JPH05220127A - Magnet device - Google Patents

Magnet device

Info

Publication number
JPH05220127A
JPH05220127A JP4025289A JP2528992A JPH05220127A JP H05220127 A JPH05220127 A JP H05220127A JP 4025289 A JP4025289 A JP 4025289A JP 2528992 A JP2528992 A JP 2528992A JP H05220127 A JPH05220127 A JP H05220127A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
middle hole
term
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4025289A
Other languages
Japanese (ja)
Inventor
Kiyoto Sonoki
清人 園木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP4025289A priority Critical patent/JPH05220127A/en
Publication of JPH05220127A publication Critical patent/JPH05220127A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the easy execution of magnetic field correction with high accuracy and good efficiency by equally dividing a cylindrical magnetic material mounting mechanism for supporting a magnetic material for magnetic field correction to 24n (where (n) is an integer) in a circumferential direction. CONSTITUTION:The members constituting the magnetic material mounting mechanism are groove shape members 2 which are arrounded in parallel with the central axis of the middle hole of a magnet body 1 consisting of a superconducting coil, etc., to a cylindrical shape in the positions equally dividing the circumference to 24 to the shape of the inside surface of the magnetic middle hole and slide plates (mounting members) 3 which are supported by the grooves of the groove shape members 2 and are arounded within the middle hole of the magnet body 1. The magnetic materials 4 for magnetic field correction to be mounted are fixed onto the slide plates 3 by means, such as adhesive bonding or screwing and are so considered as to prevent the positions of the magnetic materials 4 from being changed by the electromagnetic force generated in the magnetic materials 4 in the middle hole of the magnet body 1. The mounting positions on the inside surface of the middle hole of the magnetic materials 4 are freely settable by selecting the mounting positions on the slide plates 3 and the groove shape members 2 to be inserted with the slide plates 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、NMR(核磁気共鳴)
装置用マグネット等の磁石装置、特に主コイルが発生す
る主磁場の誤差磁場成分を補正して、磁場均一度を補正
するための磁場補正用磁性体を支持する磁性体取付機構
(シム機構)を備えた磁石装置に関する。
The present invention relates to NMR (nuclear magnetic resonance).
A magnetic body mounting mechanism (a shim mechanism) that supports a magnetic field correcting magnetic body for correcting an error magnetic field component of a main magnetic field generated by a main coil, in particular, a magnet device such as a device magnet. The present invention relates to a provided magnet device.

【0002】[0002]

【従来の技術】一般に、NMR装置用マグネットにおい
ては、被検体が装置される領域の空間磁場均一性が重要
な特性の一つである。従って、磁場の高均一化を図るた
め、出力磁場発生用の主コイルの形状または電流密度分
布には種々の工夫が施されているが、主コイルの製作精
度や温度条件等のマグネット内部条件、または、マグネ
ット近傍に強磁性体が配置される等の外部条件により、
高均一磁場は乱されやすい。
2. Description of the Related Art Generally, in a magnet for an NMR apparatus, one of the important characteristics is the homogeneity of a spatial magnetic field in a region where an object is to be examined. Therefore, in order to make the magnetic field highly uniform, various modifications have been made to the shape of the main coil for generating the output magnetic field or the current density distribution, but the magnet internal conditions such as the manufacturing accuracy and temperature conditions of the main coil, Alternatively, due to external conditions such as the placement of a ferromagnetic material near the magnet,
Highly uniform magnetic fields are easily disturbed.

【0003】このため、従来より、例えば特開平1−2
80447号「核スピン共鳴断層撮影装置」に示すよう
に、適当に配置された磁性体により誤差磁場成分を補正
する方法が取られている。即ち、マグネット中孔内部の
球領域における磁場をルジャンドル関数およびルジャン
ドル陪関数で展開し、磁性体を適当に配置することによ
り、ルジャンドル関数による展開項( Zonal項)とルジ
ャンドル陪関数による展開項(Tesseral項)を任意の大
きさに発生させ、測定領域における定数項を除く磁場の
展開係数を0に可能なかぎり近づける方法を用いて磁場
補正が行われている。
Therefore, for example, in the prior art, Japanese Patent Laid-Open No. 1-22
As shown in No. 80447 “Nuclear Spin Resonance Tomography Apparatus”, a method of correcting an error magnetic field component by a magnetic material arranged appropriately is adopted. That is, the magnetic field in the spherical region inside the magnet hole is expanded by the Legendre function and the Legendre function, and by appropriately arranging the magnetic substance, the expansion term (Zonal term) by the Legendre function and the expansion term by the Legendre function The magnetic field correction is performed by using a method in which the term) is generated in an arbitrary size and the expansion coefficient of the magnetic field except the constant term in the measurement region is made as close to 0 as possible.

【0004】この磁性体による磁場補正においては、磁
性体の円周上の配置は、 Zonal項は円環状に、Tesseral
項は特定の随伴次数のみを出力するために円周上の特定
角度の位置に配置されるのが一般的である。また、Tess
eral項は円周方向に位相を持った磁場分布を形成する
が、従来は、円周方向の位相が、例えば cosθ項に対す
る sinθ項のように、π/2異なる2つの配置にて磁性
体を取り付け、その2つの配置の磁場出力の重ね合わせ
により特定の位相の磁場出力を得ている。
In the magnetic field correction by this magnetic material, the arrangement of the magnetic material on the circumference of the magnetic material is such that the Zonal term is annular and the Tesseral is
The terms are generally placed at specific angular positions on the circumference to output only specific adjoint orders. Also Tess
Although the eral term forms a magnetic field distribution having a phase in the circumferential direction, conventionally, magnetic materials are arranged in two arrangements in which the phase in the circumferential direction differs by π / 2, such as the sin θ term for the cos θ term. The magnetic field output of a specific phase is obtained by mounting and superposing the magnetic field outputs of the two arrangements.

【0005】[0005]

【発明が解決しようとする課題】従来の磁場補正用の磁
性体取付機構(シム機構)を有する磁石装置による磁場
補正)には、以下に記す3点の欠点を有する。
The conventional magnetic field correction by the magnet device having the magnetic body mounting mechanism (shim mechanism) for magnetic field correction) has the following three drawbacks.

【0006】第一に、マグネット装置の高均一磁場空間
の拡大を実現するためには、上記展開係数のうち、従来
磁場補正の対象とされていなかった高次の項、特に、ル
ジャンドル陪関数における随伴次数が3以上の項を補正
する必要が生じる場合があるが、これらの高次項を補正
する具体的な方法は提案されておらず、高均一磁場空間
の拡大を妨げる原因となっている。
First, in order to realize expansion of the highly uniform magnetic field space of the magnet device, of the expansion coefficients, higher-order terms that have not been conventionally subjected to magnetic field correction, especially in the Legendre function. In some cases, it may be necessary to correct terms with an adjoint order of 3 or more, but no specific method for correcting these higher-order terms has been proposed, which is a cause of hindering the expansion of the highly uniform magnetic field space.

【0007】第二に、Tesseral項の補正において、円周
方向の特定位相の磁場出力を得るために、円周方向の位
相がπ/2異なる2つの配置における磁場出力の重ね合
わせを用いているため、例えば位相がπ/4のTesseral
項補正の場合、直接その位相を出力する配置に磁性体を
取り付けた時の磁性体の量に対して√2倍の磁性対の量
が必要となり、効率が悪い。
Secondly, in the correction of the Tesseral term, in order to obtain a magnetic field output of a specific phase in the circumferential direction, superposition of magnetic field outputs in two arrangements in which the phases in the circumferential direction are different by π / 2 is used. Therefore, for example, Tesseral with phase π / 4
In the case of term correction, the amount of the magnetic pair is √2 times the amount of the magnetic substance when the magnetic substance is attached to the arrangement for directly outputting the phase, and the efficiency is low.

【0008】第三に、従来の磁性体シム機構では、Tess
eral項の円周上の配置が特殊なため、円環状に配置する
Zonal項とは別の取付機構を必要とし、マグネット装置
中孔内部の有効領域を狭くする。
Third, in the conventional magnetic shim mechanism, Tess
Since the arrangement of the eral term on the circumference is special, it is arranged in an annular shape.
It requires a mounting mechanism different from the Zonal term, and narrows the effective area inside the magnet device bore.

【0009】本発明は、展開係数の高次項の補正が可能
で、かつ円周方向の位相設定自由度の高いTesseral項補
正用磁性体の取付機構と Zonal項補正用磁性体の取付機
構を一体化し、高精度の効率の良い磁場補正を容易に行
な得るようにした磁石装置を提供することを目的とす
る。
According to the present invention, the mounting mechanism of the magnetic material for correcting the Tesseral term and the mounting mechanism of the magnetic material for correcting the Zonal term, which are capable of correcting the higher order terms of the expansion coefficient and have a high degree of freedom in phase setting in the circumferential direction, are integrated. It is an object of the present invention to provide a magnet device which can easily perform highly accurate and efficient magnetic field correction.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明における磁石装置は、磁石の中孔内に配設さ
れる円筒状の磁場補正用の磁性体を支持する円筒状の磁
性体取付機構を円周方向に24n(但し、nは整数)に
等分割したことを特徴とする。
In order to achieve the above-mentioned object, a magnet device according to the present invention has a cylindrical magnetic body for supporting a cylindrical magnetic body for magnetic field correction arranged in a bore of a magnet. It is characterized in that the body attachment mechanism is equally divided into 24n (where n is an integer) in the circumferential direction.

【0011】[0011]

【作用】上記のように構成された磁性体シム装置におい
ては、磁性体取付機構が円周方向に24nに等分割され
ているので、等量の磁性体を円周上に角度2π/24n
で等間隔に配置することにより Zonal項を発生すること
ができ、かつ、従来からの随伴次数1もしくは2のTess
eral項に加えて随伴次数3および4のTesseral項を発生
するのに必要な特定角度位置に磁性体が過不足なく配置
できる。また、Tesseral項の円周方向の位相は、24n
分割の場合、随伴次数mに対してmπ/12n単位で容
易に位相を変えることができるので、補正効率の高い位
相位置を自由に選択することができる。
In the magnetic shim device constructed as described above, since the magnetic body mounting mechanism is equally divided into 24n in the circumferential direction, an equal amount of magnetic body is arranged on the circumference at an angle of 2π / 24n.
Zonal terms can be generated by arranging them at equal intervals, and Tess of the conventional adjoint order 1 or 2
In addition to the eral term, the magnetic material can be arranged at the specific angular positions necessary to generate the Tesseral terms of the adjoint orders 3 and 4 without excess or deficiency. The phase of the Tesseral term in the circumferential direction is 24n.
In the case of division, the phase can be easily changed in units of mπ / 12n with respect to the adjoint order m, so that the phase position with high correction efficiency can be freely selected.

【0012】[0012]

【実施例】以下、本発明の一実施例を図1に基づいて説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0013】超電導コイル等よりなる円筒状をなすマグ
ネット本体1の中孔内表面状に、円周を24等分割する
位置に中孔中心軸と平行に溝形部材2は配置され、スラ
イド板(取付部材)3は、溝形部材2の溝にて支持さ
れ、マグネット本体1の中孔内に配置される。なお、溝
形部材2とスライド板3は非磁性材で形成されており、
両者で磁性体取付機構を構成している。
On the inner surface of the inner hole of the cylindrical magnet body 1 made of a superconducting coil or the like, the groove-shaped member 2 is arranged parallel to the central axis of the inner hole at a position where the circumference is divided into 24 equal parts, and the slide plate ( The mounting member 3 is supported by the groove of the groove-shaped member 2 and is arranged in the inner hole of the magnet body 1. The channel member 2 and the slide plate 3 are made of a non-magnetic material,
Both constitute a magnetic body attachment mechanism.

【0014】取り付けるべき磁場補正用の磁性体4は、
図2に示すようにスライド板3上に接着もしくはネジど
め等の手段により固定され、マグネット本体1の中孔内
にて磁性体4に生じる電磁気力にて磁性体4の位置が変
わらないよう配慮されている。スライド板3上の取付位
置とスライド板3を挿入する溝形部材2を選択すること
により、磁性体4の中孔内表面上の取付位置を自由に設
定することができる。
The magnetic body 4 for magnetic field correction to be attached is
As shown in FIG. 2, it is fixed on the slide plate 3 by means such as adhesion or screwing so that the position of the magnetic body 4 does not change due to the electromagnetic force generated in the magnetic body 4 in the inner hole of the magnet body 1. It is considered. By selecting the mounting position on the slide plate 3 and the groove-shaped member 2 into which the slide plate 3 is inserted, the mounting position on the inner surface of the inner hole of the magnetic body 4 can be freely set.

【0015】Zonal項を補正するためには、中孔中心軸
と垂直な適当な断面上に第3図(a)(b) に示すような配
置で磁性体4を180゜対向させて等量配置する。同様
に、随伴次数1、2、3、4のTesseral項を補正するた
めには、各々、図4、図5、図6、図7に示すような配
置で磁性体4を等量配置する。Tesseral項の円周方向の
位相は、図4〜図7に示す配置を円周方向に15゜刻み
で変更することにより、随伴次数mに対してmπ/12
単位で変化させることができる。Zonal項および各Tesse
ral項の多項式次数および出力値は、スライド板3上の
中心軸方向の取付位置および磁性体4の量によって調整
される。
In order to correct the Zonal term, the magnetic bodies 4 are made to face each other by 180 ° on an appropriate section perpendicular to the central axis of the bore, and the magnetic bodies 4 are made to face each other by an equal amount. Deploy. Similarly, in order to correct the Tesseral terms of the adjoint orders 1, 2, 3, and 4, the magnetic bodies 4 are arranged in equal amounts in the arrangements shown in FIGS. 4, 5, 6, and 7, respectively. The phase of the Tesseral term in the circumferential direction is mπ / 12 with respect to the adjoint order m by changing the arrangement shown in FIGS. 4 to 7 in steps of 15 ° in the circumferential direction.
It can be changed in units. Zonal term and each Tesse
The polynomial order and the output value of the ral term are adjusted by the mounting position on the slide plate 3 in the central axis direction and the amount of the magnetic body 4.

【0016】磁性体4の取付け位置・量は磁場分布の測
定データを基に各種数理計画法を利用して容易に決定す
ることができ、所定の均一磁場が達成されるまで、磁場
補正が行われる。
The mounting position and amount of the magnetic body 4 can be easily determined by using various mathematical programming methods based on the measured data of the magnetic field distribution, and magnetic field correction is performed until a predetermined uniform magnetic field is achieved. Be seen.

【0017】なお、実施例では磁性体取付機構を溝形部
材とスライド板とで構成したが、24角形の一体構造に
しマグネット内に配設するようにしてもよい。また、磁
性体取付機構は48等分割、72等分割等、24整数倍
に分割されておればよく、分割数が多い程より高精度に
磁場補正が行な得る。
In the embodiment, the magnetic member mounting mechanism is composed of the groove-shaped member and the slide plate, but it is also possible to form a unitary structure of a hexagonal prism and dispose the magnet-shaped member inside the magnet. Further, the magnetic body attachment mechanism may be divided into 48 integer divisions, 72 equal divisions, or the like, which is an integral multiple of 24, and the larger the number of divisions, the more accurately the magnetic field can be corrected.

【0018】[0018]

【発明の効果】本発明によれば、従来補正が不可能であ
った随伴次数3〜4のTesseral項の補正を高精度に効率
よく容易に行うことができ、補正効率の高い位相位置を
自由に選択することができる。
According to the present invention, the correction of the Tesseral terms of the adjoint orders 3 to 4, which could not be conventionally corrected, can be performed easily with high accuracy and efficiently, and the phase position with high correction efficiency can be freely set. Can be selected.

【0019】また、展開係数の次数に関係なく、同一の
磁性体取付機構を使用するので、マグネット装置の中孔
内部の有効領域を広くすることができると共に、部品点
数の削減を図ることができる。
Further, since the same magnetic body mounting mechanism is used regardless of the order of the expansion coefficient, the effective area inside the inner hole of the magnet device can be widened and the number of parts can be reduced. ..

【0020】さらに、実施例のように磁性体取付機構の
取付部材を円筒軸方向に移動(スライド)できるように
しておけば、磁性体の取付、取外しが容易に行な得るの
で、磁場補正作業が能率よくできる。
Further, if the mounting member of the magnetic body mounting mechanism can be moved (slide) in the axial direction of the cylinder as in the embodiment, the mounting and removal of the magnetic body can be easily performed, so that the magnetic field correction work can be performed. Can be done efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す断面図。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】図1の磁性体取付機構の構成を示す斜視図。FIG. 2 is a perspective view showing a configuration of a magnetic body attachment mechanism of FIG.

【図3】Zonal項を出力するための磁性体の円周上の配
置を示す図。
FIG. 3 is a diagram showing a circumferential arrangement of magnetic bodies for outputting a Zonal term.

【図4】随伴次数1のTesseral項を出力するための磁性
体の円周上の配置を示す図。
FIG. 4 is a diagram showing a circumferential arrangement of magnetic bodies for outputting a Tesseral term of an adjoint order 1.

【図5】随伴次数2のTesseral項を出力するための磁性
体の円周上の配置を示す図。
FIG. 5 is a diagram showing a circumferential arrangement of magnetic bodies for outputting a Tesseral term of an adjoint order 2.

【図6】随伴次数3のTesseral項を出力するための磁性
体の円周上の配置を示す図。
FIG. 6 is a diagram showing a circumferential arrangement of magnetic materials for outputting a Tesseral term of an adjoint order 3.

【図7】随伴次数4のTesseral項を出力するための磁性
体の円周上の配置を示す図。
FIG. 7 is a diagram showing a circumferential arrangement of magnetic bodies for outputting a Tesseral term of an adjoint order 4.

【符号の説明】[Explanation of symbols]

1…マグネット本体 2…溝形部材 3…スライド板(取付部材) 4…磁性体 1 ... Magnet body 2 ... Groove member 3 ... Slide plate (mounting member) 4 ... Magnetic material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主磁場を発生する円筒状の磁石と、この
磁石の内周側に配設された磁場補正用の磁性体を支持す
る円筒状の磁性体取付機構を有する磁石装置において、
前記磁性体取付機構を円周方向に24n(但し、nは整
数)に等分割したことを特徴とする磁石装置。
1. A magnet device having a cylindrical magnet for generating a main magnetic field and a cylindrical magnetic body mounting mechanism for supporting a magnetic body for magnetic field correction arranged on the inner peripheral side of the magnet,
A magnet device, wherein the magnetic body mounting mechanism is equally divided into 24n (where n is an integer) in the circumferential direction.
【請求項2】 上記磁性体取付機構の分割された各取付
部材が円筒軸方向に移動可能であることを特徴とする請
求項1記載の磁石装置。
2. The magnet device according to claim 1, wherein each of the divided mounting members of the magnetic body mounting mechanism is movable in the cylindrical axis direction.
JP4025289A 1992-02-12 1992-02-12 Magnet device Pending JPH05220127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4025289A JPH05220127A (en) 1992-02-12 1992-02-12 Magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4025289A JPH05220127A (en) 1992-02-12 1992-02-12 Magnet device

Publications (1)

Publication Number Publication Date
JPH05220127A true JPH05220127A (en) 1993-08-31

Family

ID=12161861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4025289A Pending JPH05220127A (en) 1992-02-12 1992-02-12 Magnet device

Country Status (1)

Country Link
JP (1) JPH05220127A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7683624B2 (en) 2007-05-25 2010-03-23 Mitsubishi Electric Corporation Magnetic field adjustment device and magnetic field adjustment method for superconducting magnet
US7884605B2 (en) 2007-07-06 2011-02-08 Mitsubishi Electric Corporation Shim support guide jig for magnetic field generation apparatus, magnetic field generation apparatus and magnetic resonance imaging equipment each including shim support in which magnetic material shims are arranged and adjusted by employing shim support guide jig, and magnetic field adjustment method for magnetic field generation apparatus, as well as magnetic field adjustment method for magnetic resonance imaging equipment
JP2016526968A (en) * 2013-06-21 2016-09-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Shim system for magnetic resonance hybrid scanner
US10520567B2 (en) 2014-09-12 2019-12-31 Siemens Healthcare Limited Combined shim and bore cooling assembly

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7683624B2 (en) 2007-05-25 2010-03-23 Mitsubishi Electric Corporation Magnetic field adjustment device and magnetic field adjustment method for superconducting magnet
US7884605B2 (en) 2007-07-06 2011-02-08 Mitsubishi Electric Corporation Shim support guide jig for magnetic field generation apparatus, magnetic field generation apparatus and magnetic resonance imaging equipment each including shim support in which magnetic material shims are arranged and adjusted by employing shim support guide jig, and magnetic field adjustment method for magnetic field generation apparatus, as well as magnetic field adjustment method for magnetic resonance imaging equipment
JP2016526968A (en) * 2013-06-21 2016-09-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Shim system for magnetic resonance hybrid scanner
US11291860B2 (en) 2013-06-21 2022-04-05 Koninklijke Philips N.V. Shim system for a magnetic resonance hybrid scanner
US10520567B2 (en) 2014-09-12 2019-12-31 Siemens Healthcare Limited Combined shim and bore cooling assembly

Similar Documents

Publication Publication Date Title
US5003276A (en) Method of site shimming on permanent magnets
JP3694659B2 (en) Magnet, magnetic field adjusting method thereof, and magnetic resonance imaging apparatus
US7330031B2 (en) Matrix shim system with grouped coils
US4771244A (en) Method of passively shimming magnetic resonance magnets
US20080290871A1 (en) Magnetic field adjustment device and magnetic field adjustment method for superconducting magnet
EP1058933A4 (en) A method for designing open magnets and open magnetic apparatus for use in mri/mrt probes
JPS6247349A (en) Magnetic resonance imaging apparatus
US6583696B1 (en) Apparatus for passive control of magnet homogeneity
JP3682627B2 (en) Magnetic resonance imaging device
JPH0785445B2 (en) Correction coil
US4853663A (en) Passive shims for correction of (3,2) and (3,-2) harmonic terms in magnetic resonance magnets
Ertan et al. A z‐gradient array for simultaneous multi‐slice excitation with a single‐band RF pulse
US5168231A (en) Nmr imaging device, method for correcting inhomogeneity and method for making magnets used in this device
JP4142010B2 (en) Magnet assembly
JPH05220127A (en) Magnet device
JPH0690975B2 (en) Magnetic shim for magnetic field correction
CN115831570A (en) Shimming method of Halbach-configuration magnet
Hillenbrand et al. High-order MR shimming: a simulation study of the effectiveness of competing methods, using an established susceptibility model of the human head
JPS63177506A (en) Method and apparatus for passive shimming operation of magnet
US6351125B1 (en) Method of homogenizing magnetic fields
JPS60179645A (en) Nmr tomographic device
JP2000037366A (en) Superconductive magnet device
JPH09238917A (en) Coil assembly for magnetic resonance diagnosis
JP2018086204A (en) Superconducting magnet device and magnetic resonance imaging apparatus comprising the same
JP2958549B2 (en) Static magnetic field drift correction coil and static magnetic field drift correction method