JPH0522085B2 - - Google Patents

Info

Publication number
JPH0522085B2
JPH0522085B2 JP58174344A JP17434483A JPH0522085B2 JP H0522085 B2 JPH0522085 B2 JP H0522085B2 JP 58174344 A JP58174344 A JP 58174344A JP 17434483 A JP17434483 A JP 17434483A JP H0522085 B2 JPH0522085 B2 JP H0522085B2
Authority
JP
Japan
Prior art keywords
oil
shaft
bush
circumferential surface
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58174344A
Other languages
Japanese (ja)
Other versions
JPS6069318A (en
Inventor
Yutaka Ozawa
Hiroshi Kono
Osamu Motomura
Sadao Yoshihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58174344A priority Critical patent/JPS6069318A/en
Publication of JPS6069318A publication Critical patent/JPS6069318A/en
Publication of JPH0522085B2 publication Critical patent/JPH0522085B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/18Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with floating brasses or brushing, rotatable at a reduced speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/18Camshafts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To raise the loading ability of an oil film between a shaft and a floating bush, and to improve bearing function thereof, by forming oil grooves on the outer circumferential surface of a shaft, averting the loaded side, as to be connected to an outlet of an oil supplying port which is formed in a shaft. CONSTITUTION:On the outer circumferential surface of a shaft 1, oil grooves 11a, 11b are formed as to be connected to a port 1c. The oil groove 11a is formed around the center position of the width of a bush 4, in the partial angular width along the circumferential direction, centering around the angular point which is right-angled to the load W direction. Then, the oil groove 11b is formed along the shaft direction, around the angular point which is right-angled to the load direction, within the narrower range than the shaft direction width of the sliding surface. These two oil grooves 11a, 11b are connected to the port 1c, and they are formed in such positions as to avert the loaded side.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は浮動ブシユ軸受の改良に係り、特
に、回転しない軸及びその外周に設けた浮動円筒
ブシユ及び回転する円筒状ローラからなり、前記
軸内に設けられた給油孔から供給される潤滑油に
よつて潤滑される浮動ブシユ軸受において、軸受
部の潤滑油通路を改善して軸受機能・能力を向上
させた浮動ブシユ軸受に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to an improvement in a floating bush bearing, and in particular, the present invention is comprised of a non-rotating shaft, a floating cylindrical bush provided on its outer periphery, and a rotating cylindrical roller. The present invention relates to a floating bush bearing that is lubricated by lubricating oil supplied from an oil supply hole provided in the bearing, in which the lubricating oil passage in the bearing part is improved to improve the bearing function and capacity.

[発明の技術的背景と問題点] 例えば、内燃機関の給・排気弁あるいは燃料噴
射弁駆動部のような個所に機械の要素として、回
転しない軸、浮動円筒ブシユ及び回転する円筒状
ローラからなる浮動ブシユ軸受が使用される例が
多い。
[Technical Background and Problems of the Invention] For example, mechanical elements such as supply/exhaust valves or fuel injection valve drive parts of an internal combustion engine include a non-rotating shaft, a floating cylindrical bushing, and a rotating cylindrical roller. Floating bush bearings are often used.

従来、この種軸受は、軸内に設けられた油孔を
通つて軸受中央部に給油された潤滑油は、浮動ブ
シユの内・外周面に設けられた油溝及びブシユ内
周面から外周面に貫通する孔によつて給油される
ことにより軸受の機能が発揮されている。
Conventionally, in this type of bearing, lubricating oil is supplied to the center of the bearing through an oil hole provided in the shaft, and is passed through oil grooves provided on the inner and outer peripheral surfaces of the floating bushing and from the inner peripheral surface of the bush to the outer peripheral surface. The function of the bearing is achieved by supplying oil through the hole that passes through the bearing.

ところが、ブシユ内周面の油膜の負荷能力は、
外周面の油膜の負荷能力に比べて原理的に小さい
ので、屡々ブシユ内周面に油切れ、メタルコンタ
クト、摩擦熱の発生という不都合が生じ、この
為、軸受全体の機能停止という事故が発生してい
る。
However, the load capacity of the oil film on the inner peripheral surface of the bush is
Since the load capacity of the oil film on the outer circumferential surface is theoretically small compared to the load capacity, problems often occur such as lack of oil on the inner circumferential surface of the bushing, metal contact, and generation of frictional heat, resulting in an accident in which the entire bearing stops functioning. ing.

[発明の目的] そこで、この発明の目的は、このような浮動ブ
シユ軸受において、軸とブシユ内周面との間の油
膜の負荷能力を従来のものに比して増加させ、か
つ、ブシユ内周面及びブシユ外周面への潤滑油の
供給を円滑にして、軸受機能の向上を図ることに
ある。
[Object of the Invention] Therefore, an object of the present invention is to increase the load capacity of the oil film between the shaft and the inner circumferential surface of the bush compared to conventional ones in such a floating bush bearing, and to increase the load capacity of the oil film inside the bush. The purpose is to improve the bearing function by smoothly supplying lubricating oil to the peripheral surface and the outer peripheral surface of the bush.

[課題を解決するための手段] この発明に係る浮動ブシユ軸受は、回転しない
軸と、この軸の外周に設けられた浮動ブシユと、
この浮動ブシユの外周に設けられた回転体とから
なり、前記軸には軸方向の給油孔及びこの給油孔
に連通し非荷重部周面に開口する給油孔が形成さ
れ、前記浮動ブシユにはこの浮動ブシユの内周面
から外周面に貫通する複数個の給油孔が形成され
た浮動ブシユ軸受において、前記軸の非荷重部周
面に前記軸の給油孔に連通する油溝を形成し、前
記浮動ブシユの内周面は油溝のない平滑な円周面
に形成したものである。
[Means for Solving the Problems] A floating bush bearing according to the present invention includes a shaft that does not rotate, a floating bush provided on the outer periphery of this shaft,
The floating bush has a rotating body provided on the outer periphery of the floating bushing, and the shaft is formed with an axial oiling hole and an oiling hole that communicates with the oiling hole and opens on the circumferential surface of the non-loaded part. In the floating bush bearing in which a plurality of oil supply holes are formed penetrating from the inner peripheral surface to the outer peripheral surface of the floating bush, an oil groove that communicates with the oil supply hole of the shaft is formed on the peripheral surface of the non-load portion of the shaft, The inner circumferential surface of the floating bushing is formed as a smooth circumferential surface without oil grooves.

[作用] この発明における浮動ブシユの内周面は油溝の
ない平滑な円周部に形成されているので、回転し
ない軸の給油孔から非荷重部周面に供給された潤
滑油は、軸外周面と浮動ブシユ内周面との間の非
荷重部から荷重範囲に入り、高い油膜圧力を逃が
すことなく形成し、軸は浮動ブシユを回転自在に
支承する。
[Function] Since the inner circumferential surface of the floating bushing in this invention is formed as a smooth circumferential portion without oil grooves, the lubricating oil supplied from the oil supply hole of the non-rotating shaft to the circumferential surface of the non-loaded part is The load range is entered from the non-load area between the outer peripheral surface and the inner peripheral surface of the floating bushing, a high oil film pressure is formed without escaping, and the shaft rotatably supports the floating bushing.

[発明の実施例] 以下この発明を図示の実施例について詳述す
る。第1図は従来使用されている浮動ブシユ軸受
の縦断面、第2図はその−断面を示す。1は
軸、2は軸支持部、3はローラ、4は浮動ブシ
ユ、5は駆動カム、6は駆動軸、7は詮、8は浮
動ブシユ内外周の隙間(8iは内側、8oは外
側)、9は軸受端面隙間、10はカム5とローラ
3の接触部、添字a、b、c、は各部材に設けら
えた潤滑油通路である。
[Embodiments of the Invention] The present invention will be described in detail below with reference to illustrated embodiments. FIG. 1 shows a vertical cross-section of a conventionally used floating bush bearing, and FIG. 2 shows a cross-section thereof. 1 is the shaft, 2 is the shaft support part, 3 is the roller, 4 is the floating bush, 5 is the drive cam, 6 is the drive shaft, 7 is the snippet, 8 is the gap between the inner and outer periphery of the floating bush (8i is inside, 8o is outside) , 9 is a bearing end surface clearance, 10 is a contact portion between the cam 5 and the roller 3, and subscripts a, b, and c are lubricating oil passages provided in each member.

駆動軸6の回転運動は、これに固定された駆動
カム5により、回転及び図で上下運動としてロー
ラ3に伝達され、この運動は浮動ブシユ4を介し
て軸1に伝達されるが、軸1は回転しないので、
回転運動は浮動ブシユ4の内・外周面の滑動によ
つて除去され上下運動のみが軸1に伝達される。
この上下運動は軸1に固定された軸支持部2に伝
達され、図示しない、この装置の利用目的である
弁やポンプの駆動力として利用される。
The rotational movement of the drive shaft 6 is transmitted by a drive cam 5 fixed thereto to the roller 3 as a rotation and a vertical movement in the figure, and this movement is transmitted to the shaft 1 via the floating bush 4; does not rotate, so
The rotational motion is eliminated by sliding of the inner and outer peripheral surfaces of the floating bush 4, and only the vertical motion is transmitted to the shaft 1.
This vertical movement is transmitted to a shaft support 2 fixed to the shaft 1, and is used as driving force for a valve or pump (not shown), which is the intended use of this device.

弁やポンプを駆動するため軸支持部にはその反
力として大きな力Wが作用しており、この力Wは
軸1、浮動ブシユ4を介してローラ3、カム5、
駆動軸6に伝達されなければならない。したがつ
て浮動ブシユ8は、この力Wを負荷しながら回転
運動を内・外隙間8i,8oにおける滑動によつ
て消さなければならない重要にして困難な機能を
担当している。
In order to drive the valves and pumps, a large force W acts on the shaft support as a reaction force, and this force W is transmitted via the shaft 1 and floating bush 4 to the roller 3, cam 5,
must be transmitted to the drive shaft 6. Therefore, the floating bush 8 is in charge of an important and difficult function in which the rotational movement must be eliminated by sliding in the inner and outer gaps 8i and 8o while applying this force W.

このため、この浮動ブシユ4は潤滑油によつて
潤滑され、前記隙間に油膜が形成されることによ
つて滑動するのであるが、その潤滑油は、軸支持
部内給油孔2a、軸内給油孔1a、1bを通り、
軸受中央部に設けられた孔1cからブシユ内周面
油溝4bに給油される。この油は、一部はブシユ
内周面隙間8iに油膜を形成しながら該隙間8i
を通つて端面9へ排油される。また他の一部は内
周面油溝4bに設けられたブシユ4を貫通する孔
4cを通つて、ブシユ外周面に設けられた油溝4
aに給油される。この油はブシユ外周面隙間8o
に油膜を形成しながら該隙間8oを通つて端面9
は排油される。
Therefore, this floating bushing 4 is lubricated with lubricating oil, and slides by forming an oil film in the gap. Pass through 1a and 1b,
Oil is supplied from a hole 1c provided in the center of the bearing to an oil groove 4b on the inner peripheral surface of the bush. This oil partially forms an oil film in the bushing inner circumferential surface gap 8i and
The oil is drained to the end face 9 through. The other part passes through a hole 4c that penetrates the bushing 4 provided in the inner circumferential oil groove 4b, and passes through the oil groove 4 provided in the outer circumferential surface of the bushing.
A is refueled. This oil has a gap of 8o on the outer peripheral surface of the bush.
The end face 9 passes through the gap 8o while forming an oil film on the
is drained.

ローラ3が回転すると、ブシユ外周面油膜を介
してブシユ外周面に作用す油膜のせん断力によ
り、ブシユ4も回転する。ローラ回転数をN3
ブシユ回転数をN2とすると、通常 O<N2/N3<1 である。通常、荷重Wが軸1に作用しており、浮
動ブシユ4の作動回転数N2、ブシユ内外周面油
膜の厚さh2、h3は、ブシユ内外周油膜の発生する
反力が各々荷重Wに等しく、また、油膜のせん断
力によるブシユに作用する摩擦モーメントが内外
周面で等しくなる点で作動することになる。この
場合、ブシユ外周油膜の負荷能力は、 N2+N3=N3(1+N2/N3) に比例し、ブシユ内周油膜の負荷能力はブシユ回
転数N2に比例するが、上述の如く、N2<N3であ
るため、本例のような場合、通常内周面油膜の方
が外周面油膜よりもかなり負荷能力が小さくな
り、したがつて、最小油膜厚さも薄くなるのが通
例である。最小油膜厚さが、潤滑面の面粗さの和
以下になると、メタルコンタクトが発生し、摩擦
トルクは急増する。本例のような場合、荷重Wが
大きくなつたり、油温が上昇すると、前記理由
で、まず、ブシユ内周面でメタルコンタクトが発
生し、摩擦が増加して、ブシユ4は回転しなくな
り(N2=0)、ブシユ内周面がメタルコンタクト
で摩耗したり、ブシユ外周面の負荷能力が減少す
るため、油膜が薄くなり、外周面でもメタルコン
タクトが発生したり、極端な場合は焼付きに至つ
たりする。
When the roller 3 rotates, the bush 4 also rotates due to the shear force of the oil film acting on the bush outer peripheral surface through the bush outer peripheral surface oil film. Roller rotation speed is N3 ,
If the bushing rotation speed is N 2 , then normally O<N 2 /N 3 <1. Normally, a load W acts on the shaft 1, and the operating rotation speed N 2 of the floating bush 4 and the thickness h 2 and h 3 of the oil film on the inner and outer peripheral surfaces of the bush are determined by the reaction force generated by the oil film on the inner and outer peripheral surfaces of the bush, respectively. It operates at a point where the frictional moment acting on the bushing due to the shear force of the oil film is equal on the inner and outer circumferential surfaces. In this case, the load capacity of the oil film around the bush is proportional to N 2 +N 3 =N 3 (1+N 2 /N 3 ), and the load capacity of the oil film inside the bush is proportional to the bush rotation speed N 2 . , N 2 < N 3 , so in a case like this example, the load capacity of the inner surface oil film is usually much smaller than that of the outer surface oil film, and therefore, the minimum oil film thickness is also usually thinner. It is. When the minimum oil film thickness becomes less than the sum of the surface roughness of the lubricated surfaces, metal contact occurs and the friction torque increases rapidly. In a case like this example, when the load W increases or the oil temperature rises, metal contact occurs on the inner peripheral surface of the bush for the reasons mentioned above, friction increases, and the bush 4 stops rotating ( N 2 = 0), the inner circumferential surface of the bushing will wear due to the metal contact, the load capacity of the outer circumferential surface of the bushing will decrease, the oil film will become thinner, metal contact will occur on the outer circumferential surface, and in extreme cases, seizure will occur. It may lead to.

この種軸受の給油通路は、ブシユ幅(軸方向)
中央に円周方向油溝をブシユ内外周に設け、中央
部から給油するのが通常である。また内周油膜の
負荷能力が外周油膜の負荷能力に比べて、原理的
に小さい上に、このブシユ内周面に設けた油溝に
より負荷能力がさらに低下する。
The oil supply passage for this type of bearing is the width of the bush (in the axial direction)
Normally, a circumferential oil groove is provided in the center on the inner and outer periphery of the bushing, and oil is supplied from the center. Furthermore, the load capacity of the inner circumferential oil film is theoretically smaller than the load capacity of the outer circumferential oil film, and the load capacity is further reduced by the oil grooves provided on the inner circumferential surface of the bush.

この発明の要点は、これを改良するため、ブシ
ユ内周面に油溝4bを設けるのを止め、内周面は
外周面油溝への給油孔4cのみとし、軸外周面の
一部に、ブシユ内周面油膜の負荷能力を阻害しな
い範囲、すなわち、油膜圧が高圧となり荷重を負
担することとなる図の下側の部分を避けた範囲で
油溝を設け、ブシユ内周面油膜の負荷能力増加
と、ブシユ外周面への給油を両立させる構造とし
た点にある。
The gist of this invention is to improve this by stopping the provision of oil grooves 4b on the inner circumferential surface of the bushing, and by providing only oil supply holes 4c to the outer circumferential oil grooves on the inner circumferential surface, and on a part of the outer circumferential surface of the shaft. The oil groove is provided in a range that does not impede the load capacity of the oil film on the inner circumferential surface of the bush, that is, in an area that avoids the lower part of the figure where the oil film pressure becomes high and bears the load. The structure is designed to both increase capacity and supply oil to the outer circumferential surface of the bush.

第3図乃至第8図はこの発明による浮動ブシユ
軸受の実施例を示す。
3 to 8 show embodiments of floating bush bearings according to the invention.

まず第3図、第4図に示す実施例について説明
すると、浮動ブシユ4の内周面には従来設けられ
ていた円周方向の油溝4bはなく、軸1の外周面
には、孔1cに連通する油溝11a、11bを設
ける。油溝11aは、荷重W方向と直交する角度
位置付近を中心に、ブシユ4の幅(軸方向)のほ
ぼ中央位置に円周方向に部分的な角度幅(通常90
度以下)で設けた周方向油溝11aとする。油溝
11bは、軸方向に、荷重方向と直交する角度位
置付近で、滑動面軸方向幅より狭い範囲で設けた
軸方向油溝11bとする。
First, the embodiment shown in FIGS. 3 and 4 will be described. The inner peripheral surface of the floating bush 4 does not have the conventionally provided circumferential oil groove 4b, and the outer peripheral surface of the shaft 1 has a hole 1c. Oil grooves 11a and 11b are provided that communicate with the. The oil groove 11a has a partial angular width (usually 90 mm) in the circumferential direction, centered around the angular position orthogonal to the load W direction, and approximately at the center of the width (axial direction) of the bushing 4.
The circumferential oil groove 11a is provided with The oil groove 11b is an axial oil groove 11b provided in the axial direction in the vicinity of an angular position perpendicular to the load direction and in a range narrower than the axial width of the sliding surface.

ブシユ4の外周油溝4aへの給油孔4cは、ブ
シユ4の回転位置が軸1に対して如何なる位置に
あつても、孔4cの開口部が通常、前記軸に設け
た周方向油溝11aに1個以上完全に連通するよ
うな間隔で設けられている。
The oil supply hole 4c to the outer circumferential oil groove 4a of the bush 4 is such that no matter where the rotational position of the bush 4 is with respect to the shaft 1, the opening of the hole 4c is normally connected to the circumferential oil groove 11a provided on the shaft. They are provided at intervals such that one or more of them completely communicate with each other.

以上、軸1の外周面に設ける油溝11a、11
bについて要約すれば、溝11a、11bは孔1
cに連通し溝11a、11bの位置は荷重側すな
わち図の下側を避け、溝11aの長さは、1個以
上の孔4cに常に完全に連通する長さでかつ、な
るべく短かい長さとし、溝11bの長さは軸受幅
以上(軸受幅の約半分以下が良いといわれる)の
長さとする。また、第4図では油溝は荷重方向に
対して左右対称に設けたが、駆動軸6の回転方向
や荷重Wの方向に相違があれば油溝の位置・形状
は軸受横断面について左右非対称の方が良いこと
は勿論である。
As described above, the oil grooves 11a and 11 provided on the outer peripheral surface of the shaft 1
To summarize about b, grooves 11a and 11b are holes 1
The positions of the grooves 11a and 11b communicating with the grooves 11a and 11b should avoid the load side, that is, the lower side of the figure, and the length of the groove 11a should be such that it always communicates completely with one or more holes 4c and as short as possible. The length of the groove 11b is set to be greater than or equal to the bearing width (it is said that approximately half or less of the bearing width is good). In addition, in Fig. 4, the oil grooves are provided symmetrically with respect to the load direction, but if there is a difference in the rotational direction of the drive shaft 6 or the direction of the load W, the position and shape of the oil grooves will be asymmetrical with respect to the cross section of the bearing. Of course, it is better.

第5図乃至第8図は油溝形状を多様化した他の
実施例を示す。
5 to 8 show other embodiments in which oil groove shapes are diversified.

通常、軸受の負荷能力は、他の寸法諸元、作動
条件が同一の場合は、大略(L/D)2に比例する
といわれている。ここにLは軸受幅、Dは軸受受
直径である。軸受端部では油の流出のため油膜の
負荷圧力が低下するためである。
Normally, the load capacity of a bearing is said to be roughly proportional to (L/D) 2 when other dimensions and operating conditions are the same. Here, L is the bearing width and D is the bearing diameter. This is because the load pressure of the oil film decreases at the end of the bearing due to oil outflow.

従来例では、ブシユ内周面には孔1cと連通す
るように軸中央部に全周にわたつて油溝4bが設
けられていたが、この発明によれば、この溝はな
く、油溝11aは荷重Wの受圧面を避ける位置に
設けてある。したがつて従来の軸受はL/2の長
さの軸受が2個あると考えられるので、その負荷
能力は、(L/2)2×2=L2/2となり、この発
明によるものL2の半分である。すなわち、この
発明による浮動ブシユ軸受のブシユ内周面の負荷
能力は従来のものに比し約2倍となる。
In the conventional example, an oil groove 4b was provided on the inner circumferential surface of the bushing at the center of the shaft over the entire circumference so as to communicate with the hole 1c, but according to the present invention, this groove is not provided and the oil groove 11a is provided at a position that avoids the pressure receiving surface of the load W. Therefore, since the conventional bearing is considered to have two bearings with a length of L/2, its load capacity is (L/2) 2 × 2 = L 2 /2, and the bearing according to the present invention has a length of L 2 It is half of That is, the load capacity of the bush inner peripheral surface of the floating bush bearing according to the present invention is approximately twice that of the conventional one.

なお、前述のとおり、油溝11a、11bは荷
重Wの方向や駆動軸6の回転方向によつては、周
方向に非対称に設ける方が効果的な場合もあり、
図示はしていないが、条件に応じて油溝の寸法・
形状を決定することができる。
As mentioned above, depending on the direction of the load W and the direction of rotation of the drive shaft 6, it may be more effective to provide the oil grooves 11a and 11b asymmetrically in the circumferential direction.
Although not shown, the dimensions of the oil groove and
shape can be determined.

また、油溝11は周方向の溝11aのみとし、
軸方向の溝11bがない場合や、これらに代え
て、軸1の外周に部分的に、その他の形状の凹部
を設けても、作用効果はほぼ同様なものと期待で
きる。
In addition, the oil groove 11 is only a circumferential groove 11a,
Even if there is no axial groove 11b, or if a recessed portion of another shape is partially provided on the outer periphery of the shaft 1 instead, substantially the same effect can be expected.

[発明の効果] 以上詳細に述べたように、この発明によれば、
従来、負荷能力が小さかつた浮動ブシユの内周面
の負荷能力を増大させることができるので、この
種軸受の使用範囲を、軸受の大きさを変えること
なく広げ、また同一負荷では小さな軸受とするこ
とができ、機械・装置の構成上利益が得られる。
[Effect of the invention] As described in detail above, according to this invention,
It is possible to increase the load capacity of the inner peripheral surface of the floating bush, which conventionally had a small load capacity, so the range of use of this type of bearing can be expanded without changing the size of the bearing, and it can also be used with smaller bearings at the same load. This allows for advantages in terms of the configuration of machinery and equipment.

なお、この発明では、軸1が非回転で、ローラ
3が回転する場合について述べたが、逆に、軸1
が回転し、ローラ3が非回転である浮動ブシユ軸
受の場合は、ブシユ外周面の油溝を廃止し、非回
転であるローラ内周面に、以上説明したと同様な
油溝又は凹部を設けることにより同様な作用効果
が期待できる。
In this invention, a case has been described in which the shaft 1 does not rotate and the roller 3 rotates; however, conversely, the shaft 1 does not rotate and the roller 3 rotates.
In the case of a floating bush bearing in which the roller 3 rotates and the roller 3 does not rotate, the oil groove on the outer circumferential surface of the bush is eliminated, and an oil groove or recess similar to that described above is provided on the inner circumferential surface of the roller that does not rotate. By doing so, similar effects can be expected.

また、油溝の変更を行う代りに、ブシユ内外周
面の軸受幅を変更することも考えられるが、この
発明によれば、軸受を構成する各部材の大幅な寸
法変更をしないで実施可能であり、より実用性が
あると考える。
Furthermore, instead of changing the oil groove, it is possible to change the width of the bearing on the inner and outer circumferential surfaces of the bushing, but according to the present invention, this can be done without significantly changing the dimensions of each member that makes up the bearing. I think it is more practical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の浮動ブシユ軸受の縦断面図、第
2図は第1図の−切断断面図、第3図はこの
発明による浮動ブシユ軸受の第1実施例の縦断面
図、第4図は第3図の−切断断面図、第5図
は第2実施例の縦断面図、第6図は第5図の−
切断断面図、第7図は第3実施例の縦断面図、
第8図は第7図の−切断断面図である。 図において、1は軸、1a,1b,1cは油
孔、2は軸支持部、2aは油孔、3はローラ、4
は浮動ブシユ、4a,4bは油溝、4cは油孔、
5は駆動カム、6は駆動軸、8iは浮動ブシユ内
側隙間、8oは浮動ブシユ外側隙間、9は軸受端
面隙間、11a,11bは油溝である。
FIG. 1 is a longitudinal cross-sectional view of a conventional floating bush bearing, FIG. 2 is a cross-sectional view taken along the line shown in FIG. 1, FIG. 3 is a longitudinal cross-sectional view of a first embodiment of a floating bush bearing according to the present invention, and FIG. is a cross-sectional view of FIG. 3, FIG. 5 is a vertical cross-sectional view of the second embodiment, and FIG. 6 is a cross-sectional view of FIG.
A cut sectional view, FIG. 7 is a longitudinal sectional view of the third embodiment,
FIG. 8 is a sectional view taken along the line - in FIG. 7. In the figure, 1 is a shaft, 1a, 1b, 1c are oil holes, 2 is a shaft support part, 2a is an oil hole, 3 is a roller, 4
is a floating bush, 4a and 4b are oil grooves, 4c is an oil hole,
5 is a drive cam, 6 is a drive shaft, 8i is a floating bush inner clearance, 8o is a floating bushing outer clearance, 9 is a bearing end face clearance, and 11a, 11b are oil grooves.

Claims (1)

【特許請求の範囲】[Claims] 1 回転しない軸と、この軸の外周に設けられた
浮動ブシユと、この浮動ブシユの外周に設けられ
た回転体とからなり、前記軸には軸方向の給油孔
及びこの給油孔に連通し非荷重部周面に開口する
給油孔が形成され、前記浮動ブシユにはこの浮動
ブシユの内周面から外周面に貫通する複数個の給
油孔が形成された浮動ブシユ軸受において、前記
軸の非荷重部周面に前記軸の給油孔に連通する油
溝を形成し、前記浮動ブシユの内周面は油溝のな
い平滑な円周面に形成したことを特徴とする浮動
ブシユ軸受。
1 Consists of a non-rotating shaft, a floating bushing provided on the outer periphery of this shaft, and a rotating body provided on the outer periphery of the floating bushing, and the shaft has an axial oil supply hole and a non-rotating oil supply hole that communicates with the oil supply hole. In a floating bush bearing, in which an oil supply hole that opens on the circumferential surface of the load portion is formed, and a plurality of oil supply holes that penetrate from the inner circumferential surface of the floating bush to the outer circumferential surface of the floating bush are formed, A floating bush bearing, characterized in that an oil groove communicating with an oil supply hole of the shaft is formed on a circumferential surface of the floating bush, and an inner circumferential surface of the floating bush is formed as a smooth circumferential surface without an oil groove.
JP58174344A 1983-09-22 1983-09-22 Floating bush bearing Granted JPS6069318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58174344A JPS6069318A (en) 1983-09-22 1983-09-22 Floating bush bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58174344A JPS6069318A (en) 1983-09-22 1983-09-22 Floating bush bearing

Publications (2)

Publication Number Publication Date
JPS6069318A JPS6069318A (en) 1985-04-20
JPH0522085B2 true JPH0522085B2 (en) 1993-03-26

Family

ID=15976996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58174344A Granted JPS6069318A (en) 1983-09-22 1983-09-22 Floating bush bearing

Country Status (1)

Country Link
JP (1) JPS6069318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5979384A (en) * 1996-04-08 1999-11-09 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Valve device for engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102493854B (en) * 2011-12-09 2013-07-10 重庆潍柴发动机厂 Method for designing oil tank on connecting rod bearing
JP2018021490A (en) * 2016-08-02 2018-02-08 いすゞ自動車株式会社 Idle gear support device
JP7339036B2 (en) * 2019-07-10 2023-09-05 三菱重工業株式会社 Cam roller device, fuel supply pump, and floating bush

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5979384A (en) * 1996-04-08 1999-11-09 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Valve device for engine

Also Published As

Publication number Publication date
JPS6069318A (en) 1985-04-20

Similar Documents

Publication Publication Date Title
US6585419B2 (en) Shaft bearing member
US6634791B2 (en) Shaft bearing member
US4394091A (en) Air bearing and antifriction bearing assembly
US5518319A (en) Non-linear hydrodynamic bearing
WO2018034240A1 (en) Ball bearing, ball bearing device, and machine tool
KR20190077237A (en) Half thrust bearing
US4488826A (en) Offset wall bearing
US4175755A (en) Mechanical seal assembly
JPH08219148A (en) Floating bush bearing
JPH0522085B2 (en)
JPH0642361A (en) Thrust bearing device for turbocharger
GB2107002A (en) Journal bearing
JP2001159432A (en) End beating for one-way clutch, manufacturing method therefor and one-way clutch
JPH01158214A (en) Bearing bush for gear pump
KR102082853B1 (en) Connecting rod bearing for crankshaft of internal combustion engine
JPS6037412A (en) Radial slide bearing
JPH0419232Y2 (en)
JPS6350564B2 (en)
JPH11336753A (en) Self-aligning roller bearing
JPH11336772A (en) Rolling bearing
JPH0138332Y2 (en)
JPH04105911U (en) Lubricating oil supply device for sliding bearings
JPS585135Y2 (en) fluid sliding bearing
JPH037610Y2 (en)
JPS621127B2 (en)