JPH0521919B2 - - Google Patents

Info

Publication number
JPH0521919B2
JPH0521919B2 JP63218548A JP21854888A JPH0521919B2 JP H0521919 B2 JPH0521919 B2 JP H0521919B2 JP 63218548 A JP63218548 A JP 63218548A JP 21854888 A JP21854888 A JP 21854888A JP H0521919 B2 JPH0521919 B2 JP H0521919B2
Authority
JP
Japan
Prior art keywords
acid
metal phthalocyanine
octacarboxylic acid
phthalocyanine octacarboxylic
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63218548A
Other languages
Japanese (ja)
Other versions
JPS6485989A (en
Inventor
Hiroyoshi Shirai
Eiya Kakegawa
Yoshiro Ito
Masataka Kamimura
Tokuji Yokozeki
Ko Shimizu
Ikuzo Sakaguchi
Nobumasa Hojo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbide Industries Co Inc
Original Assignee
Nippon Carbide Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbide Industries Co Inc filed Critical Nippon Carbide Industries Co Inc
Priority to JP63218548A priority Critical patent/JPS6485989A/en
Publication of JPS6485989A publication Critical patent/JPS6485989A/en
Publication of JPH0521919B2 publication Critical patent/JPH0521919B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Description

【発明の詳細な説明】 本発明は金属フタロシアニン誘導体、特に酸化
還元能を有する金属フタロシアニンオクタカルボ
ン酸の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing metal phthalocyanine derivatives, particularly metal phthalocyanine octacarboxylic acid having redox ability.

近年悪臭の発生要素は年々複雑化してきたが、
これに対応する技術はきわめて不充分であるた
め、悪臭公害は好転する気配が感じられないのが
現状である。
In recent years, the factors that cause bad odors have become more and more complex.
As the technology to deal with this problem is extremely inadequate, there is currently no sign that odor pollution will improve.

従来の悪臭に対する消臭処理方法としては、活
性炭吸着法、触媒燃焼法、オゾンまたは薬剤によ
る酸化法、中和法、バクテリア分解法、酵素法等
が知られているが、いずれもそのランニングコス
トが高い、管理上困難性がある、持続性に乏し
い、消臭効率が比較的低いなどの多くの欠点をも
つている。
Conventional methods for deodorizing bad odors include activated carbon adsorption, catalytic combustion, ozone or chemical oxidation, neutralization, bacterial decomposition, and enzymatic methods, but all of them have high running costs. It has many disadvantages, such as high cost, difficulty in management, poor sustainability, and relatively low deodorizing efficiency.

特にこれら公知の消臭処理法のうち、酸化作用
のある薬剤を用いて悪臭ガスを分解する方法は最
も効果的であるが、一般に薬剤として重クロム酸
カリウム、硫酸等を用いるので、取扱いに注意を
要するとか薬剤による2次汚染の危険があり、さ
らに反応温度が高いなどの理由によつて、この処
理方法は一般的使途には好ましくないものであ
る。
In particular, among these known deodorizing treatment methods, the method of decomposing malodorous gas using an oxidizing agent is the most effective, but it generally uses potassium dichromate, sulfuric acid, etc. as the agent, so be careful when handling it. This treatment method is not preferred for general use because of the high reaction temperature, the risk of secondary contamination due to chemicals, and the high reaction temperature.

本発明者らは上述諸欠点がなくかつすぐれた効
果を示す消臭剤に関して研究した結果、酸化還元
能を有する金属錯体の金属フタロシアニンポリカ
ルボン酸がすぐれた性能を有することを見出し
た。すなわち金属フタロシアニンポリカルボン酸
は悪臭物質を分解して無臭物にする際に、反応速
度が大きくかつ分解率が高いこと、常温で反応が
進行すること、水系で反応できること、空気中の
酸素を有効に使用できること、サイクル反応で触
媒寿命が長いことなど消臭剤としては極めて有利
な性質を具備することが見出された。
As a result of research into deodorants that are free from the above-mentioned drawbacks and exhibit excellent effects, the present inventors have discovered that metal phthalocyanine polycarboxylic acids, which are metal complexes having redox ability, have excellent performance. In other words, when metal phthalocyanine polycarboxylic acids decompose malodorous substances into odorless substances, they have a high reaction rate and high decomposition rate, the reaction proceeds at room temperature, the ability to react in an aqueous system, and the ability to use oxygen in the air effectively. It has been found that it has extremely advantageous properties as a deodorant, such as being able to be used for various purposes and having a long catalyst life in cycle reactions.

本発明は、かゝる優れた触媒性能を有する化合
物である金属フタロシアニンオクタカルボン酸
を、純度良く高収率で製造する方法である。
The present invention is a method for producing metal phthalocyanine octacarboxylic acid, which is a compound having such excellent catalytic performance, with good purity and high yield.

なお金属フタロシアニンオクタカルボン酸は次
式で示される。
Note that metal phthalocyanine octacarboxylic acid is represented by the following formula.

ここにMは酸化還元能を有する金属である鉄ま
たはコバルトであり、Yは8個がカルボキシル
基、残りが水素原子である。
Here, M is iron or cobalt, which is a metal having redox ability, and Y has 8 carboxyl groups and the remainder hydrogen atoms.

金属フタロシアニンオクタカルボン酸は、本発
明の方法により、例えば次のようにして製造され
る。
Metal phthalocyanine octacarboxylic acid is produced by the method of the present invention, for example, as follows.

先ずピロメリツト酸無水物を触媒(例えばモリ
ブデン酸アンモニウム)の存在下、尿素および金
属塩化物(例えば塩化コバルト、塩化鉄)と反応
させて、金属フタロシアニンオクタカルボン酸テ
トライミドを得る。反応温度は、一般に150〜200
℃、好ましくは160〜170℃であり、反応時間は一
般に1〜10時間、好ましくは3〜5時間である。
反応溶媒を用いることができ、例えばニトロベン
ゼン等の高沸点溶媒が好ましい。
First, pyromellitic anhydride is reacted with urea and a metal chloride (eg, cobalt chloride, iron chloride) in the presence of a catalyst (eg, ammonium molybdate) to obtain a metal phthalocyanine octacarboxylic acid tetraimide. The reaction temperature is generally 150-200
C, preferably 160 to 170 C, and the reaction time is generally 1 to 10 hours, preferably 3 to 5 hours.
A reaction solvent can be used, for example high boiling solvents such as nitrobenzene are preferred.

次に金属フタロシアニンオクタカルボン酸テト
ライミドを常法にて、アルカリ中で加水分解し、
金属フタロシアニンオクタカルボン酸を得る。
Next, metal phthalocyanine octacarboxylic acid tetraimide was hydrolyzed in an alkali using a conventional method.
Metal phthalocyanine octacarboxylic acid is obtained.

本発明の方法で得られた金属フタロシアニンオ
クタカルボン酸は、例えばそれ自体またはシリカ
ゲルやガラス繊維などの無機物質に担持したもの
を水か有機液体中に溶解または分散させて用いる
か、或いは活性炭、おがくず、ゼオライトなど吸
着能を有する固体に吸着させたり、軽石、発泡コ
ンクリート、各種繊維、皮革、ゴム、プラスチツ
クス、紙、パルプ等に付着または化学結合して用
いられる。
The metal phthalocyanine octacarboxylic acid obtained by the method of the present invention can be used, for example, by itself or supported on an inorganic substance such as silica gel or glass fiber by dissolving or dispersing it in water or an organic liquid, or by using activated carbon or sawdust. It is used by being adsorbed on solids with adsorption ability such as zeolite, or by being attached or chemically bonded to pumice, foamed concrete, various fibers, leather, rubber, plastics, paper, pulp, etc.

次に実施例を挙げて具体的に説明するが、本発
明はこれら実施例によつて何等限定されるもので
はない。
Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例 1 撹拌機及び還流冷却器を備えた3つ口フラスコ
にニトロベンゼン150mlを入れ、さらにピロメリ
ツト酸無水物114g、尿素300g、モリブデン酸ア
ンモニウム10g、塩化第二コバルト16.3gを入れ
て撹拌し、160〜170℃で還流させながら3時間加
熱した。冷却後沈殿物を濾過し、メタノール、稀
塩酸、水の順で洗滌して、コバルトフタロシアニ
ンオクタカルボン酸テトライミドを得た。次にこ
れを上記と同じ装置を付した3つ口フラスコに、
30%苛性カリ水溶液1とともに入れて撹拌し、
100℃で還流させながら反応して加水分解し、冷
却後塩酸を加えて酸性にしてコバルトフタロシア
ニンオクタカルボン酸を得た。
Example 1 150 ml of nitrobenzene was placed in a three-neck flask equipped with a stirrer and a reflux condenser, and 114 g of pyromellitic anhydride, 300 g of urea, 10 g of ammonium molybdate, and 16.3 g of cobalt chloride were added and stirred. Heated at ˜170° C. for 3 hours under reflux. After cooling, the precipitate was filtered and washed with methanol, dilute hydrochloric acid, and water in this order to obtain cobalt phthalocyanine octacarboxylic acid tetraimide. Next, transfer this to a three-necked flask equipped with the same equipment as above.
Add 1 part of 30% caustic potassium aqueous solution and stir.
The mixture was reacted and hydrolyzed under reflux at 100°C, and after cooling, it was acidified by adding hydrochloric acid to obtain cobalt phthalocyanine octacarboxylic acid.

元素分析 CoC40H6N8O16(923.6) N[重量%] Co[重量%] 計算値 12.13 6.38 測定値 12.22 6.41 カルボン酸の定量(滴定) 計算値 40.00 [重量%] 測定値 40.12 [重量%] 赤外線吸収スペクトル(KBr) 1700cm-1(carboxy C=0 stretching) 紫外・可視吸収スペクトル(溶媒water) 682nm(logε=4.89) 615nm(logε=4.36) 356nm(logε=4.77) 実施例 2 実施例1と同じ方法で、塩化第二コバルトのか
わりに塩化第二鉄を用い、鉄フタロシアニンオク
タカルボン酸を得た。
Elemental analysis CoC 40 H 6 N 8 O 16 (923.6) N [weight%] Co [weight%] Calculated value 12.13 6.38 Measured value 12.22 6.41 Determination (titration) of carboxylic acid Calculated value 40.00 [Weight%] Measured value 40.12 [Weight %] Infrared absorption spectrum (KBr) 1700cm -1 (carboxy C=0 stretching) Ultraviolet/visible absorption spectrum (solvent water) 682nm (logε=4.89) 615nm (logε=4.36) 356nm (logε=4.77) Example 2 Example In the same manner as in Example 1, iron phthalocyanine octacarboxylic acid was obtained using ferric chloride instead of cobalt chloride.

元素分析 FeC40H16N8O16(920.5) N[重量%] Fe[重量%] 計算値 12.17 6.07 測定値 12.20 6.14 カルボン酸の定量(滴定) 計算値 39.13 [重量%] 測定値 39.22 [重量%] 赤外線吸収スペクトル(KBr) 1700cm-1(carboxy C=0 stretching) 紫外・可視吸収スペクトル(溶媒water) 682nm(logε=4.99) 615nm(logε=4.36) 356nm(logε=4.77) Elemental analysis FeC 40 H 16 N 8 O 16 (920.5) N [weight%] Fe [weight%] Calculated value 12.17 6.07 Measured value 12.20 6.14 Determination (titration) of carboxylic acid Calculated value 39.13 [Weight%] Measured value 39.22 [Weight %] Infrared absorption spectrum (KBr) 1700cm -1 (carboxy C=0 stretching) Ultraviolet/visible absorption spectrum (solvent water) 682nm (logε=4.99) 615nm (logε=4.36) 356nm (logε=4.77)

Claims (1)

【特許請求の範囲】[Claims] 1 ピロメリツト酸無水物、尿素および塩化第二
コバルトをモリブデン酸アンモニウムの存在下で
撹拌し、160〜170℃で還流させながら3〜5時間
反応させて得られたコバルトフタロシアニンオク
タカルボン酸テトライミドを、約30%の苛性カリ
水溶液中で還流させながら加水分解することを特
徴とする金属フタロシアニンオクタカルボン酸の
製法。
1 Cobalt phthalocyanine octacarboxylic acid tetraimide obtained by stirring pyromellitic anhydride, urea and cobalt chloride in the presence of ammonium molybdate and reacting for 3 to 5 hours while refluxing at 160 to 170°C, A method for producing metal phthalocyanine octacarboxylic acid, which is characterized by hydrolysis under reflux in a 30% caustic potassium aqueous solution.
JP63218548A 1979-10-31 1988-09-02 Production of metal phthalocyanine polycarboxylic acid Granted JPS6485989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63218548A JPS6485989A (en) 1979-10-31 1988-09-02 Production of metal phthalocyanine polycarboxylic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP21698879 1979-10-31
JP63218548A JPS6485989A (en) 1979-10-31 1988-09-02 Production of metal phthalocyanine polycarboxylic acid

Publications (2)

Publication Number Publication Date
JPS6485989A JPS6485989A (en) 1989-03-30
JPH0521919B2 true JPH0521919B2 (en) 1993-03-25

Family

ID=26521746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63218548A Granted JPS6485989A (en) 1979-10-31 1988-09-02 Production of metal phthalocyanine polycarboxylic acid

Country Status (1)

Country Link
JP (1) JPS6485989A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5884891A (en) * 1996-10-15 1999-03-23 General Electric Company Suspension system for washing machine
CN101940950B (en) * 2010-06-29 2013-05-08 大连理工大学 Catalyst for hydroxylation reaction of phenol and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF POLYMER SDENCE POLYMER LETTERS EDITION=S54 *

Also Published As

Publication number Publication date
JPS6485989A (en) 1989-03-30

Similar Documents

Publication Publication Date Title
JPS6357063B2 (en)
CN109821574B (en) Europium-based metal organic framework material Eu-MOF, preparation method thereof and Congo red dye photocatalytic degradation method
WO2018133473A1 (en) Visible light catalysed saturated carbon hydrogen bond direct oxidation method
CN108503531A (en) A kind of preparation method of 3,3- dimethyl-2-oxo-butyric acids
CN107501059B (en) Green and environment-friendly synthesis method of 4- (4' -alkylcyclohexyl) cyclohexanone
CN110156717B (en) Synthesis method of rubber vulcanization accelerator NS
JPH0521919B2 (en)
JPH0112754B2 (en)
Zupan et al. Reactions of the NF class of fluorinating reagents with solvents
CN1087012C (en) Clean catalytic oxidization process for synthesizing adipic acid
CN111790441A (en) Polyaniline loaded copper-iron catalyst material and preparation method and application thereof
RU2286332C1 (en) Method for preparing adamantanol-1
CN116284017B (en) Method for preparing amide compound by utilizing enzyme-like efficient catalytic oxidation
Ogata et al. . alpha.-Iodination of some aliphatic acids. Substituent effect and optimum conditions
CN110194493A (en) A kind of palladium chloride green synthesis method
JPS6297555A (en) Deodorant
JP4171878B2 (en) 1-Adamantanol production method
JPH025765B2 (en)
JPH0352482B2 (en)
CN115007156B (en) Calcium-cobalt composite oxide catalyst, preparation method and application
CN113355685B (en) Preparation method of photoinitiator TPO (thermoplastic polyolefin) raw material 2,4, 6-trisubstituted bromobenzene
JPS62142563A (en) Deodorant
CN117164874A (en) Difunctional poly-acid-based complex for trace detection and efficient removal of m-methylphenol and application thereof
JPH01197455A (en) Production of chloranile
Xu et al. Visible-Light-Driven Oxidative Chlorination of Alkyl sp3 C–H Bonds with HCl/Air at Room Temperature