JPH0522178B2 - - Google Patents

Info

Publication number
JPH0522178B2
JPH0522178B2 JP57112796A JP11279682A JPH0522178B2 JP H0522178 B2 JPH0522178 B2 JP H0522178B2 JP 57112796 A JP57112796 A JP 57112796A JP 11279682 A JP11279682 A JP 11279682A JP H0522178 B2 JPH0522178 B2 JP H0522178B2
Authority
JP
Japan
Prior art keywords
oxygen
hole
chamber
oxygen concentration
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57112796A
Other languages
Japanese (ja)
Other versions
JPS593252A (en
Inventor
Tetsumasa Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP57112796A priority Critical patent/JPS593252A/en
Publication of JPS593252A publication Critical patent/JPS593252A/en
Publication of JPH0522178B2 publication Critical patent/JPH0522178B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes

Description

【発明の詳細な説明】 本発明は排気ガスなどの被測定ガス中の酸素濃
度を測定するための酸素センサに関する。更に詳
しくは、本考案は、空燃比などを広範囲にかつ非
常に精密に測定することができる酸素センサに係
わるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen sensor for measuring oxygen concentration in a gas to be measured such as exhaust gas. More specifically, the present invention relates to an oxygen sensor that can measure air-fuel ratio and the like over a wide range and with great precision.

自動車用エンジンの燃費改善及び排ガス浄化の
ため、吸入混合気の空燃比を理論空燃比(空気過
剰率λ=1)より高いリーン側で運転する方法が
提案され、いる空気過剰率λ≧1における空燃比
を正確に測定できる酸素センサが求められてい
る。
In order to improve the fuel efficiency and purify exhaust gas of automobile engines, a method has been proposed in which the air-fuel ratio of the intake air-fuel mixture is operated on the lean side, which is higher than the stoichiometric air-fuel ratio (excess air ratio λ = 1). There is a need for an oxygen sensor that can accurately measure air-fuel ratio.

かかる用途の酸素センサの1つとして米国フオ
ード社によつて公表されたものがある(例えば特
開昭56−130649)。
One of the oxygen sensors for such use is the one published by Ford Corporation of the United States (for example, Japanese Patent Application Laid-Open No. 130649/1983).

このセンサは電極を両面に設けた2枚の板状酸
素イオン導電性固体電解質焼結体を、一方は酸素
ポンプ素子に、他方は酸素濃淡電池素子として、
側壁に小さな孔を穿つた耐熱材料からなる板状体
スペーサを挟んで積層して接着し、上記2つの板
状素子間に囲われた室と酸素拡散孔とを形成して
なるものである。しかして、酸素ポンプ素子に通
電し上記孔を通して外界雰囲気即ち被測定雰囲気
との間の拡散による酸素の流通を許しながら上記
囲われた室内の酸素を、例えば酸素濃淡電池素子
の出力即ち室内と外との酸素濃度比が常に一定に
なるよう汲み出すことにより酸素汲み出し電流が
被測定ガス雰囲気中の酸素濃度と対応することを
利用して被測定ガス中の酸素濃度を電気的に測定
するというものである。かかる方式のセンサは、
酸素ポンプ素子と酸素濃淡電池素子とをそれぞれ
別々に設けるので雰囲気ガス温度に対するセンサ
出力の温度依存性の点で有利となるものである。
しかしながら、スペーサの材質が両素子のそれと
は異なること、又、両素子をスペーサに接着する
際ガラス系接着剤もしくはセラミツク接着剤を用
いるために、接着面が熱衝撃に弱く、剥れ易くて
囲われた室の気密性が保ちにくいなどの難点があ
り製作上、及び構造上において、充分満足できる
ものとは言えない。
This sensor consists of two plate-shaped oxygen ion conductive solid electrolyte sintered bodies with electrodes on both sides, one as an oxygen pump element and the other as an oxygen concentration battery element.
The two plate elements are laminated and bonded with a plate spacer made of a heat-resistant material with a small hole bored in the side wall sandwiched therebetween, thereby forming an enclosed chamber and an oxygen diffusion hole between the two plate elements. Then, by energizing the oxygen pump element and allowing the flow of oxygen by diffusion between the outside atmosphere, that is, the atmosphere to be measured through the hole, the oxygen in the enclosed chamber is transferred to the output of the oxygen concentration battery element, ie, the output of the oxygen concentration battery The oxygen concentration in the gas to be measured is electrically measured by pumping the oxygen so that the ratio of the oxygen concentration between the gas and It is. This type of sensor is
Since the oxygen pump element and the oxygen concentration battery element are provided separately, this is advantageous in terms of the temperature dependence of the sensor output on the ambient gas temperature.
However, because the material of the spacer is different from that of both elements, and because a glass adhesive or ceramic adhesive is used to bond both elements to the spacer, the adhesive surface is vulnerable to thermal shock and easily peels off, making it difficult to bond the elements to the spacer. There are some drawbacks such as difficulty in maintaining the airtightness of the chamber, and it cannot be said to be completely satisfactory in terms of manufacturing and structure.

本発明は製作が容易で応答性及び耐久的に優
れ、しかも酸素の拡散孔を大きくとれて目詰りを
なくすことができ、更に消費電力も少なくてすむ
酸素センサを提供するものである。
The present invention provides an oxygen sensor that is easy to manufacture, has excellent responsiveness and durability, has large oxygen diffusion holes to eliminate clogging, and consumes less power.

それぞれ両面に電極用とその引出線用の耐熱金
属層を厚膜技術を用いて設けた酸素ポンプ素子用
及び酸素濃淡電池素子用の2つの酸素イオン導電
性固体電解質板状体を、厚み方向の比較的大きい
孔と該孔の側方でこれと連通する同じく厚み方向
の1個または複数個の比較的小さい孔とを具えた
セラミツク材からなる発熱抵抗体を含まない中間
板状体を挟んで積層一体化焼結し、しかして先側
と元側とを区別し、上記先側に偏平な囲われた室
と、該室の厚みの大きさの縦幅を持ち且つ該室を
外界に連通させる連通孔とを形成するとともに上
記室の厚み方向の両壁にそれぞれ元側から引出線
を介して電圧の印加もしくは取り出しがなされる
酸素ポンプ素子もしくは酸素濃淡電池素子の酸素
透過壁を形成したことを特徴とするものである。
Two oxygen ion conductive solid electrolyte plates for an oxygen pump element and an oxygen concentration battery element, each having heat-resistant metal layers for electrodes and their lead wires on both sides using thick film technology, are An intermediate plate-like body, which does not include a heating resistor and is made of ceramic material, is sandwiched between a relatively large hole and one or more relatively small holes, which are also in the thickness direction and communicate with the hole on the side of the hole. Laminated and integrally sintered, the tip side and the base side are distinguished, and the tip side has a flat enclosed chamber with a vertical width equal to the thickness of the chamber and communicates the chamber with the outside world. In addition to forming communication holes in the chamber, oxygen permeable walls of an oxygen pump element or an oxygen concentration battery element are formed on both walls in the thickness direction of the chamber, to which a voltage is applied or taken out from the source side via a lead wire. It is characterized by:

以下、本発明を一実施例を示す図面に基づいて
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on drawings showing one embodiment.

第1図は、本発明の酸素センサの実施例を説明
するための分解斜視図である。
FIG. 1 is an exploded perspective view for explaining an embodiment of the oxygen sensor of the present invention.

図において、2は酸素ポンプ素子1用の板状体
で、気孔率0〜10%で例えばY2O3,CaO、MgO
などで安定化もしくは部分安定化したZrO2
ThO2からなる最終厚みはおよそ0.1〜2.0mmの範
囲、ここでは0.5mmとした板状の酸素イオン導電
性固体電解質であり、その両面には耐熱金属例え
ばPt、Ru、Pd、Rh、Ir、Au、Ag等(ここでは
Pt)の層3が電極用3aとその引出線用3b及
び引出線の取り出し部用3c,3dとして厚膜技
術を用いて設けられる。取り出し部用の耐熱金属
層3dは板状体2の図示しないスルーホール内に
充填された白金ペーストにより板状体2の裏面の
耐熱性金属層に導通されている。5は酸素濃度測
定用電池素子4用の板状体で、前記酸素ポンプ素
子1の場合と同一組成形状の酸素イオン導電性固
体電解でありその両面には電極用6a、その引出
線用6b及び引出線の取り出し部用の耐熱金属層
6cが同じく厚膜技術を用いて設けられる。な
お、上記耐熱金属層は厚み5〜20μm、気孔率10
〜40%とするが電極層に平行な方向への電気的導
通性を確実にすると同時に、固体電解質表面への
酸素ガスの通気孔を十分に含んでおり好ましい。
尚、気孔率の測定は(水銀圧入式)ポロシメータ
ーを用いた。7は中間板状体でここでは前記酸素
濃淡電池素子4や酸素ポンプ素子1と同一材質と
した板状の最終厚みがおよそ0.1〜2.0mmの範囲、
ここでは0.5mmとしたものからなつている。これ
には発熱抵抗体や該発熱抵抗体の取り出し用電極
は設けられないが、前記酸素濃淡電池素子4や酸
素ポンプ素子1に設けられる電極3a,6aの設
置位置に対応する部位に厚み方向に打ち抜いた比
較的大きい孔8が設けられると共にこれと側方で
通ずる如くする同じく厚み方向に打ち抜いた比較
的小さい孔9が複数個ここでは3ヶ設けられてい
る。この比較的小さい孔9の面に沿う方向からみ
た形状は縦幅が厚みの大きさにされて応答性の点
と排ガス中の燃焼残渣による目詰まりによる性能
劣化を生じないようにすることにおいて有利に働
くが、更に最終値で連通孔の総断面積を1mm2
上、より好ましくは3mm2以上に大きくとることが
望ましい。1mm2より小さいと、応答性が著しく低
下し、また目詰まりが生じ易くなる。ここでは最
終寸法で0.5mm×2mm×3ヶ(孔の長さは1mm)
とした。第2図はこれらが積層一体化されたあと
の本実施例の酸素センサを斜視図で示したもので
ある。この図で9は最終的に本発明センサの連通
孔を形成している中間板状体の比較的小さい孔を
示す。10は引出線の取り出し部にろう付けされ
たリード線、11はセンサの先側、12はセンサ
の元側である。
In the figure, 2 is a plate-shaped body for the oxygen pump element 1, which has a porosity of 0 to 10% and is made of, for example, Y 2 O 3 , CaO, MgO.
ZrO 2 stabilized or partially stabilized with
It is a plate-shaped oxygen ion conductive solid electrolyte made of ThO 2 with a final thickness in the range of approximately 0.1 to 2.0 mm, here 0.5 mm, and both sides are coated with heat-resistant metals such as Pt, Ru, Pd, Rh, Ir, etc. Au, Ag, etc. (here
A layer 3 of Pt) is provided using thick film technology as an electrode 3a, a lead wire 3b, and lead wire extraction portions 3c and 3d. The heat-resistant metal layer 3d for the take-out portion is electrically connected to the heat-resistant metal layer on the back surface of the plate-like body 2 by platinum paste filled in through holes (not shown) of the plate-like body 2. Reference numeral 5 designates a plate-shaped body for the oxygen concentration measuring battery element 4, which is an oxygen ion conductive solid electrolyte having the same composition and shape as the oxygen pump element 1, and has electrodes 6a, lead wires 6b and A heat-resistant metal layer 6c for the lead-out portion of the lead wire is also provided using the thick film technique. The heat-resistant metal layer has a thickness of 5 to 20 μm and a porosity of 10.
40% is preferable because it ensures electrical conductivity in the direction parallel to the electrode layer and at the same time includes sufficient oxygen gas ventilation holes to the solid electrolyte surface.
The porosity was measured using a (mercury intrusion type) porosimeter. 7 is an intermediate plate-shaped body made of the same material as the oxygen concentration battery element 4 and oxygen pump element 1, and has a final thickness of approximately 0.1 to 2.0 mm;
Here, it is made of 0.5mm. This is not provided with a heat generating resistor or an electrode for taking out the heat generating resistor, but is placed in the thickness direction at a portion corresponding to the installation position of the electrodes 3a and 6a provided in the oxygen concentration battery element 4 and oxygen pump element 1. A relatively large punched hole 8 is provided, and a plurality of relatively small holes 9, here three, also punched in the thickness direction, communicating with this hole laterally, are provided. The shape of the relatively small hole 9 when viewed in the direction along the plane is advantageous in that the vertical width is the same as the thickness, which improves responsiveness and prevents performance deterioration due to clogging caused by combustion residue in the exhaust gas. However, it is further desirable that the final value of the total cross-sectional area of the communicating holes be larger than 1 mm 2 , more preferably 3 mm 2 or more. When it is smaller than 1 mm 2 , responsiveness is significantly reduced and clogging is likely to occur. Here, the final dimensions are 0.5mm x 2mm x 3 (hole length is 1mm)
And so. FIG. 2 is a perspective view of the oxygen sensor of this embodiment after these components are laminated and integrated. In this figure, reference numeral 9 indicates a relatively small hole in the intermediate plate that ultimately forms the communication hole of the sensor of the present invention. Reference numeral 10 indicates a lead wire brazed to the lead-out portion of the lead wire, 11 indicates the front side of the sensor, and 12 indicates the base side of the sensor.

本発明の酸素センサは例えば次のようにして製
作される。即ち、例えば、Y2O3、CaO、MgO紛
末等の安定化剤を4〜15モル%混合した固体電解
質の紛末をドクターブレード用バインダーと混練
し、公知の押し出し方法により、所定の厚みの未
焼成板状体を成形する。次にそれぞれの未焼成板
状体を打ち抜き約80mm×約60mmのカード形状品1
3,13′とし、その上部、下部には3ヶづつ位
置決めのための固定孔14も同時に打ち抜く。更
に、内側電極引出線用取り出し部にスルーホール
を打ち抜く。その後第4図のように1個のカード
形状品13には4個分の耐熱金属層3を例えば、
白金紛末に対して共素地紛末を5〜30外重量%、
ここでは20外重量%加えた耐熱金属層のペースト
を印刷して電極等3a,3b,3c,3dを設
け、別のカード形状品13′には第5図のように
比較的大きい孔8と、該孔8の側方より延びる3
ヶの比較的小さい孔9とを4個分同時に打ち抜
く。そして孔8,9を打ち抜いたカード形状品1
3′を両側から耐熱金属層3を印刷したカード形
状品13で挟み、成形するときに用いたバインダ
ー用溶剤を塗布して第6図のように貼り合わせた
のちカツトライン15に沿つて切断し4個の3層
構造板状体とし、バインダー抜きを行つて1400〜
1600℃で約4時間焼成し、第2図に斜視図で示す
ような形態のものに仕上げる。なお外側になる電
極表面のみあるいは、場合によつては内外両電極
表面に前記板状体材料と同一あるいはアルミナ、
スピネルなどからなる多孔質セラミツク保護膜を
必要に応じて印刷する。このセラミツク保護層は
外側になる電極表面に設ける場合は焼成後溶射に
より設けることもできる。
The oxygen sensor of the present invention is manufactured, for example, as follows. That is, for example, a solid electrolyte powder mixed with 4 to 15 mol% of a stabilizer such as Y 2 O 3 , CaO, MgO powder, etc. is kneaded with a binder for a doctor blade, and then extruded to a predetermined thickness by a known extrusion method. An unfired plate-like body is formed. Next, each unfired plate-shaped body is punched out and a card-shaped product 1 of approximately 80 mm x approximately 60 mm
3 and 13', and three fixing holes 14 for positioning are also simultaneously punched in the upper and lower parts thereof. Furthermore, a through hole is punched in the lead-out portion for the inner electrode lead wire. After that, as shown in FIG. 4, one card-shaped product 13 is coated with four heat-resistant metal layers 3, for example.
5 to 30% by weight of co-base powder to platinum powder,
Here, electrodes 3a, 3b, 3c, 3d are provided by printing a heat-resistant metal layer paste containing 20% by weight, and a relatively large hole 8 is formed in another card-shaped product 13' as shown in FIG. , 3 extending from the side of the hole 8
Four relatively small holes 9 are simultaneously punched out. Card-shaped product 1 with holes 8 and 9 punched out
3' is sandwiched between card-shaped products 13 on which a heat-resistant metal layer 3 is printed on both sides, and the binder solvent used during molding is applied, and the products are pasted together as shown in FIG. 6, and then cut along the cut line 15. 1,400~
It is fired at 1,600°C for about 4 hours and is finished in the form shown in the perspective view in Figure 2. In addition, only the outer electrode surface or, in some cases, both the inner and outer electrode surfaces may be coated with the same material as the plate material or alumina,
A porous ceramic protective film made of spinel or the like is printed as necessary. When this ceramic protective layer is provided on the outer surface of the electrode, it can also be provided by thermal spraying after firing.

第3図は排気ガス管(図示せず)内に設置され
た本発明の酸素センサの使用状態を説明するため
の配置図である。この使用状態で、上記実施例の
センサ、すなわち囲われた室の厚みを0.5mm、厚
み方向からみた上記室の断面積(ほぼ酸素ポンプ
素子並びに酸素濃淡電池素子の電極面積に相当す
るもの)を100mm2、酸素拡散孔の断面を0.5mm×2
mm×3ヶ(孔の長さ1mm)、厚み15μm、気化率30
%の白金の多孔性電極をもちY2O3で部分安定化
したジルコニアの酸素ポンプ素子及び酸素濃淡電
池素子の厚みを0.5mmとしたセンサを使用して、
可変抵抗Rを介して酸素ポンプ素子1の電極間
に、10ボルトの直流電圧を印加し、該素子1に流
れる電流Iを0.05mAから10mAまで変化させて
囲われた室内の雰囲気ガス中から酸素を汲み出し
たときにもう一方の酸素濃淡電池素子4の出力電
圧を20ミリボルト一定とする条件下で対応した外
界の被測定ガス中の酸素濃度は、約0.05から10%
まであつた。両者の対応関係は両対数目盛で直線
的であつた。尚センサの温度は800℃に保持され
た。
FIG. 3 is a layout diagram for explaining the usage state of the oxygen sensor of the present invention installed in an exhaust gas pipe (not shown). In this usage state, the sensor of the above example, that is, the thickness of the enclosed chamber is 0.5 mm, and the cross-sectional area of the chamber viewed from the thickness direction (approximately equivalent to the electrode area of the oxygen pump element and oxygen concentration battery element) is 100mm 2 , cross section of oxygen diffusion hole 0.5mm x 2
mm x 3 (hole length 1mm), thickness 15μm, evaporation rate 30
Using a sensor with a zirconia oxygen pump element partially stabilized with Y 2 O 3 and an oxygen concentration cell element with a porous electrode of % platinum and a thickness of 0.5 mm,
A DC voltage of 10 volts is applied between the electrodes of the oxygen pump element 1 via a variable resistor R, and the current I flowing through the element 1 is varied from 0.05 mA to 10 mA to remove oxygen from the atmospheric gas in the enclosed room. The oxygen concentration in the external gas to be measured is approximately 0.05 to 10% under the condition that the output voltage of the other oxygen concentration battery element 4 is constant at 20 millivolts when pumped out.
It was hot. The correspondence between the two was linear on a logarithmic scale. The temperature of the sensor was maintained at 800°C.

上記の実施例では中間板状体の材質は酸素ポン
プ素子用および酸素濃淡電池素子用の酸素イオン
導電性固体電解質材をそのまま用いたが、焼結温
度がかけ離れておらずかつ熱膨張係数がほぼ類似
する異種のセラミツク材料、例えばアルミナやス
ピネルを用いることもできる。
In the above example, the material of the intermediate plate-like body was the oxygen ion conductive solid electrolyte material for oxygen pump elements and oxygen concentration battery elements, but the sintering temperatures were not far apart and the coefficient of thermal expansion was approximately the same. Similar dissimilar ceramic materials such as alumina and spinel can also be used.

この発明の酸素センサは、センサのさらされる
被測定雰囲気の酸素分圧と、酸素ポンプ素子の汲
み出し若しくは汲み入れ電流(この電流は、囲わ
れた室内から被測定雰囲気へまたはその逆方向
へ、酸素ポンプ素子を通して移送される酸素分子
の量に直接関係する量である)と、被測定雰囲気
とは、孔で連通する上記囲われた室内の酸素分圧
と上記被測定雰囲気中の酸素分圧との比、従つて
周知のネルンストの式により示される通り酸素濃
淡電池の出力とが定常状態下では関数関係にある
ことを利用して被測定雰囲気中の酸素分圧を測定
しようとするものであるので、上記実施例で記し
た方法に限らず他の方法は、例えば酸素ポンプ素
子の汲み出し電流を一定に制御する条件下で被測
定雰囲気中の酸素分圧が酸素濃淡電池素子の出力
と対応することを利用する方法に供することもで
きる。
The oxygen sensor of the present invention has the following characteristics: the oxygen partial pressure of the atmosphere to be measured to which the sensor is exposed; (a quantity directly related to the amount of oxygen molecules transferred through the pump element), and the atmosphere to be measured is defined as the partial pressure of oxygen in the enclosed chamber communicating with the hole and the partial pressure of oxygen in the atmosphere to be measured. This method attempts to measure the oxygen partial pressure in the atmosphere being measured by utilizing the fact that the ratio of Therefore, not only the method described in the above embodiment but also other methods are applicable, for example, under conditions where the pumping current of the oxygen pump element is controlled to be constant, the oxygen partial pressure in the atmosphere to be measured corresponds to the output of the oxygen concentration battery element. It is also possible to provide a method that utilizes this fact.

以上の通り、この発明の酸素センサは、セラミ
ツクシートの積層一体化焼結法で形成しかつその
囲われた室の形状を偏平としかつ該室の厚みの大
きさの縦幅を有する連通孔を目詰まりによる性能
劣化の心配のない断面積でしかも応答性を実用可
能な範囲(例えば応答時間が約0.5秒以下)に保
ちつつ比較的小さな酸素ポンプ素子の汲み出し電
流で酸素濃度の測定ができる外、中間板状体に酸
素ポンプ素子及び酸素濃淡電池素子との電気絶縁
を阻害する発熱抵抗体や該発熱抵抗体の取り出し
用電極がないので正確な電流、電圧の制御、測定
が可能となり空燃比を非常に精密に測定すること
ができ、製作も容易にして耐久性も優れるという
大効を奏する。
As described above, the oxygen sensor of the present invention is formed by a laminated and integrated sintering method of ceramic sheets, and has a communicating hole whose enclosed chamber has a flat shape and whose vertical width is equal to the thickness of the chamber. It is possible to measure oxygen concentration with a relatively small pumping current of the oxygen pump element, with a cross-sectional area that does not have to worry about performance deterioration due to clogging, and while keeping response within a practical range (e.g., response time of approximately 0.5 seconds or less). Since the intermediate plate does not have a heating resistor that obstructs electrical insulation with the oxygen pump element and the oxygen concentration battery element, or an electrode for taking out the heating resistor, it is possible to accurately control and measure the current and voltage, thereby improving the air-fuel ratio. It has the great effect of being able to measure very accurately, being easy to manufacture, and having excellent durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の酸素センサの第1の実施例を
構成する各部分を示す斜視図、第2図は第1の実
施例の全体斜視図、第3図はその使用状態を説明
するための配置図、第4,5図はその製造工程中
未焼成板状体の状態を示す平面図、第6図は未焼
成板状体を重ね合わせた状態を示す斜視図であ
る。 1…酸素ポンプ素子、2,5…酸素イオン導電
性固体電解質板状体、3,6……耐熱金属層、4
…酸素濃淡電池素子、7,13′…中間板状体、
8…比較的大きい孔、9…比較的小さい孔、11
…先側、12…元側。
Fig. 1 is a perspective view showing each part constituting the first embodiment of the oxygen sensor of the present invention, Fig. 2 is an overall perspective view of the first embodiment, and Fig. 3 is for explaining its usage condition. FIGS. 4 and 5 are plan views showing the state of the unfired plate-like bodies during the manufacturing process, and FIG. 6 is a perspective view showing the state in which the unfired plate-like bodies are overlapped. DESCRIPTION OF SYMBOLS 1... Oxygen pump element, 2, 5... Oxygen ion conductive solid electrolyte plate, 3, 6... Heat-resistant metal layer, 4
...Oxygen concentration battery element, 7,13'...Intermediate plate-shaped body,
8...Relatively large hole, 9...Relatively small hole, 11
...Top side, 12...Original side.

Claims (1)

【特許請求の範囲】[Claims] 1 それぞれ両面に電極用とその引出線用の耐熱
金属層を厚膜技術を用いて設けた酸素ポンプ素子
用及び酸素濃淡電池素子用の2つの酸素イオン導
電性固体電解質板状体を、厚み方向の比較的大き
い孔と該孔の側方でこれと連通する同じく厚み方
向の1個または複数個の比較的小さい孔とを具え
たセラミツク材からなる発熱抵抗体を含まない中
間板状体を挟んで積層一体化焼結し、しかして先
側と元側とを区別し、上記先側に偏平な囲われた
室と、該室の厚みの大きさの縦幅を持ち且つ該室
を外界に連通させる連通孔とを形成するとともに
上記室の厚み方向の両壁にそれぞれ元側から引出
線を介して電圧の印加もしくは取り出しがなされ
る酸素ポンプ素子もしくは酸素濃淡電池素子の酸
素透過壁を形成したことを特徴とする酸素セン
サ。
1. Two oxygen ion conductive solid electrolyte plates for an oxygen pump element and an oxygen concentration battery element, each having heat-resistant metal layers for electrodes and their lead wires on both sides using thick film technology, are placed in the thickness direction. An intermediate plate-like body, which does not include a heat generating resistor, is sandwiched between a ceramic material and a relatively large hole, and one or more relatively small holes in the thickness direction communicating with the hole on the side of the hole. The tip side and the base side are separated by lamination and integral sintering, and the tip side has a flat enclosed chamber and the chamber has a vertical width equal to the thickness of the chamber and is exposed to the outside world. A communication hole is formed for communication, and oxygen permeable walls of an oxygen pump element or an oxygen concentration battery element are formed on both walls in the thickness direction of the chamber, to which a voltage is applied or taken out from the source side via a lead wire. An oxygen sensor characterized by:
JP57112796A 1982-06-29 1982-06-29 Oxygen sensor Granted JPS593252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57112796A JPS593252A (en) 1982-06-29 1982-06-29 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57112796A JPS593252A (en) 1982-06-29 1982-06-29 Oxygen sensor

Publications (2)

Publication Number Publication Date
JPS593252A JPS593252A (en) 1984-01-09
JPH0522178B2 true JPH0522178B2 (en) 1993-03-26

Family

ID=14595729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57112796A Granted JPS593252A (en) 1982-06-29 1982-06-29 Oxygen sensor

Country Status (1)

Country Link
JP (1) JPS593252A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2790852B2 (en) * 1989-05-25 1998-08-27 日本特殊陶業株式会社 Oxygen sensor element for controlling air-fuel ratio and method of manufacturing the same

Also Published As

Publication number Publication date
JPS593252A (en) 1984-01-09

Similar Documents

Publication Publication Date Title
US4505806A (en) Oxygen sensor
JPH0221545B2 (en)
US5142266A (en) Ntc temperature sensor and process for producing ntc temperature sensing elements
US5406246A (en) Temperature sensor and method for producing temperature sensor elements
EP0142992B1 (en) Electrochemical device incorporating a sensing element
EP0294085B1 (en) Electrochemical elements
JPS584986B2 (en) Oxygen concentration measuring device
US4450428A (en) Gas detecting sensor
JPH0161176B2 (en)
JPH0542624B2 (en)
JPH0682057B2 (en) Detection element
JPH0222692Y2 (en)
JP4093784B2 (en) Multilayer gas sensor element, manufacturing method thereof, and gas sensor
JP2001281219A (en) Air-fuel ratio sensor element
JPH0522178B2 (en)
KR101689859B1 (en) Limiting current type oxygen sensor and Method of manufacturing the same
JPH0582551B2 (en)
JP3860768B2 (en) Oxygen sensor element
JP2002357589A (en) Gas sensor element and gas sensor
JP4610127B2 (en) Air-fuel ratio sensor element
JP2003107042A (en) Oxygen sensor
JPS593253A (en) Oxygen sensor
JP2003075397A (en) Oxygen sensor
JP2003279529A (en) Oxygen sensor element
JPS6311644Y2 (en)