JPH05222513A - Manufacture of vapor deposition plated corrosion resistant steel - Google Patents
Manufacture of vapor deposition plated corrosion resistant steelInfo
- Publication number
- JPH05222513A JPH05222513A JP2135792A JP2135792A JPH05222513A JP H05222513 A JPH05222513 A JP H05222513A JP 2135792 A JP2135792 A JP 2135792A JP 2135792 A JP2135792 A JP 2135792A JP H05222513 A JPH05222513 A JP H05222513A
- Authority
- JP
- Japan
- Prior art keywords
- vapor deposition
- substrate
- corrosion resistance
- vapor
- stainless steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Physical Vapour Deposition (AREA)
- ing And Chemical Polishing (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、蒸着皮膜の密着性に優
れ、耐食性にも優れた、蒸着めっき耐食鋼材の製造方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a vapor-deposited corrosion-resistant steel material, which has excellent adhesion to a vapor-deposited film and excellent corrosion resistance.
【0002】[0002]
【従来の技術】ステンレス鋼材はその優れた耐食性と美
麗な表面色調とから建築用建材を始めとし各種用途に幅
広く用いられている。また、近年は嗜好の多様化、高級
化に伴い、従来はめっき鋼板が用いられていたような分
野においても高級なステンレス鋼板が用いられ始めてい
る。以下、鋼材として鋼板を例にとって説明する。ステ
ンレス鋼板は、陽極酸化法などによって意匠性に富んだ
美麗な表面着色を施すこともできることから、表面着色
による金属光沢を生かしたまま使用されることが多い。
したがって、表面着色によっても本来有する耐食性が損
なわれないことが必要である。2. Description of the Related Art Stainless steel materials are widely used for various purposes such as building materials for construction because of their excellent corrosion resistance and beautiful surface color tone. Further, in recent years, with the diversification of tastes and the sophistication, high-grade stainless steel sheets have begun to be used even in the fields where plated steel sheets have been conventionally used. Hereinafter, a steel plate will be described as an example of the steel material. Since a stainless steel sheet can be beautifully colored with a beautiful design by an anodic oxidation method or the like, it is often used while keeping the metallic luster due to the surface coloring.
Therefore, it is necessary that the original corrosion resistance is not impaired even by surface coloring.
【0003】ところで、近年は、PVD法、CVD法と
いった気相蒸着法を用いてステンレス鋼材表面になんら
かの物質を蒸着して金属色調のまま耐食性の一層の改善
を図ったり、耐食性以外の機能を付加して、より高機能
化を図ったりすることも始まっている。例えば、イオン
プレーティング法でステンレス鋼板表面にTiなどの金属
またはTiN などのセラミックス膜を蒸着する試みが所々
で行われている。そのような気相蒸着法の場合には、前
述の陽極酸化法の場合と異なり、蒸着皮膜を金属表面に
被覆することから、皮膜の耐食性とともに皮膜の密着性
も問題となる。すなわち、蒸着法でステンレス鋼板上に
金属、またはセラミックス膜を蒸着する場合にはステン
レス鋼板上に存在する不働態皮膜により蒸着膜の密着性
が劣化したり、あるいは蒸着めっき材自体に安定して良
好な耐食性が確保されないという問題があった。By the way, in recent years, some substances are vapor-deposited on the surface of stainless steel materials by vapor deposition methods such as PVD method and CVD method to further improve the corrosion resistance while maintaining a metallic color tone, or to add a function other than the corrosion resistance. Then, it has begun to aim for higher functionality. For example, attempts have been made in various places to deposit a metal such as Ti or a ceramic film such as TiN on the surface of a stainless steel plate by an ion plating method. In the case of such a vapor deposition method, unlike the case of the above-mentioned anodizing method, since the vapor deposition film is coated on the metal surface, the corrosion resistance of the film as well as the adhesion of the film become a problem. That is, when a metal or ceramic film is vapor-deposited on a stainless steel plate by the vapor deposition method, the adhesion of the vapor-deposited film deteriorates due to the passive film present on the stainless steel plate, or the vapor-deposited plated material itself is stable and good. There was a problem that sufficient corrosion resistance was not ensured.
【0004】そのため、一般的には蒸着前処理としてス
テンレス鋼板表面上の不働態皮膜除去を目的としてプラ
ズマあるいはイオンビームによるエッチング処理が行わ
れている。しかしながら、従来におけるこれらの前処理
は、ステンレス鋼板表面に存在する不働態皮膜自身を望
ましくは完全に除去することを目的として行われもので
あった。しかし、一般にエッチング処理が行われる真空
槽内は、それ以前に蒸着された蒸着物質の細かなちり、
あるいは基板と共に持ち込まれた付着物質由来の浮遊物
などが細かなチリとなって浮遊しており、ステンレス鋼
板表面に存在した不働態皮膜を除去して表面の清浄化を
図ると言うような所期の目的を満足するようなエッチン
グ処理は容易ではなく、却って浮遊物の付着などの結果
をもたらし、そのため蒸着基板の表面粗さが助長され、
蒸着物質の成長方向ともからんだピンホール欠陥が多数
生成する遠因ともなっていた。Therefore, in general, as a pretreatment for vapor deposition, etching treatment by plasma or ion beam is performed for the purpose of removing the passive film on the surface of the stainless steel plate. However, these pretreatments in the related art have been performed for the purpose of completely and desirably removing the passive film itself present on the surface of the stainless steel plate. However, in the vacuum chamber where the etching process is generally performed, fine dust particles of the deposition material deposited before that,
Alternatively, the suspended matter derived from the attached substances brought in with the substrate floats as fine dust, and it is intended to clean the surface by removing the passive film existing on the stainless steel plate surface. The etching process that satisfies the purpose of is not easy, but rather results in the adhesion of floating substances, which promotes the surface roughness of the deposition substrate,
It was also a cause of the generation of many pinhole defects entangled with the growth direction of the deposited material.
【0005】そのようなピンホール欠陥が多数発生する
と、蒸着皮膜のピンホール部では、地金としてのステン
レス鋼が露出することも多く、たとえ耐食性に優れた物
質を蒸着したとしても、耐食性の劣る蒸着基板表面がピ
ンホールを介して露出することにより、基板である鋼板
自体が腐食されてしまい蒸着めっき鋼板自体の耐食性は
改善されない。しかも、周知のように、蒸着物質と蒸着
基板の耐食性が大きく異なる場合には、異種金属接触腐
食 (ガルバニック腐食) が起こり、耐食性に優れた金
属、あるいはセラミックスを蒸着しても、蒸着基板それ
自体に比べても耐食性が劣る現象が見られた。When a large number of such pinhole defects occur, stainless steel as a bare metal is often exposed at the pinhole portion of the vapor-deposited film, and even if a substance having excellent corrosion resistance is vapor-deposited, the corrosion resistance is poor. Since the surface of the vapor-deposited substrate is exposed through the pinhole, the steel plate itself, which is the substrate, is corroded, and the corrosion resistance of the vapor-deposited steel plate itself is not improved. Moreover, as is well known, when the corrosion resistance of the vapor deposition material and the vapor deposition substrate differ greatly, dissimilar metal contact corrosion (galvanic corrosion) occurs, and even if a metal or ceramics with excellent corrosion resistance is vapor deposited, the vapor deposition substrate itself The phenomenon that the corrosion resistance was inferior to that of the above was observed.
【0006】[0006]
【発明が解決しようとする課題】本発明の課題は、ステ
ンレス鋼材の付加価値を高めるためにその表面に耐食性
のある保護皮膜を蒸着したとき、蒸着皮膜におけるピン
ホールの存在により蒸着皮膜本来の耐食性が十分に発揮
されないという問題点と、そのような蒸着皮膜の基板に
対する密着性が劣るという問題点を解消することにあ
る。すなわち、本発明の目的は、オーステナイト系ステ
ンレス鋼材を蒸着基板として用い、これに金属あるいは
セラミックスを蒸着してより高機能化する際に、蒸着材
の基板に対する密着性を一層改善し、性能劣化をもたら
すピンホール欠陥自体を低減させるばかりでなく、さら
に、たとえピンホール欠陥が生成したとしても蒸着前の
エッチング処理と蒸着めっき後の熱処理により、蒸着基
板自体の耐食性の改善を図ることで、そのようなピンホ
ールに起因する蒸着材の耐食性劣化程度の低減を図った
蒸着めっき耐食鋼材の製造方法を提供することにある。An object of the present invention is to provide a corrosion-resistant protective coating on the surface of a stainless steel material in order to increase the added value of the stainless steel material. It is intended to solve the problems of not being sufficiently exhibited and the problems of such poor adhesion of the vapor deposition film to the substrate. That is, an object of the present invention is to use an austenitic stainless steel material as a vapor deposition substrate and further improve the adhesion of the vapor deposition material to the substrate when vapor-depositing a metal or ceramics on this to further improve the performance. In addition to reducing the pinhole defects themselves, even if pinhole defects are generated, it is possible to improve the corrosion resistance of the deposition substrate itself by etching treatment before deposition and heat treatment after deposition plating. Another object of the present invention is to provide a method for producing a vapor-deposited corrosion-resistant steel material, which is intended to reduce the degree of corrosion resistance deterioration of a vapor-deposited material caused by a pinhole.
【0007】[0007]
【課題を解決するための手段】すでに知られているよう
に、付加価値を高める目的で金属、セラミックスを耐食
鋼板上に蒸着して、蒸着材の蒸着基板に対する耐食性を
改善するためには、ピンホールなどの蒸着欠陥を低減す
ることが最も好ましい。しかしながら、現状の真空蒸着
法あるいはイオンプレーティング法といった各種蒸着法
では、作成した蒸着膜中のピンホールを完全になくすこ
とは極めて困難である。As already known, in order to improve the added value, metal and ceramics are vapor-deposited on a corrosion-resistant steel plate to improve the corrosion resistance of the vapor-deposited material to the vapor-deposited substrate. It is most preferable to reduce vapor deposition defects such as holes. However, it is extremely difficult to completely eliminate the pinholes in the formed vapor deposition film by various vapor deposition methods such as the current vacuum vapor deposition method or ion plating method.
【0008】一方、従来型の表面不働態皮膜を除去する
ような前処理法では新たに生成するエッチング処理後の
表面において、むしろピンホール欠陥の生成が助長さ
れ、それらを起点とした腐食が促進されるという問題が
あった。ここに、本発明者らは、先人の検討結果も踏ま
えながら種々の条件での前処理法を検討したが、エッチ
ングを目的に行われているイオンボンバード処理時の雰
囲気とそのエッチング処理時の基板条件を適正化するこ
とによって、イオンボンバード処理後にオーステナイト
系ステンレス鋼板表面に生成する酸化皮膜がCrを主体と
する酸化皮膜となること、そして、そのような手段でも
って蒸着基板表面耐食性の改善を図ることで、たとえピ
ンホール欠陥によって基板が露出したとしても、蒸着材
の耐食性劣化を軽微にすることができることを見出し
た。On the other hand, the conventional pretreatment method for removing the surface passivation film rather promotes the generation of pinhole defects on the newly formed surface after the etching treatment, and promotes the corrosion starting from them. There was a problem of being done. Here, the present inventors have examined the pretreatment method under various conditions while also taking into consideration the results of the predecessor, but the atmosphere at the time of the ion bombardment treatment for the purpose of etching and its etching treatment By optimizing the substrate conditions, the oxide film formed on the surface of the austenitic stainless steel sheet after ion bombardment becomes an oxide film mainly composed of Cr, and by such means, the corrosion resistance of the vapor-deposited substrate surface is improved. It has been found that, even if the substrate is exposed due to a pinhole defect, the deterioration of the corrosion resistance of the vapor deposition material can be minimized.
【0009】さらに、また、蒸着後の蒸着めっき材を、
耐食性に優れたCrおよびSi主体の酸化物が生成するよう
な雰囲気とすべく炉内の露点温度を制御した炉内で特定
の熱処理を行うと、蒸着皮膜の密着性が著しく向上する
とともに蒸着材耐食性がさらに向上することを見出し
た。すなわち、本発明が処理の対象とするのは、、重量
%で、C:0.01 〜0.06%、Si:0.1〜5.0 %、Cr:8.0〜3
5.0%、Ni:7.0〜50.0%、N:0.3%以下、TiおよびNbの
少なくとも1種を合計で0.001 〜2.0 %を含有するオー
ステナイト系ステンレス鋼材である。Furthermore, the vapor-deposited plated material after vapor deposition is
When a specific heat treatment is performed in a furnace in which the dew point temperature in the furnace is controlled to create an atmosphere in which oxides mainly composed of Cr and Si with excellent corrosion resistance are formed, the adhesion of the deposited film is significantly improved and It was found that the corrosion resistance is further improved. That is, the target of the treatment of the present invention is, by weight, C: 0.01 to 0.06%, Si: 0.1 to 5.0%, Cr: 8.0 to 3%.
It is an austenitic stainless steel material containing 5.0%, Ni: 7.0 to 50.0%, N: 0.3% or less, and 0.001 to 2.0% in total of at least one of Ti and Nb.
【0010】本発明によれば、これを基板として蒸着め
っきするのであるが、蒸着めっきするに先立って行う前
処理法は、H 2O分圧が2×10-4〜8×10-6Torrである非
酸化性雰囲気ガスを導入した真空槽内で、基板を150 ℃
以上500 ℃以下に予熱した状態で、−20〜−400Vのバイ
アス電圧をかけてイオンボンバード処理を行うことであ
る。この前処理によって、基板表面にCr酸化物を主体と
する酸化物皮膜を生成させ、次に、慣用法での蒸着めっ
きを行うのである。さらに蒸着めっきを行った後には、
露点−15〜−55℃に保持された非酸化性雰囲気の炉内
で、500 〜1150℃の温度域に0.5min以上保持するのであ
る。かくして、本発明によれば、ピンホール自体の生成
を軽減するとともに、ピンホールに起因する蒸着材の耐
食性劣化程度の低減した蒸着めっき耐食鋼板が製造され
る。According to the present invention, vapor deposition plating is performed using this as a substrate. The pretreatment method performed prior to vapor deposition plating is that the H 2 O partial pressure is 2 × 10 −4 to 8 × 10 −6 Torr. The substrate is heated to 150 ° C in a vacuum chamber containing a non-oxidizing atmosphere gas.
The ion bombardment treatment is performed by applying a bias voltage of -20 to -400 V in the state of preheating above 500 ° C. By this pretreatment, an oxide film mainly composed of Cr oxide is formed on the substrate surface, and then vapor deposition plating is performed by a conventional method. After further vapor deposition plating,
In a furnace with a non-oxidizing atmosphere maintained at a dew point of -15 to -55 ° C, the temperature is maintained in the temperature range of 500 to 1150 ° C for 0.5 min or longer. Thus, according to the present invention, it is possible to manufacture a vapor-deposition corrosion-resistant steel sheet in which the generation of pinholes itself is reduced and the degree of corrosion resistance deterioration of the vapor deposition material due to the pinholes is reduced.
【0011】[0011]
【作用】このように、本発明にかかる方法では、従来の
エッチング工程では表面不働体皮膜を除去すべく処理し
ていたのと対照的に、イオンボンバード処理によってエ
ッチングと同時に基板表面にCr主体の酸化物が生成する
ような酸化を進行させ、より緻密で耐食性の上からは極
めて望ましいCr酸化物主体の酸化物層を形成すること、
すなわち耐食鋼板上の不働態皮膜 (酸化皮膜) の除去と
新たなるCr主体の酸化物皮膜の生成を同時に行うことを
特徴とする。このような競合反応を律速するのは、イオ
ンボンバード処理用の真空槽内の酸素ポテンシャル、基
板加熱温度、バイアス電圧である。これらの因子を適正
化することで、イオンボンバード処理時に生成する耐食
鋼板表面の生成酸化皮膜組成が変化しCr主体の酸化皮膜
とすることが可能である。As described above, in the method according to the present invention, in contrast to the conventional etching process for removing the surface passivation film, in contrast to the etching by the ion bombardment process, the main surface of the substrate is mainly composed of Cr. To promote oxidation such that an oxide is formed, to form a highly dense Cr oxide-based oxide layer that is highly desirable in terms of corrosion resistance,
In other words, the feature is that the removal of the passivation film (oxide film) on the corrosion-resistant steel plate and the formation of a new Cr-based oxide film are performed simultaneously. It is the oxygen potential, the substrate heating temperature, and the bias voltage in the vacuum chamber for the ion bombardment that determine the rate of such competitive reaction. By optimizing these factors, it is possible to change the composition of the oxide film formed on the surface of the corrosion-resistant steel plate formed during the ion bombardment treatment to form an oxide film mainly containing Cr.
【0012】すなわち、非酸化性雰囲気ガスを導入した
真空槽内のH2O 分圧を2×10-4〜8×10-6Torrとするこ
とで真空槽内の酸化ポテンシャルを適正化することが可
能であり、基板を150 ℃以上500 ℃以下に熱し、バイア
ス電圧を−20〜−400VかけることでH2O 処理の際の温度
とボンバード状態を制御することが可能である。That is, the oxidation potential in the vacuum chamber is optimized by setting the H 2 O partial pressure in the vacuum chamber in which a non-oxidizing atmosphere gas is introduced to 2 × 10 −4 to 8 × 10 −6 Torr. It is possible to control the temperature and the bombarded state during the H 2 O treatment by heating the substrate to 150 ° C. or higher and 500 ° C. or lower and applying a bias voltage of −20 to −400 V.
【0013】本発明の前処理法を施すことにより耐食鋼
板表面に厚さ200 〜300 Å程度の酸化皮膜を均一に生成
させることが可能である。さらに、蒸着後に行うSiおよ
びCr主体の酸化物が生成する条件下での加熱処理によ
り、イオンボンバード処理時に生成させたCr主体の酸化
スケール層の高耐食性を劣化させることなく、Ti、Nb、
Crの拡散が生じることで蒸着物質の密着性が一層改善さ
れるために、蒸着めっき鋼板の耐食性は従来法で処理し
た蒸着めっき鋼板に比べて格段に優れた耐食挙動ならび
に皮膜密着力を示す。次に、本発明において被処理材で
あるオーステナイト系ステンレス鋼の鋼組成とイオンボ
ンバード処理条件とを上述のように限定した理由につい
て述べる。By applying the pretreatment method of the present invention, it is possible to uniformly form an oxide film having a thickness of about 200 to 300 Å on the surface of the corrosion-resistant steel plate. Furthermore, by heat treatment under the condition that Si and Cr-based oxides are formed after vapor deposition, Ti, Nb, without degrading the high corrosion resistance of the Cr-based oxide scale layer generated during ion bombardment treatment,
Since the diffusion of Cr further improves the adhesion of the vapor-deposited material, the corrosion resistance of the vapor-deposited steel sheet exhibits significantly better corrosion resistance behavior and film adhesion than the vapor-deposited steel sheet treated by the conventional method. Next, the reason why the steel composition of the austenitic stainless steel as the material to be treated and the ion bombardment treatment conditions in the present invention are limited as described above will be described.
【0014】(A) ステンレス鋼材における含有成分 (1) C:Cは強力なオーステナイト安定化成分であり、
少なくとも0.01%以上含ませるのが望ましいが、0.06%
を越えて含有すると、熱処理中に粒界へのクロム酸化物
の析出に伴う鋭敏化が生じやすくなるため、その含有量
を0.01〜0.06%と定めた。(A) Components contained in stainless steel (1) C: C is a strong austenite stabilizing component,
It is desirable to include at least 0.01% or more, but 0.06%
If it is contained in excess of 10%, the sensitization tends to occur due to the precipitation of chromium oxide at the grain boundaries during heat treatment, so the content was set to 0.01 to 0.06%.
【0015】(2) Si:Siは脱酸作用のほかに、低い露点
で熱処理を施したときに鋼材表面に濃化し、表面の耐食
性を向上させる作用を持った成分である。しかしその含
有量が0.1 %未満では脱酸作用が十分に得られず、5.0
%を越えると鋼材の加工性が著しく劣化するため、その
含有量を0.1 〜5.0 %とした。また、本発明の場合、プ
ラズマ処理により生成したCr主体の酸化物層下に、加熱
処理時にSiO2主体の酸化物層が生成し耐食性の改善効果
がある。またピンホール欠陥部においてもSiO2主体の酸
化物層が生成するために0.1 %以上のSiは必要である。(2) Si: Si is a component having a function of deoxidizing, as well as having a function of concentrating on the surface of a steel material when heat-treated at a low dew point and improving the corrosion resistance of the surface. However, if its content is less than 0.1%, a sufficient deoxidizing effect cannot be obtained, and
%, The workability of the steel material is significantly deteriorated, so the content was made 0.1 to 5.0%. Further, in the case of the present invention, an oxide layer mainly composed of SiO 2 is formed at the time of the heat treatment under the oxide layer mainly composed of Cr formed by the plasma treatment, which has an effect of improving the corrosion resistance. Moreover, 0.1% or more of Si is necessary because an oxide layer mainly composed of SiO 2 is formed in the pinhole defect portion.
【0016】(3) Cr:鋼中のCr濃度は、イオンボンバー
ド処理時に生成する表面酸化物層の組成に直接関与する
ために極めて重要である。イオンボンバード処理時に生
成する酸化物層形成に関与するCr原子は、イオンボンバ
ード処理初期にすでに最表面層近傍に存在するCr原子に
大きく影響される。イオンボンバード処理時間が短く温
度も熱拡散が十分に進行する温度ではないためである。
本発明者らの度重なる検討結果によれば、下限のCr濃度
は、重量%で、8%である。一方35.0%を越えてCrを含
有すると、鋼材が脆くなり、製造が困難となる。よっ
て、その含有量を8.0 〜35.0%とした。(3) Cr: The Cr concentration in steel is extremely important because it directly affects the composition of the surface oxide layer formed during the ion bombardment treatment. The Cr atoms involved in the oxide layer formation generated during the ion bombardment treatment are greatly affected by the Cr atoms already present near the outermost surface layer at the initial stage of the ion bombardment treatment. This is because the ion bombardment treatment time is short and the temperature is not a temperature at which thermal diffusion sufficiently progresses.
According to the results of repeated studies by the present inventors, the lower limit Cr concentration is 8% by weight. On the other hand, when Cr is contained in excess of 35.0%, the steel material becomes brittle and manufacturing becomes difficult. Therefore, its content is set to 8.0 to 35.0%.
【0017】(4) Ni:Niはオーステナイト層を安定化さ
せて耐食性を高める作用があり、Crの場合と同様に母材
表面の耐食性を確保するために必要な成分である。その
最適な含有量はCr量およびN量との関係により変化する
が、少なくとも7.0 %以上含んでいれば母材表面の耐食
性を確保できる。しかし、Niは高価な成分であり、また
必要以上に添加量を増加してもそれ以上の耐食性の向上
が見られないため、上限含有量を50.0%と定めた。(4) Ni: Ni has a function of stabilizing the austenite layer and enhancing the corrosion resistance, and is a component necessary for securing the corrosion resistance of the surface of the base material as in the case of Cr. The optimum content varies depending on the relationship between the Cr content and the N content, but if the content is at least 7.0%, the corrosion resistance of the base metal surface can be secured. However, Ni is an expensive component, and since the corrosion resistance is not further improved even if the added amount is increased more than necessary, the upper limit content is set to 50.0%.
【0018】(5) N:Nも強力なオーステナイト生成元
素であり、耐食性を高める作用があるので、より高い耐
食性が求められる場合には上記成分に加えてNを含有す
るオーステナイト系ステンレス鋼材を母材に使用しても
よい。しかしNの含有量が0.3 %を越えるとCr窒化物が
生成し、耐食性を劣化させるので、その含有量は0.3 %
以下とするのがよい。(5) N: N is also a strong austenite-forming element and has an effect of enhancing corrosion resistance. Therefore, when higher corrosion resistance is required, an austenitic stainless steel material containing N in addition to the above components is used as a mother material. You may use it for wood. However, when the content of N exceeds 0.3%, Cr nitrides are formed and the corrosion resistance is deteriorated, so the content is 0.3%.
The following is recommended.
【0019】(6) Tiおよび/ またはNb:TiおよびNbは鋼
中のCを安定化し、熱処理時に鋭敏化を防止する作用が
ある。また、母材中に存在するTi、Nbが適切な熱処理を
施すことによってステンレス鋼材とエッチング中に生成
した表面酸化膜ならびに蒸着膜の界面に拡散し、蒸着皮
膜の密着性がより一層改善される。Ti、Nb含有量がそれ
ぞれ0.001 %未満では顕著な効果が得られない。またTi
含有量が2.0 %を越えると加工時の表面疵発生が顕著と
なり、表面疵に由来する蒸着めっき後のめっき膜のピン
ホール欠陥が増大するため、Ti含有量を0.001 〜2.0 %
と定めた。(6) Ti and / or Nb: Ti and Nb have the effect of stabilizing C in steel and preventing sensitization during heat treatment. In addition, Ti and Nb existing in the base material are diffused to the interface between the stainless steel material and the surface oxide film formed during etching and the vapor deposition film by applying an appropriate heat treatment, and the adhesion of the vapor deposition film is further improved. .. If the Ti and Nb contents are each less than 0.001%, a remarkable effect cannot be obtained. Also Ti
If the content exceeds 2.0%, the occurrence of surface defects during processing becomes remarkable and pinhole defects in the plated film after vapor deposition plating due to surface defects increase, so the Ti content is 0.001 to 2.0%.
I decided.
【0020】また、Nbは疵発生とピンホール欠陥がTiに
比べ軽微である特徴を有する。しかしながら、その耐食
性はTiに比べやや劣るため、2.0 %を越えて含有すると
熱処理後の耐食性がやや劣化する恐れがある。したがっ
て、Nb含有量を0.001 〜2.0%と定めた。母材のオース
テナイト系ステンレス鋼材には、上記成分の他に一般の
オーステナイト系ステンレス鋼材に含有するMo、Cu、M
n、Al等の成分を含んでいてもよい。これらの成分が含
まれていても蒸着材の皮膜密着性、耐食性に何ら影響を
及ぼさない。なお、不純物のSは耐食性を劣化させるば
かりでなく、熱処理中に母材と蒸着皮膜との間に偏析
し、蒸着皮膜の密着性を劣化させるため、その含有量は
0.03%以下に押さえるのが望ましい。Pは不純物であ
り、精錬上の不可避不純物として0.10%以下含有する。
通常は0.015 〜0.03%である。Further, Nb has a feature that defects and pinhole defects are smaller than Ti. However, its corrosion resistance is slightly inferior to that of Ti, so if it exceeds 2.0%, the corrosion resistance after heat treatment may deteriorate slightly. Therefore, the Nb content is set to 0.001 to 2.0%. The austenitic stainless steel material of the base material, Mo, Cu, M contained in the general austenitic stainless steel material in addition to the above components
It may contain components such as n and Al. The inclusion of these components does not affect the film adhesion and corrosion resistance of the vapor deposition material. It should be noted that the impurity S not only deteriorates the corrosion resistance but also segregates between the base material and the vapor-deposited film during the heat treatment and deteriorates the adhesion of the vapor-deposited film.
It is desirable to keep it below 0.03%. P is an impurity and is contained as an unavoidable impurity in refining in an amount of 0.10% or less.
It is usually 0.015 to 0.03%.
【0021】(B) 前処理条件 (1) 真空槽内H2O 分圧:真空槽内のH2O 分圧は、真空槽
内の露点に関係しているため極めて重要である。一般に
金属材料の酸化挙動は熱力学的な平衡計算からも予測で
きるが、蒸着の際の酸化は、プラズマ化したガス分子と
金属原子が直接関与しつつ水分子自体がプラズマ化した
状態で進行すると考えられる。そのため、単なる熱力学
的な平衡計算より酸化挙動を予測することは難しい。(B) Pretreatment conditions (1) H 2 O partial pressure in the vacuum chamber: The H 2 O partial pressure in the vacuum chamber is extremely important because it is related to the dew point in the vacuum chamber. In general, the oxidation behavior of metallic materials can be predicted from thermodynamic equilibrium calculations, but the oxidation during vapor deposition proceeds when the water molecules themselves are plasmatized while the gas molecules and metal atoms that are plasmatized are directly involved. Conceivable. Therefore, it is difficult to predict the oxidation behavior from mere thermodynamic equilibrium calculations.
【0022】本発明者らは、実際に真空蒸着あるいはイ
オンプレーティングを行いながら、イオンボンバード処
理後の基板表面分析ならびに蒸着後の基板耐食性評価を
繰り返しながら詳細に評価し、適正真空槽内H2O 分圧を
決定した。真空槽内H2O 分圧が2×10-4Torrよりも高い
条件では、耐食鋼板表面に生成する酸化皮膜は先に述べ
た他の支配因子によらずFeを主体とする酸化皮膜とな
り、蒸着前基板自身の耐食性劣化による蒸着材の耐食性
劣化が顕著となる。例えば、Ti蒸着をしたような場合に
は異種金属接触腐食の影響もあって蒸着基板に比べても
耐食性が著しく劣化した。The inventors of the present invention carried out a vacuum vapor deposition or an ion plating, and carried out a detailed evaluation by repeating the substrate surface analysis after the ion bombardment treatment and the substrate corrosion resistance evaluation after the vapor deposition, and evaluated the H 2 in an appropriate vacuum chamber. O partial pressure was determined. When the H 2 O partial pressure in the vacuum chamber is higher than 2 × 10 -4 Torr, the oxide film formed on the surface of the corrosion-resistant steel plate is an oxide film mainly composed of Fe regardless of the other controlling factors mentioned above. The deterioration of the corrosion resistance of the vapor deposition material becomes remarkable due to the deterioration of the corrosion resistance of the pre-deposition substrate itself. For example, in the case of Ti vapor deposition, the corrosion resistance was significantly deteriorated compared to the vapor deposition substrate due to the influence of corrosion of dissimilar metals.
【0023】一方、真空槽内のH2O 分圧が8×10-6Torr
よりも低い条件では、耐食鋼板基板上に緻密なCr酸化物
主体の酸化皮膜が十分に成長できず安定した耐食効果が
認められなかった。よって、真空槽内H2O 分圧を2×10
-4〜8×10-6Torrとした。ただし、ここで真空槽内H2O
分圧とは、真空計と質量分析器とを併用することにより
測定される値をもって真空槽内H2O 分圧と定義する。な
お、真空槽内は非酸化性雰囲気とされるが、そのために
は、Arガス、N2ガス、H2ガスおよびH2主体の非酸化性ガ
ス等を用いればよい。On the other hand, the partial pressure of H 2 O in the vacuum chamber is 8 × 10 -6 Torr.
Under lower conditions, a dense Cr oxide-based oxide film could not grow sufficiently on the corrosion-resistant steel plate substrate, and a stable corrosion-resistant effect was not recognized. Therefore, the H 2 O partial pressure in the vacuum chamber should be 2 × 10
-4 to 8 × 10 -6 Torr. However, here the H 2 O in the vacuum chamber
The partial pressure is defined as the H 2 O partial pressure in the vacuum chamber, which is a value measured by using a vacuum gauge and a mass spectrometer together. The inside of the vacuum chamber is set to a non-oxidizing atmosphere. For that purpose, Ar gas, N 2 gas, H 2 gas, and non-oxidizing gas mainly containing H 2 may be used.
【0024】(2) 基板加熱温度:短いイオンボンバード
処理時間の内で、表面にCr酸化物主体の酸化物層を形成
させるためには、イオンボンバード処理前に基板をあら
かじめ予熱しておくことが重要である。基板加熱温度が
150 ℃未満である場合には蒸着基板表面の付着水量が十
分に除去できず、安定した性能を得ることができない。
150 ℃以上とすることで、基板表面付着水を飛散させる
ことが可能となり安定して良好な効果を得ることができ
る。イオンボンバード処理でエッチングと酸化の反応を
同時にかつ競合させながら進行させるためには、150 ℃
以上500 ℃以下に予熱することが重要である。(2) Substrate heating temperature: In order to form an oxide layer mainly composed of Cr oxide on the surface within a short ion bombardment treatment time, the substrate should be preheated before the ion bombardment treatment. is important. Substrate heating temperature is
If the temperature is lower than 150 ° C, the amount of water adhering to the surface of the vapor deposition substrate cannot be sufficiently removed and stable performance cannot be obtained.
By setting the temperature to 150 ° C. or higher, water adhering to the substrate surface can be scattered and a stable and good effect can be obtained. In order to proceed the etching and oxidation reactions simultaneously and competing in the ion bombardment process, 150 ℃
It is important to preheat above 500 ° C.
【0025】基板予熱温度を500 ℃超とするとイオンボ
ンバード処理を開始するまでの昇温時の表面酸化が無視
できない程度まで進行し、その後のイオンボンバード処
理がうまく行えなくなること、さらには、イオンボンバ
ード処理時の基板側での拡散移動が顕著となり、Fe酸化
が進行し耐食の良好なCr酸化物主体の表面酸化物層が形
成されにくくなる。よって、基板予熱温度を150 ℃以上
500 ℃以下とした。If the substrate preheating temperature is higher than 500 ° C., the surface oxidation at the time of raising the temperature until the ion bombardment process starts cannot be ignored, and the subsequent ion bombardment process cannot be performed well. Diffusion movement on the substrate side during processing becomes remarkable, Fe oxidation progresses, and it becomes difficult to form a surface oxide layer mainly composed of Cr oxide with good corrosion resistance. Therefore, the substrate preheating temperature should be 150 ° C or higher.
The temperature was set to 500 ° C or lower.
【0026】(3) 基板印加バイアス電圧:イオンボンバ
ード処理の際の印加バイアス電圧は耐食鋼板表面酸化皮
膜の除去速度および除去と同時に生成する酸化皮膜の成
長速度、さらには処理後の表面性状に大きな影響を及ぼ
す。イオンボンバード処理時のバイアス電圧が−20V 未
満であると表面のエッチングが事実上進展しない。ま
た、バイアス電圧が−400V超ではエッチングが激しく基
板表面の荒れがめだち、蒸着欠陥誘発の遠因となる。ま
た、エッチングが激しく進行するためには耐食鋼板基板
の温度上昇が顕著となり、表面温度制御が困難となる。
よって、バイアス電圧は−20V 以上、−400V以下と定め
た。(3) Substrate applied bias voltage: The bias voltage applied during the ion bombardment treatment is large in the removal rate of the oxide film on the surface of the corrosion-resistant steel plate, the growth rate of the oxide film formed at the same time as the removal, and the surface property after the treatment. affect. If the bias voltage during ion bombardment is less than -20V, surface etching does not progress effectively. Further, when the bias voltage exceeds -400V, the etching is so severe that the surface of the substrate is roughened, which is a cause of vapor deposition defect induction. Further, since the etching progresses violently, the temperature rise of the corrosion-resistant steel plate substrate becomes remarkable, and it becomes difficult to control the surface temperature.
Therefore, the bias voltage is set to -20V or more and -400V or less.
【0027】イオンボンバード処理時に生成するCr主体
の酸化物皮膜層について述べる。本発明において生成す
る酸化物皮膜は単なる高温酸化皮膜ではなく、プラズマ
中で生成する酸化物皮膜である。周知のように、プラズ
マ状態にあるガスあるいは金属は、極めて活性な状態に
あり、熱的な拡散を伴った一般的な高温酸化皮膜と違っ
て素材側の熱的な拡散が余り期待できない状態で生成す
る酸化皮膜といえる。Cr酸化物としては主にCr2O3 、Cr
Fe2O3 等が生成すると思われる。The Cr-based oxide film layer formed during the ion bombardment process will be described. The oxide film produced in the present invention is not simply a high temperature oxide film, but an oxide film produced in plasma. As is well known, the gas or metal in the plasma state is in an extremely active state, and unlike the general high temperature oxide film that accompanies thermal diffusion, thermal diffusion on the material side cannot be expected so much. It can be said that it is an oxide film formed. Cr oxides are mainly Cr 2 O 3 and Cr
It seems that Fe 2 O 3 etc. are generated.
【0028】本発明で生成する酸化皮膜層の詳細な検討
は今後の課題であるが、本発明で生成するCr主体の酸化
皮膜の耐食性は極めて良好である蒸着材の性能改善に対
して極めて顕著な効果を有していること実験的にも確認
されている。このように前処理した被処理材は、次いで
慣用法によって蒸着めっきを行い、めっき完了後熱処理
を行う。Detailed examination of the oxide film layer formed in the present invention is a future subject, but the corrosion resistance of the Cr-based oxide film formed in the present invention is extremely good. It has been confirmed experimentally that it has various effects. The material to be pretreated in this way is then subjected to vapor deposition plating by a conventional method, and heat treatment is carried out after completion of plating.
【0029】(C) 熱処理条件 (1) 炉内雰囲気 イオンボンバード前処理により生成した耐食性に優れた
Cr酸化物主体の酸化膜、および蒸着膜を劣化させること
なく蒸着膜−母材界面にTi、Cr、Nb等の拡散を促進さ
せ、密着性を改善するためには、炉内雰囲気を低酸素ポ
テンシャルにする必要があるので、炉内雰囲気を非酸化
性雰囲気とした。炉内を非酸化性雰囲気とする場合、ア
ンモニア分解ガス (AXガス) 、H2−N2混合ガス、水素ガ
ス、COガス、Arガス等を用いてもよく、炉内を真空引き
してもよい。(C) Heat treatment conditions (1) Furnace atmosphere Excellent corrosion resistance generated by ion bombardment pretreatment
In order to improve the adhesion by promoting the diffusion of Ti, Cr, Nb, etc. at the deposited film-base material interface without deteriorating the oxide film mainly composed of Cr oxide and the deposited film, the atmosphere in the furnace should be low oxygen. Since it is necessary to have a potential, the atmosphere in the furnace was a non-oxidizing atmosphere. If the furnace and non-oxidizing atmosphere, ammonia decomposition gas (AX gas), H 2 -N 2 mixture gas, hydrogen gas, CO gas, may be used Ar gas or the like, even if evacuated furnace Good.
【0030】(2) 炉内露点 炉内露点は前処理で生成した酸化膜中にFe酸化物が混入
し、耐食性が劣化することを防止するために極力下げる
必要がある。鋼中成分の酸化ポテンシャルを計算し、炉
内露点を決定することは容易であるが実炉において必ず
しも計算と一致しないのが一般である。発明者は実炉に
よる検討を行い、露点を−15〜−55℃としたときにめっ
きステンレス鋼の耐食性が熱処理前と同等以上の耐食性
を有することを見いだした。−55℃未満では耐食性改善
に十分な酸化膜の生成が行われず、−15℃を越えて露点
が高い場合には酸化膜中にFe酸化物が増大するために蒸
着めっき材の耐食性劣化が顕著となる。よって露点を−
15〜−55℃と定めた。(2) In-furnace dew point It is necessary to lower the in-furnace dew point as much as possible in order to prevent deterioration of corrosion resistance due to the inclusion of Fe oxide in the oxide film formed in the pretreatment. It is easy to determine the dew point in the furnace by calculating the oxidation potential of the components in steel, but it is not always the case in an actual furnace. The inventor conducted a study using an actual furnace and found that the corrosion resistance of the plated stainless steel had a corrosion resistance equal to or higher than that before the heat treatment when the dew point was -15 to -55 ° C. When the temperature is lower than −55 ° C, an oxide film is not sufficiently formed to improve the corrosion resistance, and when the dew point is higher than −15 ° C, the Fe oxide increases in the oxide film, and the corrosion resistance of the vapor-deposited plated material deteriorates significantly. Becomes Therefore, dew point
It was set at 15 to -55 ° C.
【0031】(3) 処理温度および処理時間 熱処理の処理温度が500 ℃より低いと、Ti、Cr、Nbの拡
散が非常に遅く、密着性改善効果は見られない。また11
50℃を越えると、蒸着物質の母材側への拡散が顕著とな
り所望する性能が確保できない。あるいは、母材側の機
械的性質が劣化する。そのためめっきステンレス鋼材の
熱処理温度は500 ℃以上1150℃以下とした。(3) Treatment temperature and treatment time When the treatment temperature of the heat treatment is lower than 500 ° C., diffusion of Ti, Cr, and Nb is very slow, and the effect of improving adhesion is not seen. Again 11
If the temperature exceeds 50 ° C, diffusion of the vapor deposition material to the base material side becomes remarkable, and desired performance cannot be secured. Alternatively, the mechanical properties on the base material side are deteriorated. Therefore, the heat treatment temperature of the plated stainless steel material was set to 500 ° C to 1150 ° C.
【0032】また処理時間によりTi、Cr、Nb拡散量が決
まるが、0.5min未満ではTi、Cr、Nb拡散が十分ではない
ため、処理時間を0.5min以上とした。本発明では処理時
間の上限は特に限定する必要はない。しかし、1000min
を越えて処理しても耐食性および密着性のさらなる改善
が望めないので1000min 以内に止めるのが好ましい。こ
こに、本発明における「鋼材」には鋼板はもちろん、そ
の他管材、棒材、形材等も含まれる。次に、実施例でも
って本発明をさらに具体的に説明する。The amount of diffusion of Ti, Cr and Nb is determined by the treatment time, but if the diffusion time is less than 0.5 min, the diffusion of Ti, Cr and Nb is not sufficient, so the treatment time was set to 0.5 min or longer. In the present invention, the upper limit of the processing time need not be particularly limited. But 1000min
It is preferable to stop the treatment within 1000 min because further improvement in corrosion resistance and adhesion cannot be expected even if the treatment is performed for more than 10 minutes. Here, the "steel material" in the present invention includes not only steel plates but also other pipe materials, rod materials, shape materials and the like. Next, the present invention will be described more specifically with reference to Examples.
【0033】実施例1 表1に示す組成を有する各種鋼板を、有機溶剤にて脱脂
洗浄した後、蒸着基板として用いた。蒸着基板は表3に
まとめて示す条件で前処理としてエッチング処理を行っ
た後に、ホローカソード方式イオンプレーティング法で
TiめっきとTiN めっきを施した。Tiめっき膜厚は0.2 μ
m、TiN めっき膜厚は1.0 μmとした。ホローカソード
方式プラズマ電子銃カソード部と蒸着物質溶湯間の電圧
は90V、カソード電流密度は250Aであった。蒸着後はア
ンモニア分解ガス雰囲気の炉内で、炉内露点−49℃、処
理温度 930℃、処理時間1.5minの条件で熱処理を施し
た。 Example 1 Various steel plates having the compositions shown in Table 1 were used as vapor deposition substrates after degreasing and cleaning with an organic solvent. The vapor-deposited substrate was subjected to an etching treatment as a pretreatment under the conditions summarized in Table 3 and then subjected to a hollow cathode ion plating method.
Ti plating and TiN plating were applied. Ti plating film thickness is 0.2 μ
m, TiN plating film thickness was 1.0 μm. The voltage between the cathode of the hollow cathode plasma electron gun and the molten metal of the deposition material was 90 V, and the cathode current density was 250 A. After the vapor deposition, heat treatment was performed in a furnace in an ammonia decomposition gas atmosphere under the conditions of a furnace dew point of −49 ° C., a processing temperature of 930 ° C., and a processing time of 1.5 min.
【0034】このようにして得られた蒸着めっき材につ
いて下記条件にて性能評価を行った。結果をまとめて表
2に示す。またTi、TiN 蒸着、その後の加熱処理を行わ
ず、前処理のみを行ったオーステナイト鋼基板の表面近
傍のCr、FeおよびO濃度を二次イオン質量分析(SIMS)に
より分析した。The vapor deposition plated material thus obtained was evaluated for performance under the following conditions. The results are summarized in Table 2. Further, the concentrations of Cr, Fe and O in the vicinity of the surface of the austenitic steel substrate, which was pretreated only without Ti, TiN vapor deposition and subsequent heat treatment, were analyzed by secondary ion mass spectrometry (SIMS).
【0035】表3に前処理条件、図1〜図3に分析結果
をそれぞれ示す。図1は前処理を行なわなかった場合
(No.17)、図2は本発明に従い前処理を行った場合 (No.
18)、そして図3は、前処理条件が本発明のそれを外れ
た場合(No.19)についてのスパッタ時間に対する元素濃
度分布を示す。Table 3 shows the pretreatment conditions, and FIGS. 1 to 3 show the analysis results. Figure 1 shows the case without pretreatment
(No. 17), FIG. 2 shows the case where the pretreatment is performed according to the present invention (No. 17).
18), and FIG. 3 shows the element concentration distribution with respect to the sputtering time when the pretreatment conditions deviate from those of the present invention (No. 19).
【0036】耐食性評価 耐食性は、10%NaCl水溶液を用いた塩水噴霧試験により
評価した。塩水噴霧条件は、2000時間、50℃連続噴霧で
ある。n数は5にて評価した。判定は25倍のルーペを用
いて外観観察により実施した。表4に判定基準を示す。Evaluation of Corrosion Resistance Corrosion resistance was evaluated by a salt spray test using a 10% NaCl aqueous solution. The salt spray conditions are 2000 hours and 50 ° C. continuous spray. The n number was evaluated at 5. The judgment was performed by observing the appearance with a magnifying glass of 25 times. Table 4 shows the judgment criteria.
【0037】蒸着膜密着性 密着性は1t、180 ℃曲げ部での蒸着膜密着性で評価し
た。曲げ部での割れ、密着性評価は光学顕微鏡を用いて
行った。割れなしは◎、一部割れ発生は○、全面に割れ
発生は△、割れ発生し剥離発生を×で評価した。Adhesiveness of deposited film The adhesiveness was evaluated by the adhesiveness of a deposited film at a bent portion of 180 ° C. at 1 t. The crack at the bent portion and the adhesion were evaluated using an optical microscope. No cracking was rated as ⊚, partial cracking was rated as ○, cracking was observed on the entire surface as △, and cracking and peeling were rated as x.
【0038】実施例2 実施例1で作成したNo.15 の蒸着めっき材について種々
の条件で熱処理を施した。このようにして得られた蒸着
めっき材について実施例1と同様の性能評価を行った。
結果をまとめて表4に示す。表2、表4に示す結果か
ら、本発明方法で前処理、後処理を施した後にめっきし
た蒸着鋼板はいずれも密着性および耐食性に優れている
ことが分かる。 Example 2 The vapor deposition plated material of No. 15 prepared in Example 1 was heat-treated under various conditions. The same performance evaluation as in Example 1 was performed on the vapor-deposited plated material thus obtained.
The results are summarized in Table 4. From the results shown in Tables 2 and 4, it can be seen that the vapor-deposited steel sheets plated after being subjected to the pretreatment and the posttreatment by the method of the present invention have excellent adhesion and corrosion resistance.
【0039】これに対して、基板の鋼組成、前処理条
件、後処理条件が本発明で規定する範囲からはずれてい
る比較例は、いずれも、密着性、耐食性のいずれか一方
または両方が劣っている。On the other hand, in the comparative examples in which the steel composition of the substrate, the pretreatment conditions, and the posttreatment conditions deviate from the ranges specified in the present invention, either one or both of the adhesion and the corrosion resistance are inferior. ing.
【0040】また図1から、本発明方法で前処理を施し
たオーステナイト系ステンレス鋼板表面には前処理前の
ステンレス鋼板に比較して表面にCr主体の酸化膜が成長
していることがわかる。また、酸化膜中のCr濃度は非常
に増大している。それに対し、前処理が本発明で規定す
る範囲からはずれている比較例では、酸化膜の成長は見
られず、酸化膜中のCr濃度が前処理前に比べ、著しく減
少していることがわかる。Further, it can be seen from FIG. 1 that an oxide film mainly containing Cr is grown on the surface of the austenitic stainless steel sheet pretreated by the method of the present invention as compared with the stainless steel sheet before pretreatment. Moreover, the Cr concentration in the oxide film is extremely increased. On the other hand, in the comparative example in which the pretreatment deviates from the range defined by the present invention, no growth of the oxide film is observed, and it can be seen that the Cr concentration in the oxide film is remarkably reduced as compared with that before the pretreatment. ..
【0041】[0041]
【表1】 [Table 1]
【0042】[0042]
【表2】 [Table 2]
【0043】[0043]
【表3】 [Table 3]
【0044】[0044]
【表4】 [Table 4]
【0045】[0045]
【表5】 [Table 5]
【0046】[0046]
【発明の効果】本発明によれば、蒸着めっき皮膜の密着
性が改善されるとともに、ステンレス鋼表面の酸化膜中
のCr濃度が増加することで酸化膜自体の耐食性も大幅に
改善される。According to the present invention, the adhesion of the vapor-deposited plating film is improved, and the corrosion resistance of the oxide film itself is greatly improved by increasing the Cr concentration in the oxide film on the surface of stainless steel.
【図1】実施例の結果を示すグラフである。FIG. 1 is a graph showing the results of Examples.
【図2】実施例の結果を示すグラフである。FIG. 2 is a graph showing the results of Examples.
【図3】比較例の結果を示すグラフである。FIG. 3 is a graph showing the results of a comparative example.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C23F 4/00 C 8414−4K // C21D 1/76 G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C23F 4/00 C 8414-4K // C21D 1/76 G
Claims (1)
5.0 %、Cr:8.0〜35.0%、Ni:7.0〜50.0%、N:0.3%以
下、さらに、Ti:0.001〜2.0 %および/ またはNb:0.001
〜2.0 %を含有するオーステナイト系ステンレス鋼材を
基板として蒸着めっきする際に、蒸着めっきするに先立
って、H2O 分圧が2×10-4〜8×10-6Torrである非酸化
性雰囲気ガスを導入した真空槽内で、基板を150 ℃以上
500 ℃以下に予熱した状態で、−20〜−400Vのバイアス
電圧をかけてイオンボンバード処理を行うことで基板表
面にCr酸化物を主体とする酸化物皮膜を生成させ、さら
に蒸着めっきを行った後に、露点−15〜−55℃に保持さ
れた非酸化性雰囲気の炉内で、500 〜1150℃の温度域に
0.5min以上保持することを特徴とする蒸着めっき耐食鋼
材の製造方法。1. By weight%, C: 0.01-0.06%, Si: 0.1-
5.0%, Cr: 8.0 to 35.0%, Ni: 7.0 to 50.0%, N: 0.3% or less, and Ti: 0.001 to 2.0% and / or Nb: 0.001
When vapor deposition plating an austenitic stainless steel material containing ~ 2.0% as a substrate, a non-oxidizing atmosphere with a H 2 O partial pressure of 2 x 10 -4 to 8 x 10 -6 Torr prior to vapor deposition plating The substrate should be heated to 150 ° C or higher in a vacuum chamber containing gas.
While preheated to 500 ° C or less, a bias voltage of -20 to -400V was applied to perform an ion bombardment treatment to generate an oxide film mainly composed of Cr oxide on the substrate surface, and further vapor deposition plating was performed. Later, in a furnace with a non-oxidizing atmosphere maintained at a dew point of -15 to -55 ° C, the temperature range was set to 500 to 1150 ° C.
A method for producing a corrosion-resistant vapor-deposited steel material, characterized by holding for 0.5 min or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2135792A JPH05222513A (en) | 1992-02-06 | 1992-02-06 | Manufacture of vapor deposition plated corrosion resistant steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2135792A JPH05222513A (en) | 1992-02-06 | 1992-02-06 | Manufacture of vapor deposition plated corrosion resistant steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05222513A true JPH05222513A (en) | 1993-08-31 |
Family
ID=12052843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2135792A Withdrawn JPH05222513A (en) | 1992-02-06 | 1992-02-06 | Manufacture of vapor deposition plated corrosion resistant steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05222513A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100468158B1 (en) * | 2002-08-05 | 2005-01-26 | (주)삼영코넥 | Non-oxidizing heating method for retarding corrosion of stainless steel |
WO2005101551A1 (en) * | 2004-04-12 | 2005-10-27 | Matsushita Electric Industrial Co., Ltd. | Substrate containing metal oxide and method for production thereof |
JP2011046981A (en) * | 2009-08-25 | 2011-03-10 | Nisshin Steel Co Ltd | Method for manufacturing stainless steel sheet having excellent coating film adhesiveness |
-
1992
- 1992-02-06 JP JP2135792A patent/JPH05222513A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100468158B1 (en) * | 2002-08-05 | 2005-01-26 | (주)삼영코넥 | Non-oxidizing heating method for retarding corrosion of stainless steel |
WO2005101551A1 (en) * | 2004-04-12 | 2005-10-27 | Matsushita Electric Industrial Co., Ltd. | Substrate containing metal oxide and method for production thereof |
KR100837020B1 (en) * | 2004-04-12 | 2008-06-10 | 마쯔시다덴기산교 가부시키가이샤 | SUBSTRATE CONTAlNING METAL OXIDE AND METHOD FOR PRODUCTION THEREOF |
JP2011046981A (en) * | 2009-08-25 | 2011-03-10 | Nisshin Steel Co Ltd | Method for manufacturing stainless steel sheet having excellent coating film adhesiveness |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6505126B2 (en) | Multilayer substrate and manufacturing method | |
Stoiber et al. | Plasma-assisted pre-treatment for PACVD TiN coatings on tool steel | |
JPH0518903B2 (en) | ||
JPH0456111B2 (en) | ||
EP0951575B1 (en) | Zinc alloys yielding anticorrosive coatings on ferrous materials | |
JPH05222513A (en) | Manufacture of vapor deposition plated corrosion resistant steel | |
JPH0525636A (en) | Manufacture of dry tin plated stainless steel for decoration | |
JPH0525635A (en) | Manufacture of dry ti series plated stainless steel | |
KR101000516B1 (en) | Hot dip coating apparatus | |
JPH05214508A (en) | Manufacture of high corrosion resistant surface treated steel | |
JPH05239621A (en) | Manufacture of high corrosion resistant vapor deposition plated stainless steel sheet | |
Okada | Thermal and mechanical properties of vapour-deposited TiC coatings for the first wall of a fusion reactor | |
JPS61130482A (en) | Surface treated steel sheet having superior resistance to corrosion and oxidation at high temperature and its manufacture | |
US20220243318A1 (en) | Coated forming tools with enhanced performance and increased service life | |
Dabalà et al. | Surface hardening of Ti–6Al–4V alloy using combined electroless Ni–B plating and diffusion treatments | |
JP3207958B2 (en) | Composite Al alloy plated steel sheet and method for producing the same | |
JP2019089339A (en) | Multilayer substrate and manufacturing method | |
JPH06340974A (en) | Production of ti dry-plated stainless steel material | |
JP2746505B2 (en) | Ceramic coated member and method of manufacturing the same | |
JPH06228723A (en) | Melting resistant metal eroding material and production thereof | |
KR20020051089A (en) | Thermal Spray Method of Oxide Coatings for Rolls used in Molten Zinc Pot | |
JPH09268366A (en) | Oxidation resistant coating film of titanium-aluminum intermetallic compound and coating method therefor | |
JPH06322523A (en) | Vapor phase ceramic coated plated steel sheet | |
JP2000328290A (en) | Electrogalvanized steel plate and its production | |
He et al. | Effect of the PECVD-a-SiC top coating on the passivation resistance of titanium-nitride-coated steel in 3.5% NaCl solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990518 |