma torch (not shown), and it takes, for example, 3 to 4 seconds to completely replace the pure water with pure water. Since it takes 6 to 7 seconds, for example, after the introduction of the sample solution, the spectral intensity of the target element is measured for 8 to 11 seconds. Calculated by computer 8. As shown in FIG. 7, the amount of sample solution consumed until such an analytical value is obtained is 0.
It is about 5 ml. As described above, the content rate of the target element in the sample can be obtained in an extremely short time after introducing the sample solution 10 into the plasma emission spectrometer 7. However, in order to prepare the sample solution, the above eight steps are required. However, it takes a long time of about 20 minutes.

【0008】ところで特公昭63−52338号公報に
は、上記の試料片を正確に1g秤量する工程を省略す
る、即ち上記で得た0.5〜2.0gの適当量の試料
片を用いて、上記従来法と遜色のない分析精度を得る方
法およびこの方法を用いた全自動分析装置が提案されて
いる。この分析方法の内容は、0.5g/100ml〜
2.0g/100mlの試料濃度の溶液をプラズマ発光分
析装置に導入し、目的元素のスペクトル強度とマトリッ
クス元素のスペクトル強度を測定し、これらの強度比か
ら予め求めていた算定式により、試料中含有率に換算す
るものである。
By the way, in JP-B-63-52338, the step of accurately weighing 1 g of the above-mentioned sample piece is omitted, that is, a suitable amount of the sample piece of 0.5 to 2.0 g obtained above is used. A method for obtaining an analysis accuracy comparable to the above-mentioned conventional method and a fully automatic analyzer using this method have been proposed. The content of this analysis method is from 0.5 g / 100 ml
A solution with a sample concentration of 2.0 g / 100 ml was introduced into the plasma emission spectrometer, the spectral intensity of the target element and the spectral intensity of the matrix element were measured, and contained in the sample according to the calculation formula previously obtained from these intensity ratios. It is to be converted into a rate.

【0009】図8は上記全自動分析装置の構成を示すも
のである。11は回転円盤または順次移動可能なラック
などの試料容器の移動装置であり、12は適当量の試料
片と磁気回転子が入ったビーカーである。13〜16は
酸、試薬溶液、蒸留水などの貯蔵タンクであり、17の
自動定量添加装置によりこれらの一定量がビーカー内に
添加される。18はマグネティックスタラーなどのよう
な攪拌装置であり、攪拌することにより試料片の溶解速
度を促進すると同時にビーカー内の検液を均一にする。
19は吸引細管であり、これにより検液は溶液発光分析
装置20に導入され、各元素のスペクトル強度が測定さ
れ、電算機21により、演算されて分析値がアウトプッ
トされる。これらの操作は試料片を適当量入れたビーカ
ー12を円盤またはラック11上にセットした後はすべ
て自動的に操作されるというものである。
FIG. 8 shows the configuration of the fully automatic analyzer. Reference numeral 11 is a moving device for a sample container such as a rotating disk or a rack that can be moved sequentially, and 12 is a beaker containing an appropriate amount of sample pieces and a magnetic rotor. Reference numerals 13 to 16 are storage tanks for acids, reagent solutions, distilled water, etc., and a fixed amount of these is added into the beaker by the automatic quantitative addition device 17. Reference numeral 18 denotes a stirrer such as a magnetic stirrer, which accelerates the dissolution rate of the sample piece by stirring and at the same time makes the test solution in the beaker uniform.
Reference numeral 19 is a suction capillary, whereby the test solution is introduced into the solution emission analyzer 20, the spectral intensity of each element is measured, and the computer 21 calculates and outputs the analysis value. These operations are all automatically performed after the beaker 12 containing an appropriate amount of sample pieces is set on the disk or rack 11.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、このよ
うな特公昭63−52338号提案技術でも、試料溶液
の作成は少なくとも0.5g、多い場合2.0gの試料
片を溶解する必要があり、試料溶液作成時間の大幅短縮
効果を得ることができないものである。従って、精錬工
程中の溶融金属の化学成分の分析に利用できないもので
ある。
However, even with such a technique proposed by Japanese Patent Publication No. 63-52338, it is necessary to dissolve at least 0.5 g, and in many cases 2.0 g of sample pieces in order to prepare a sample solution. It is not possible to obtain the effect of greatly shortening the solution preparation time. Therefore, it cannot be used to analyze the chemical composition of the molten metal during the refining process.

【0011】本発明は上記実状に鑑みなされたもので、
分析精度を維持したまま、試料溶液の作成時間を大幅短
縮し、分析所要時間を大幅減少して、精錬工程中の溶融
金属の化学成分の分析に利用できるプラズマ発光分析方
法を提供するものである。
The present invention has been made in view of the above situation,
The present invention provides a plasma emission analysis method that can be used for analysis of chemical components of molten metal during refining process by significantly shortening sample solution preparation time and analysis time, while maintaining analysis accuracy. ..

【0012】本発明は、(1)特公昭63−52338
号公報に示される、目的元素のスペクトル強度とマトリ
ックス元素のスペクトル強度の強度比に基づいて目的元
素の試料中含有率を求める方法では、試料溶液濃度が
0.5g/100ml〜2.0g/100mlの範囲で変化
しても分析可能である点、マトリックス元素のスペク
トル強度が試料溶液濃度として0.5/100ml相当強
度以上となったときの目的元素のスペクトル強度とマト
リックス元素のスペクトル強度との強度比から試料中目
的元素の含有率を求めることにより分析精度に問題がな
い点、(2)さらに前記した従来法では、分析値を得る
までに分析装置にて消費される溶液量は0.5ml程度で
ある点に着目してなされたものである。
The present invention includes (1) Japanese Patent Publication No. 63-52338.
In the method of determining the content rate of the target element in the sample based on the intensity ratio of the spectrum strength of the target element and the spectrum strength of the matrix element, which is disclosed in Japanese Patent Publication No. JP-A-2003-264, the sample solution concentration is 0.5 g / 100 ml to 2.0 g / 100 ml. It is possible to analyze even if it changes within the range of, and the spectral intensity of the target element and the spectral intensity of the matrix element when the spectral intensity of the matrix element becomes 0.5 / 100 ml equivalent intensity or more as the sample solution concentration. There is no problem in analysis accuracy by determining the content rate of the target element in the sample from the ratio. (2) Furthermore, in the above-mentioned conventional method, the amount of solution consumed by the analyzer is 0.5 ml until the analysis value is obtained. It was made focusing on the point that it is a degree.

【0013】[0013]

【課題を解決するための手段】本発明の要旨は次の通り
である。 (1)ブロック状金属試料に設けた穴に0.5〜5mlの
溶解酸液を添加し、上記金属試料を溶解中の溶解酸液
を、プラズマ発光分析装置に導入し、マトリックス元素
のスペクトル強度を測定し、マトリックス元素のスペク
トル強度が試料溶液濃度として0.5g/100ml相当
強度以上になった時の目的元素のスペクトル強度とマト
リックス元素のスペクトル強度との強度比から目的元素
の金属試料中の含有率を求めることを特徴とするプラズ
マ発光分析方法。 (2)ブロック状金属試料に設けた穴に添加する溶解酸
液量が1mlであることを特徴とする上記(1)記載のプ
ラズマ発光分析方法。 (3)マトリックス元素のスペクトル強度が試料溶液濃
度として1g/100ml相当強度以上になった時の目的
元素のスペクトル強度とマトリックス元素のスペクトル
強度との強度比から目的元素の金属試料中の含有率を求
めることを特徴とする上記(1)または(2)記載のプ
ラズマ発光分析方法。
The summary of the present invention is as follows. (1) 0.5 to 5 ml of dissolved acid solution was added to the hole provided in the block-shaped metal sample, and the dissolved acid solution in which the metal sample was dissolved was introduced into the plasma emission spectrometer, and the spectral intensity of the matrix element was measured. Was measured, and from the intensity ratio of the spectral intensity of the target element and the spectral intensity of the matrix element when the spectral intensity of the matrix element became 0.5 g / 100 ml equivalent intensity or more as the sample solution concentration, A plasma emission analysis method, characterized in that the content is determined. (2) The plasma emission spectrometry method according to (1) above, wherein the amount of the dissolved acid solution added to the hole provided in the block-shaped metal sample is 1 ml. (3) From the intensity ratio of the spectral intensity of the target element and the spectral intensity of the matrix element when the spectral intensity of the matrix element becomes equal to or higher than the equivalent strength of 1 g / 100 ml as the concentration of the sample solution, the content ratio of the target element in the metal sample is determined. The plasma emission analysis method according to (1) or (2) above, which is characterized in that it is obtained.

【0014】[0014]

【作用】本発明法では、溶解酸液を分析に必要な消費量
0.5ml以上、例えば1mlとするものであるから、従来
法の試料濃度(1g/100ml)の試料溶液を得るため
に必要な試料片の溶解量は、従来の1/100の0.0
1g(10mg)で良いことになり、溶解上極めて有利と
なる。なお溶解酸液を分析に必要な消費量の最小量0.
5mlとすると従来の1/200の0.005(5mg)で
良く更に有利となり、溶解酸液を本発明の上限量5mlと
しても従来の1/20の0.05g(50mg)で良いこ
とになり、溶解上有利である。
In the method of the present invention, the consumption of the dissolved acid solution is 0.5 ml or more necessary for analysis, for example, 1 ml, so that it is necessary to obtain the sample solution having the sample concentration (1 g / 100 ml) of the conventional method. The amount of dissolved sample pieces is 1/100 of the conventional value, 0.0
1 g (10 mg) is sufficient, which is extremely advantageous for dissolution. It should be noted that the minimum amount of consumption of the dissolved acid solution required for the analysis was 0.
If the amount is 5 ml, 0.005 (5 mg), which is 1/200 of the conventional amount, is more advantageous, and even if the upper limit amount of the dissolved acid solution is 5 ml, 0.05 g (50 mg), which is 1/20 of the conventional amount, is sufficient. , Is advantageous in terms of dissolution.

【0015】また、本発明法ではブロック状金属試料に
設けた穴に、例えば1mlの溶解酸液を添加するものであ
るから、例えば、11mmφのドリル穴を設けた場合、1
mlの溶解酸液はドリル穴底から10mmの深さで貯留され
ることになり、溶解酸液に接触する試料表面積(溶解に
供する試料表面積)は約3100mm2 となる。
Further, in the method of the present invention, for example, 1 ml of the dissolved acid solution is added to the hole provided in the block-shaped metal sample. Therefore, for example, when a drill hole of 11 mmφ is provided,
The dissolved acid solution of ml is stored at a depth of 10 mm from the bottom of the drill hole, and the sample surface area in contact with the dissolved acid solution (sample surface area for dissolution) is about 3100 mm 2 .

【0016】一方、従来法(特公昭63−52338号
提案法)では、試料片を仮に0.1mm径の球とモデル化
すると、球1個の表面積は約0.03mm2 、重さは鋼で
は0.003gとなる。今仮に鋼で1g(0.5g)の
試料片を溶解するためには、0.1mm径の球の試料片は
約300個(約150個)必要となり、その時の表面積
は約10mm2 (約5mm2 )となる。従って本発明法の溶
解表面積は、従来法(特公昭63−52338号提案
法)の約300倍(約600倍)となり、溶解上極めて
有利である。
On the other hand, in the conventional method (method proposed by JP-B-63-52338), if a sample piece is modeled as a sphere having a diameter of 0.1 mm, the surface area of each sphere is about 0.03 mm 2 , and the weight is steel. Then, it becomes 0.003 g. In order to dissolve 1g (0.5g) sample pieces with steel, about 300 pieces (about 150 pieces) of spheres with a diameter of 0.1mm are required, and the surface area at that time is about 10mm 2 (about 5 mm 2 ). Therefore, the dissolution surface area of the method of the present invention is about 300 times (about 600 times) that of the conventional method (the method proposed in Japanese Patent Publication No. 63-52338), which is extremely advantageous for dissolution.

【0017】また溶解する深さ(表面からの)を比較し
ても、鋼で例えば10mgの試料を溶解するのに、本発明
法では約0.4μm溶解すれば良いのに対して、従来法
および特公昭63−52338号提案法では、0.1mm
径の半分に相当する50μm溶解しなければならず、約
100倍本発明法が溶解上極めて有利である。
Also, comparing the melting depths (from the surface), it is necessary to melt a sample of, for example, 10 mg in steel, whereas in the method of the present invention, about 0.4 μm should be melted, whereas in the conventional method. In the method proposed by JP-B-63-52338, 0.1 mm
It has to be dissolved in 50 μm, which corresponds to half the diameter, and the method of the present invention is about 100 times more advantageous in terms of dissolution.

【0018】[0018]

【実施例】以下、本発明法による、精錬工程中の溶鋼の
化学成分の分析例について述べる。 (1)精錬工程中の溶鋼から図1(a)の如き、鋳込み
試料1を採取する。試料1は、下面2の径は30mmφ、
上面3の径35mmφ、高さHは50mmの逆円錐台状鋼試
料である。 (2)図1(b)のように逆円錐台状鋼試料1の上下を
逆にして試料1の小径面2より11mmφのドリルで25
mm深さの穴4をあける。 (3)図1(c)のように円錐台状鋼試料1の穴4に溶
解酸液(容積比で塩酸2:硝酸18:水20の混合液)
5を1ml添加する。図2は試料溶解量が溶解酸液添加後
の時間経過とともに増加していく様子を示す。
EXAMPLES Hereinafter, examples of analysis of chemical components of molten steel during the refining process by the method of the present invention will be described. (1) A cast sample 1 as shown in FIG. 1A is taken from the molten steel during the refining process. The diameter of the lower surface 2 of the sample 1 is 30 mmφ,
The upper surface 3 is an inverted truncated cone steel sample having a diameter of 35 mmφ and a height H of 50 mm. (2) As shown in FIG. 1 (b), the inverted truncated cone-shaped steel sample 1 is turned upside down and drilled from the small-diameter surface 2 of the sample 1 with a 11 mmφ drill.
Drill a hole 4 with a depth of mm. (3) Dissolved acid solution (mixed solution of hydrochloric acid 2: nitric acid 18: water 20 by volume ratio) in the hole 4 of the truncated cone-shaped steel sample 1 as shown in FIG.
1 ml of 5 is added. FIG. 2 shows how the amount of sample dissolved increases with the lapse of time after the addition of the dissolved acid solution.

【0019】(4)溶解酸液5の添加と同時に逆円錐台
状鋼試料1に設けた穴4内の溶解酸液5を、図3に示す
ように吸引細管6を介して、前記した一定濃度(1g/
100ml)の検液10を導入した際に図7のスペクトル
特性を示すプラズマ発光分析装置7に導入する。 (5)溶解酸液5をプラズマ発光分析装置7に導入後、
マトリックス元素である鉄のスペクトル強度を電算機8
が自動モニタリングし、図4に示すように鉄のスペクト
ル強度が鉄の濃度として1g/100ml相当以上になっ
てから、3秒間の目的元素のスペクトル強度とマトリッ
クス元素である鉄のスペクトル強度を測定する。 (6)上記目的元素と鉄のスペクトル強度比から、電算
機8は、予め求めておいた強度比と目的元素含有率の関
係、即ち検量線(例えば図5は目的元素がAlの場合の
検量線を示す)を用いて鋼中目的元素含有率を算定す
る。
(4) Simultaneously with the addition of the dissolved acid solution 5, the dissolved acid solution 5 in the hole 4 formed in the inverted truncated cone-shaped steel sample 1 is sucked through the suction thin tube 6 as shown in FIG. Concentration (1g /
When 100 ml) of the test solution 10 is introduced, it is introduced into the plasma emission spectrometer 7 having the spectral characteristics shown in FIG. (5) After introducing the dissolved acid solution 5 into the plasma emission spectrometer 7,
Calculate the spectral intensity of iron, which is the matrix element, by computer 8.
Automatically monitors and, as shown in FIG. 4, measures the spectral intensity of the target element and the spectral intensity of the matrix element iron for 3 seconds after the iron spectral intensity becomes equivalent to 1 g / 100 ml or more as the iron concentration. .. (6) From the spectral intensity ratio of the target element and iron, the computer 8 indicates that the relationship between the intensity ratio and the target element content determined in advance, that is, the calibration curve (for example, FIG. 5 shows the calibration when the target element is Al). Calculate the target element content rate in the steel.

【0020】表1は上記(1)〜(6)の手順の本発明
法によって溶鋼中の各元素を定量化した結果ならびに平
均分析時間を示す。なお表1には、従来法によって溶鋼
中の各元素を定量化した結果ならびに平均分析時間を併
記した。従来法の実施条件は、本発明法の実施手順
(2)で得られた微少片を採取し、これを1g正確に測
り取り、溶解酸液(容積比で塩酸2:硝酸18:水20
の混合液)約20ml添加し、加熱して完全に溶解し、溶
解した溶液は室温まで冷却し、純水100mlに正確に薄
め、この溶液をビーカーに移し、図6の如くプラズマ発
光分析装置に導入し、図7に示す試料溶液導入後8秒か
ら11秒までの目的元素のスペクトル強度の測定から、
電算機が予め標準試料によって同様の操作で求めた検量
線を用いて、目的元素の試料含有率を求めたのものであ
る。
Table 1 shows the results of quantifying each element in the molten steel and the average analysis time by the method of the present invention according to the above-mentioned procedures (1) to (6). In Table 1, the results of quantifying each element in the molten steel by the conventional method and the average analysis time are also shown. The conditions for carrying out the conventional method are as follows: The minute piece obtained in the procedure (2) for carrying out the method of the present invention is sampled, 1 g of this is accurately measured, and the dissolved acid solution (volume ratio of hydrochloric acid 2: nitric acid 18: water 20) is used.
Mixed solution of about 20 ml), heated and completely dissolved, the dissolved solution was cooled to room temperature, accurately diluted to 100 ml of pure water, transferred to a beaker, and placed in a plasma emission spectrometer as shown in FIG. From the measurement of the spectral intensity of the target element from 8 seconds to 11 seconds after introducing the sample solution shown in FIG.
This is a value obtained by calculating the sample content rate of the target element using a calibration curve obtained by a computer in advance by the same operation using a standard sample.

【0021】[0021]

【表1】 表1から明らかなように、本発明法は従来法と比較し、
分析精度において遜色なく充分に適用できるものであ
り、鋳込み試料準備後、含有率算出までの時間は従来法
に比して、1/20程度の80秒前後にて定量化できる
ものである。
[Table 1] As is clear from Table 1, the method of the present invention is compared with the conventional method,
It can be applied sufficiently in terms of analysis accuracy, and the time from the preparation of the cast sample to the calculation of the content rate can be quantified in about 80 seconds, which is about 1/20 as compared with the conventional method.

【0022】[0022]

【発明の効果】以上、詳述したように、本発明のプラズ
マ発光分析方法によれば、試料の特別な調整、試料量の
秤量、試料の完全溶解不要で、且つ試料溶解が微量です
むので、従来法よりも画期的に迅速に、しかも従来法と
同等の精度にて分析ができる。従って、金属の精練にお
いて、時系列的に変化する金属中成分の調整を効果的に
実施することが可能となる。
As described above in detail, according to the plasma emission analysis method of the present invention, there is no need for special adjustment of the sample, weighing of the sample amount, complete dissolution of the sample, and a small amount of sample dissolution. , Analysis can be performed much faster than the conventional method and with the same accuracy as the conventional method. Therefore, in the refining of metal, it is possible to effectively adjust the components in the metal that change in time series.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)(b)(c)は試料溶液の作成手順の説
明図。
1A, 1B, and 1C are explanatory views of a procedure for preparing a sample solution.

【図2】試料の溶解量の推移の説明図。FIG. 2 is an explanatory diagram of changes in the amount of sample dissolved.

【図3】プラズマ発光分析状況の説明図。FIG. 3 is an explanatory diagram of a plasma emission analysis situation.

【図4】スペクトル強度、溶解酸液消費量の推移の説明
図。
FIG. 4 is an explanatory diagram of changes in spectrum intensity and dissolved acid solution consumption.

【図5】検量線例の説明図。FIG. 5 is an explanatory diagram of an example of a calibration curve.

【図6】従来法のプラズマ発光分析状況の説明図。FIG. 6 is an explanatory diagram of a plasma emission analysis situation of a conventional method.

【図7】従来法のスペクトル強度、試料溶液消費量の推
移の説明図。
FIG. 7 is an explanatory diagram of changes in spectrum intensity and sample solution consumption in the conventional method.

【図8】従来の全自動分析装置の構成の説明図。FIG. 8 is an explanatory diagram of a configuration of a conventional fully automatic analyzer.

【符号の説明】[Explanation of symbols]

1 鋳込み試料 2 鋳込み試料下面 3 鋳込み試料上面 4 穴 5 溶解酸液 6 吸引細管 7 プラズマ発光分析装置 8 電算機 1 Cast Sample 2 Cast Sample Lower Surface 3 Cast Sample Upper Surface 4 Hole 5 Dissolved Acid Liquid 6 Suction Capillary 7 Plasma Emission Analyzer 8 Computer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ブロック状金属試料に設けた穴に0.5
〜5mlの溶解酸液を添加し、上記金属試料を溶解中の溶
解酸液を、プラズマ発光分析装置に導入し、マトリック
ス元素のスペクトル強度を測定し、マトリックス元素の
スペクトル強度が試料溶液濃度として0.5g/100
ml相当強度以上になった時の目的元素のスペクトル強度
とマトリックス元素のスペクトル強度との強度比から目
的元素の金属試料中の含有率を求めることを特徴とする
プラズマ発光分析方法。
1. A hole formed in a block-shaped metal sample has 0.5 holes.
~ 5 ml of the dissolved acid solution was added, and the dissolved acid solution in which the metal sample was being dissolved was introduced into a plasma emission spectrometer, and the spectral intensity of the matrix element was measured. 0.5 g / 100
A plasma emission spectrometry method, characterized in that the content ratio of a target element in a metal sample is obtained from the intensity ratio of the spectrum intensity of the target element and the spectrum intensity of the matrix element when the intensity becomes equal to or higher than ml.
【請求項2】 ブロック状金属試料に設けた穴に添加す
る溶解酸液量が1mlであることを特徴とする請求項1記
載のプラズマ発光分析方法。
2. The plasma emission spectrometry method according to claim 1, wherein the amount of the dissolved acid solution added to the hole provided in the block-shaped metal sample is 1 ml.
【請求項3】 マトリックス元素のスペクトル強度が試
料溶液濃度として1g/100ml相当強度以上になった
時の目的元素のスペクトル強度とマトリックス元素のス
ペクトル強度との強度比から目的元素の金属試料中の含
有率を求めることを特徴とする請求項1または2記載の
プラズマ発光分析方法。
3. The inclusion of a target element in a metal sample from the intensity ratio between the spectrum intensity of the target element and the spectrum intensity of the matrix element when the spectrum intensity of the matrix element becomes 1 g / 100 ml equivalent intensity or more as a sample solution concentration. 3. The plasma emission analysis method according to claim 1, wherein the rate is obtained.
JP2808492A 1992-02-14 1992-02-14 Plasma emission analysis Withdrawn JPH05223742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2808492A JPH05223742A (en) 1992-02-14 1992-02-14 Plasma emission analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2808492A JPH05223742A (en) 1992-02-14 1992-02-14 Plasma emission analysis

Publications (1)

Publication Number Publication Date
JPH05223742A true JPH05223742A (en) 1993-08-31

Family

ID=12238920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2808492A Withdrawn JPH05223742A (en) 1992-02-14 1992-02-14 Plasma emission analysis

Country Status (1)

Country Link
JP (1) JPH05223742A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101793830A (en) * 2010-03-16 2010-08-04 武汉钢铁(集团)公司 Method for measuring sulfur content in iron ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101793830A (en) * 2010-03-16 2010-08-04 武汉钢铁(集团)公司 Method for measuring sulfur content in iron ore

Similar Documents

Publication Publication Date Title
CN103267736B (en) The analyzing detecting method of gold element in smelting material
JPS649572B2 (en)
CN102426122A (en) Sample preparation method by fusing medium-carbon ferrochrome and high-carbon ferrochrome
CN109540830A (en) A kind of method of carbon content in measurement ferro-niobium
CN103149073A (en) Molten sample preparation method of silicon-iron, silicon-calcium-barium, silicon-manganese, aluminum-iron or titanium-iron alloy sample for X-ray fluorescence spectroscopy
CN103149074A (en) Molten sample preparation method of molybdenum, manganese, vanadium or chromium iron alloy sample for X-ray fluorescence spectroscopy
CN103884730A (en) X-ray fluorescence spectrometer analysis method for determining elements of silicon-manganese alloy or ferrosilicon alloy
CN102200511A (en) Method for determining silicon and manganese contents of silicon-manganese alloy by using X-ray fluorescence melting method
CN110687101A (en) Method for measuring content of lithium oxide in casting powder by ICP-AES method
CN106990098A (en) The method of each element content in simultaneous determination aluminium electrolyte
Brill et al. Determination of gold in gold jewellery alloys by ICP spectrometry
CN106338534B (en) The method of Calcium Fluoride Content in fluorite is quickly measured using Xray fluorescence spectrometer
JPH05223742A (en) Plasma emission analysis
CN108051542A (en) A kind of aluminum content tests method in silico-aluminum, silicon-aluminium-barium alloy
CN106290438B (en) A kind of method that X-ray fluorescence spectra fusion method measures Calcium Fluoride Content in fluorite
CN113295676A (en) Method for measuring calcium, aluminum and barium in deoxidizer
de Andrade et al. Determination of molybdenum in steel by adsorptive stripping voltammetry in a homogeneous ternary solvent system
CN110646452A (en) Method for measuring major elements in ferrochrome alloy by X fluorescence fuse link method
CN112461878B (en) Method for measuring content of ferronickel in carbonyl ferronickel alloy powder
Hansen et al. Determination of Oxygen in Niobium
CN114486967A (en) Method for measuring calcium, silicon, magnesium and iron in submerged arc slag by X fluorescence
CN113740323A (en) Method for measuring multi-element content in nickel-based brazing filler metal
CN109211712A (en) The measuring method of boric anhydride moisture content
JP4054110B2 (en) Apparatus for measuring fluorine concentration in zinc electrolyte and method for measuring fluorine concentration in zinc electrolyte
CN108489965A (en) A method of analyzing wolfram element content in steel using ICP method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518