JPH05217856A - Method and apparatus for exposure - Google Patents

Method and apparatus for exposure

Info

Publication number
JPH05217856A
JPH05217856A JP4017072A JP1707292A JPH05217856A JP H05217856 A JPH05217856 A JP H05217856A JP 4017072 A JP4017072 A JP 4017072A JP 1707292 A JP1707292 A JP 1707292A JP H05217856 A JPH05217856 A JP H05217856A
Authority
JP
Japan
Prior art keywords
light
sample surface
pattern
amplitude
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4017072A
Other languages
Japanese (ja)
Inventor
Kenichi Kawakami
研一 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4017072A priority Critical patent/JPH05217856A/en
Publication of JPH05217856A publication Critical patent/JPH05217856A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70408Interferometric lithography; Holographic lithography; Self-imaging lithography, e.g. utilizing the Talbot effect

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To provide a method and an apparatus for exposure using two-dimensional interference exposure which efficiently forms a desired repeated pattern with no mask. CONSTITUTION:A sample face 11 is irradiated in three or more directions with light I1-Im of plane wave whose angle of incidence, amplitude and phase are adjusted. A two-dimensional interference fringe of repeated pattern is formed on the sample face 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は露光方法及び露光装置に
係り、特に二次元の干渉露光を利用した露光方法及び露
光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure method and an exposure apparatus, and more particularly to an exposure method and an exposure apparatus using two-dimensional interference exposure.

【0002】大規模半導体集積回路(LSI)は近年、
益々高密度化、高集積化の傾向にあるため、また量子細
線や量子箱においても、周期的パターンをミクロン以下
の超微細に形成できることが必要とされる。
Large-scale semiconductor integrated circuits (LSIs) have been developed in recent years.
Since there is an increasing trend toward higher density and higher integration, it is also necessary to be able to form a periodic pattern in an ultrafine pattern of a micron or less in quantum wires and quantum boxes.

【0003】[0003]

【従来の技術】従来よりパターンを試料面上に形成する
露光方法としては、フォトリソグラフィ、電子線(E
B)露光方法、一次元の干渉露光方法などが知られてい
る。フォトリソグラフィは所望のパターンが形成されて
いるマスクを通して試料面上のフォトレジストに例えば
紫外線を照射し、その後現象処理、エッチング及びレジ
スト除去処理等の工程を経て、試料面上に所望のパター
ンを形成する。
2. Description of the Related Art As a conventional exposure method for forming a pattern on a sample surface, photolithography, electron beam (E
B) An exposure method and a one-dimensional interference exposure method are known. In photolithography, a photoresist on a sample surface is irradiated with, for example, ultraviolet rays through a mask on which a desired pattern is formed, and then a desired pattern is formed on the sample surface through processes such as phenomenon processing, etching, and resist removal processing. To do.

【0004】また、電子線露光方法は電子ビームを試料
面上に照射して描画する方法で、フォトリソグラフィに
比しより微細なパターンを描画できる。更に、干渉露光
方法はマスクを使わずに2つの光源からの光を試料面上
のフォトレジストに夫々一定角度で入射し、それら2つ
の光の干渉縞により露光する方法である。
In addition, the electron beam exposure method is a method of irradiating an electron beam on the surface of a sample for writing, and a finer pattern can be drawn as compared with photolithography. Further, the interference exposure method is a method in which light from two light sources is incident on the photoresist on the sample surface at a constant angle without using a mask, and exposure is performed by interference fringes of the two lights.

【0005】[0005]

【発明が解決しようとする課題】しかるに、前記フォト
リソグラフィは形成しようとするパターン毎にマスクが
必要になり、マスクの作製に手間と時間とコストをかけ
なければならない。また、前記電子線露光方法は通常は
矩形のショットをつなげてパターンを描画するが、パタ
ーンが微細になるほど単位面積当りの露光ショット数が
増加し、スループットが低下する。
However, in the photolithography, a mask is required for each pattern to be formed, and it takes time, time and cost to manufacture the mask. Further, the electron beam exposure method usually draws a pattern by connecting rectangular shots, but the finer the pattern, the more the number of exposure shots per unit area increases and the throughput decreases.

【0006】また、電子線露光方法では、パターンが近
接した場合に互いにパターン間で影響を及ぼし合い、パ
ターンの位置や幅の変化等の精度低下をもたらす(近接
効果)。前記した干渉露光方法では、二つの光源からの
光の干渉縞を利用しているので、露光できるパターンが
ラインアンドスペースに限られてしまうという問題があ
る。
Further, in the electron beam exposure method, when the patterns are close to each other, the patterns influence each other, resulting in a decrease in accuracy such as a change in the position or width of the pattern (proximity effect). In the interference exposure method described above, since the interference fringes of the light from the two light sources are used, there is a problem that the pattern that can be exposed is limited to the line and space.

【0007】本発明は以上の点に鑑みなされたもので、
マスクを用いることなく所望の周期的パターンを効率的
に形成できる露光方法及び露光装置を提供することを目
的とする。
The present invention has been made in view of the above points,
An object of the present invention is to provide an exposure method and an exposure apparatus that can efficiently form a desired periodic pattern without using a mask.

【0008】[0008]

【課題を解決するための手段】図1は本発明の原理説明
図を示す。本発明の露光方法は図1に示すように、レジ
ストを塗布した試料面11上に、三つ以上の方向から入
射角、振幅及び位相の調節された平面波の光I1 〜Im
を照射し、試料面11上に二次元の繰り返しパターンの
干渉縞を形成して露光する。
FIG. 1 shows the principle of the present invention. As shown in FIG. 1, the exposure method of the present invention comprises plane wave lights I 1 to I m whose incident angles, amplitudes, and phases are adjusted from three or more directions on a resist-coated sample surface 11.
Is irradiated to form interference fringes of a two-dimensional repeating pattern on the sample surface 11, and the sample surface 11 is exposed.

【0009】また、本発明装置では、可干渉な光を放射
する三つ以上の光源と、光源の各々に対応して設けら
れ、光源からの光の振幅及び位相を調節する第1の調節
手段と、三つ以上の第1の調節手段の各々に対応して設
けられ、第1の調節手段からの光を夫々平面波に変換す
ると共に、その光軸を互いに独立して調節して入射角が
調節された平面波を試料面上へ照射する第2の調節手段
とを有する。
Further, in the device of the present invention, three or more light sources for emitting coherent light and first adjusting means provided corresponding to each of the light sources and adjusting the amplitude and phase of the light from the light sources. Is provided corresponding to each of the three or more first adjusting means, converts the light from the first adjusting means into a plane wave, and adjusts the optical axes thereof independently of each other to make the incident angle Second adjusting means for irradiating the adjusted plane wave onto the sample surface.

【0010】[0010]

【作用】図1に示す3つ以上の光源121 〜12m のう
ち、任意の2つの光源12i ,12j からの可干渉で強
度の等しい光が図1に示す如く入射角θ,−θで試料面
11上に入射されるものとする。ここで、光源12i
12j によって試料面11上にできる複素振幅を夫々E
1 (x),E2 (x)、波長をλとすると、E
1(x),E2 (x)は夫々次式で表わされる。
Of the three or more light sources 12 1 to 12 m shown in FIG. 1, coherent light having the same intensity from any two light sources 12 i and 12 j has the same incident angle θ, − as shown in FIG. It is assumed that the light is incident on the sample surface 11 at θ. Here, the light source 12 i ,
The complex amplitudes produced on the sample surface 11 by 12 j are respectively E
If 1 (x), E 2 (x) and the wavelength is λ, then E
1 (x) and E 2 (x) are represented by the following equations, respectively.

【0011】E1 (x)=A・exp {i(kx+
φ1 )} E2 (x)=A・exp {i(−kx+φ2 )} ただし、k=2πtan θ/λ 上式中、Aは電界強度、φ1 ,φ2 は夫々光源12i
12j からの光の位相である。ここで、φ1 =φ2 =0
とすると試料面11上に結像する電界強度の複素振幅E
(x)は、 E(x)=E1 (x)+E2 (x) =2A cos(kx) となり、干渉縞が形成される。
E 1 (x) = A · exp {i (kx +
φ 1 )} E 2 (x) = A · exp {i (−kx + φ 2 )} where k = 2πtan θ / λ In the above equation, A is the electric field intensity, φ 1 and φ 2 are light sources 12 i , respectively.
It is the phase of the light from 12 j . Where φ 1 = φ 2 = 0
Then, the complex amplitude E of the electric field strength imaged on the sample surface 11
(X) becomes E (x) = E 1 (x) + E 2 (x) = 2A cos (kx), and interference fringes are formed.

【0012】従来の干渉露光法では、φ1 ,φ2 が制御
されていないため干渉縞の形成される位置を制御できな
い。また、光源が2つしかないので、ラインアンドスペ
ースしか露光できない。
In the conventional interference exposure method, the positions where interference fringes are formed cannot be controlled because φ 1 and φ 2 are not controlled. Further, since there are only two light sources, only line and space can be exposed.

【0013】これに対して、本発明では光源が図1に1
1 〜12m で示したように3つ以上あるため、試料面
11上に形成される干渉縞は二次元的に配列され、また
入射角を調節することにより、二次元の繰り返しパター
ンを試料面11に結像させることができる。しかも、本
発明では光の振幅及び位相を調節しているため、結像す
るパターンを制御することができる。
On the other hand, in the present invention, the light source is shown in FIG.
Since there are three or more as shown by 2 1 to 12 m , the interference fringes formed on the sample surface 11 are two-dimensionally arranged, and a two-dimensional repeating pattern is formed on the sample by adjusting the incident angle. An image can be formed on the surface 11. Moreover, in the present invention, since the amplitude and phase of light are adjusted, the pattern to be imaged can be controlled.

【0014】また、本発明装置では、所望のパターンを
結像するために必要な各々の平面波の振幅、位相及び入
射角を第1,第2の調節手段で調整しているため、効率
的に露光を行なうことができる。
Further, in the apparatus of the present invention, the amplitude, phase and incident angle of each plane wave required for forming a desired pattern are adjusted by the first and second adjusting means, so that the efficiency is improved. Exposure can be performed.

【0015】[0015]

【実施例】図3は本発明の一実施例の構成図を示す。同
図中、21a〜21eは夫々光源で、前記した光源12
1 〜12m (ただし、ここではm=5)に相当し、可干
渉な光を放射する。光源21a〜21eの各々から放射
された光(球面波)は、振幅制御素子22a〜22e、
位相制御素子23a〜23eを夫々通してレンズ24a
〜24eに入射され、ここで平面波に変換された後、試
料面11と同一平面上にあるCCD(チャージ・カップ
ルド・デバイス)25に入射される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 shows a block diagram of an embodiment of the present invention. In the figure, 21a to 21e are light sources, which are the light sources 12 described above.
It corresponds to 1 to 12 m (here, m = 5) and emits coherent light. The light (spherical wave) emitted from each of the light sources 21a to 21e receives the amplitude control elements 22a to 22e,
The lens 24a is passed through the phase control elements 23a to 23e, respectively.
˜24e, converted into a plane wave here, and then incident on a CCD (charge coupled device) 25 on the same plane as the sample surface 11.

【0016】CCD25は周知の如く撮像素子で、試料
面11をもつ試料(サンプル)と共に同じX−Yステー
ジ26に載置されており、X−Yステージ26と一体的
に移動変位される。計算機27は端末28に接続される
一方、振幅制御素子22a〜22e、位相制御素子23
a〜23eを夫々互いに独立して制御する。
As is well known, the CCD 25 is an image pickup device, is mounted on the same XY stage 26 together with a sample (sample) having the sample surface 11, and is moved and displaced integrally with the XY stage 26. The computer 27 is connected to the terminal 28, while the amplitude control elements 22a to 22e and the phase control element 23 are connected.
a to 23e are controlled independently of each other.

【0017】振幅制御素子22a〜22eと位相制御素
子23a〜23eは、前記した第1の調節手段を構成し
ており、計算機27からの制御信号に応じて、対応して
設けられた光源21a〜21eからの光の振幅及び位相
を夫々調節する。また、レンズ24a〜24eは前記し
た第2の調節手段を構成しており、図示しない移動機構
により計算機27からの制御信号に応じて移動制御さ
れ、レンズ24a〜24eを透過する平面波の光軸を可
変することにより、入射角を可変する。なお、入射角の
制御はレンズ24a〜24eの移動と共に、光源21a
〜21eの位置を移動させて行なってもよい。
The amplitude control elements 22a to 22e and the phase control elements 23a to 23e constitute the above-mentioned first adjusting means, and the light sources 21a to 21c corresponding to the control signals from the computer 27 are provided. The amplitude and phase of the light from 21e are adjusted respectively. Further, the lenses 24a to 24e constitute the above-mentioned second adjusting means, and movement is controlled by a moving mechanism (not shown) according to a control signal from the computer 27, and the optical axes of the plane waves transmitted through the lenses 24a to 24e are changed. By changing the angle, the incident angle is changed. Note that the incident angle is controlled by moving the lenses 24a to 24e as well as the light source 21a.
It may be performed by moving the positions of 21e.

【0018】次に本実施例の動作について説明する。ま
ず、端末28よりオペレータが露光したいパターン(パ
ターンの周期、一周期のパターンデータ)を計算機27
へ入力する。すると、計算機27はこの入力パターンデ
ータを基にして夫々の光の振幅、位相、入射角を計算
し、制御する。
Next, the operation of this embodiment will be described. First, the operator uses the terminal 27 to calculate the pattern (pattern cycle, pattern data for one cycle) that the operator wants to expose.
To enter. Then, the calculator 27 calculates and controls the amplitude, phase, and incident angle of each light based on the input pattern data.

【0019】例えば設計したパターンデータが図4に示
す如くx軸方向のパターンの周期L x 、y軸方向のパタ
ーンの周期Ly よりなり、8×8の矩形よりなるパター
ンであるものとする。この場合、光源の数は21a〜2
1eの5個ではなく、全部で64個必要になり、その各
々に対応して振幅制御素子22、位相制御素子23、レ
ンズ24が設けられる。
For example, the designed pattern data is shown in FIG.
So that the pattern cycle L in the x-axis direction x, Y-axis pattern
Cycle Ly, A putter consisting of 8 × 8 rectangles
It is assumed that In this case, the number of light sources is 21a to 2
You need 64 pieces in total instead of 5 pieces in 1e.
Amplitude control element 22, phase control element 23,
24 are provided.

【0020】計算機27は上記のパターンデータから図
5に示す如き電界強度分布を設計し、これをFFT(デ
ィジタルフーリエ変換)することにより、各光源からの
光の振幅を表1に示す如く、また光の位相を表2に示す
如く計算する。
The computer 27 designs the electric field intensity distribution as shown in FIG. 5 from the above pattern data and performs FFT (Digital Fourier Transform) on the electric field intensity distribution to calculate the amplitude of light from each light source as shown in Table 1. The phase of light is calculated as shown in Table 2.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】また、計算機27はパターンの周期の寸法
x ,Ly と最小線幅と光の波長λから、夫々の光源か
らの光のCCD25への入射角(θ,φ)を算出する。
この入射角は図6に示す如く、光の入射面30の法線3
1に対して、x軸方向に平行な平面上でθ、y軸方向に
平行な平面上でφなる角度で表わされ、横方向にi番
目、縦方向にj番目の矩形の二次元干渉露光部分の入射
角(θij,φij)は表3に示す如くになる。
Further, the calculator 27 calculates the incident angles (θ, φ) of the light from the respective light sources on the CCD 25 from the dimension L x , L y of the pattern period, the minimum line width and the wavelength λ of the light.
As shown in FIG. 6, this incident angle is the normal 3 of the light incident surface 30.
The two-dimensional interference of 1 is represented by an angle θ on a plane parallel to the x-axis direction and φ on a plane parallel to the y-axis direction, and is the i-th rectangle in the horizontal direction and the j-th rectangle in the vertical direction. The incident angles (θ ij , φ ij ) of the exposed portion are as shown in Table 3.

【0024】[0024]

【表3】 [Table 3]

【0025】計算機27は表1の計算結果に基づいて振
幅制御素子22a〜22e等の振幅制御素子による振幅
調整を行ない、表2の計算結果に基づいて23a〜23
e等の位相制御素子による位相調整を行ない、また表3
の計算結果に基づいて24a〜24e等のレンズを移動
して光のCCD25への入射角(θ,φ)の調整を行な
う。
The computer 27 adjusts the amplitude by the amplitude control elements 22a to 22e based on the calculation results of Table 1, and 23a to 23a based on the calculation results of Table 2.
The phase is adjusted by a phase control element such as e.
The lenses such as 24a to 24e are moved on the basis of the calculation result to adjust the incident angle (θ, φ) of the light on the CCD 25.

【0026】このようにして、各光源からの光はCCD
25に入射され、ここで撮像される。CCD25は撮像
した光に応じた電気信号を生成して計算機27へ入力す
る。計算機27は前記光学系(図3では5つ、図4,図
5の例では64)のうちの所定の一の光学系を基準とし
て、この基準光学系と他の一の光学系のみによってCC
D25の撮像面にできる干渉縞の振幅、位相、周期を解
析する。同様にして、計算機27は上記の基準光学系と
残りの光学系との間の1つ1つについて、CCD25の
撮像面にできる干渉縞の振幅、位相、同期を解析する。
上記解析の結果、計算機27は誤差が最小となるよう
に、光の振幅、位相及び入射角の微調整を行なう。
In this way, the light from each light source is transferred to the CCD.
It is incident on 25 and is imaged here. The CCD 25 generates an electric signal according to the imaged light and inputs it to the computer 27. The computer 27 uses only a predetermined one of the optical systems (five in FIG. 3 and 64 in the examples of FIGS. 4 and 5) as a reference, and uses only this reference optical system and the other optical system as CC.
The amplitude, phase, and period of the interference fringes formed on the image pickup surface of D25 are analyzed. Similarly, the computer 27 analyzes the amplitude, phase, and synchronization of the interference fringes formed on the image pickup surface of the CCD 25 for each of the reference optical system and the remaining optical system.
As a result of the above analysis, the computer 27 finely adjusts the amplitude, phase and incident angle of light so that the error is minimized.

【0027】上記の微調整終了後、X−Yステージ26
が図示しないステージ移動機構によって移動され、それ
までCCD25の撮像面が位置していた場所に試料面1
1が位置するようにする。これにより、所望の周期的パ
ターンがレジストを塗布した試料面11上に二次元干渉
露光される。このとき、試料面11上には所望の周期的
パターンがマスクを用いることなく一括転写される。
After the above fine adjustment is completed, the XY stage 26
Is moved by a stage moving mechanism (not shown), and the sample surface 1 is moved to the position where the image pickup surface of the CCD 25 was located until then.
1 should be positioned. As a result, the desired periodic pattern is two-dimensionally interference-exposed on the resist-coated sample surface 11. At this time, a desired periodic pattern is collectively transferred onto the sample surface 11 without using a mask.

【0028】[0028]

【発明の効果】上述の如く、本発明によれば、マスクを
用いることなく二次元の繰り返しパターンを一括して試
料面に露光することができるため、フォトリソグラフィ
に比しマスクが不要な分手間と時間を不要にでき、電子
線露光方法に比しスループットを向上でき、また一次元
の干渉露光方法に比し二次元の繰り返しパターンも露光
でき、また本発明装置では効率的に露光を行なうことが
でき、以上より半導体製造技術に寄与するところ大であ
る等の特長を有するものである。
As described above, according to the present invention, a two-dimensional repetitive pattern can be collectively exposed on a sample surface without using a mask, so that a mask is unnecessary as compared with photolithography. And the time can be eliminated, the throughput can be improved as compared with the electron beam exposure method, and the two-dimensional repeating pattern can be exposed as compared with the one-dimensional interference exposure method. Further, the apparatus of the present invention can perform the exposure efficiently. It is possible to make the above-mentioned, and it has a feature that it greatly contributes to the semiconductor manufacturing technology.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】本発明の作用説明図である。FIG. 2 is an explanatory view of the operation of the present invention.

【図3】本発明の一実施例の構成図である。FIG. 3 is a configuration diagram of an embodiment of the present invention.

【図4】パターンデータの一例を示す図である。FIG. 4 is a diagram showing an example of pattern data.

【図5】電界強度分布の一例を示す図である。FIG. 5 is a diagram showing an example of an electric field intensity distribution.

【図6】入射角の説明図である。FIG. 6 is an explanatory diagram of incident angles.

【符号の説明】[Explanation of symbols]

11 試料面 121 〜12m ,21a〜21e 光源 22a〜22e 振幅制御素子 23a〜23e 位相制御素子 24a〜24e レンズ 27 計算機11 sample surface 12 1 ~12 m, 21a~21e source 22a~22e amplitude control element 23a~23e phase control element 24a~24e lens 27 computer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 レジストを塗布した試料面(11)上
に、三つ以上の方向から入射角、振幅及び位相の調節さ
れた平面波の光(I1 〜Im )を照射し、該試料面(1
1)上に二次元の繰り返しパターンの干渉縞を形成して
露光することを特徴とする露光方法。
1. A sample surface (11) coated with a resist is irradiated with plane wave light (I 1 -I m ) whose incident angle, amplitude and phase are adjusted from three or more directions, and the sample surface (1
1) An exposure method characterized in that interference fringes of a two-dimensional repeating pattern are formed on the surface for exposure.
【請求項2】 可干渉な光を放射する三つ以上の光源
(21a〜21e)と、 該光源(21a〜21e)の各々に対応して設けられ、
該光源(121 〜12 m )からの光の振幅及び位相を調
節する第1の調節手段(22a〜22e,23a〜23
e)と、 三つ以上の該第1の調節手段(22a〜22e,23a
〜23e)の各々に対応して設けられ、該第1の調節手
段(22a〜22e,23a〜23e)からの光を夫々
平面波に変換すると共に、その光軸を互いに独立して調
節して入射角が調節された平面波を試料面(11)上へ
照射する第2の調節手段(24a〜24b)とを有する
ことを特徴とする露光装置。
2. Three or more light sources that emit coherent light
(21a to 21e) and the light sources (21a to 21e) are provided correspondingly,
The light source (121~ 12 m) Adjusts the amplitude and phase of the light from
First adjusting means (22a-22e, 23a-23)
e) and three or more of the first adjusting means (22a to 22e, 23a).
23e) corresponding to each of the first adjusting hands.
Light from the steps (22a-22e, 23a-23e) respectively
Converts to a plane wave and adjusts its optical axis independently of each other.
A plane wave with the incident angle adjusted to the sample surface (11)
With a second adjusting means (24a-24b) for irradiating
An exposure apparatus characterized by the above.
JP4017072A 1992-01-31 1992-01-31 Method and apparatus for exposure Withdrawn JPH05217856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4017072A JPH05217856A (en) 1992-01-31 1992-01-31 Method and apparatus for exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4017072A JPH05217856A (en) 1992-01-31 1992-01-31 Method and apparatus for exposure

Publications (1)

Publication Number Publication Date
JPH05217856A true JPH05217856A (en) 1993-08-27

Family

ID=11933787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4017072A Withdrawn JPH05217856A (en) 1992-01-31 1992-01-31 Method and apparatus for exposure

Country Status (1)

Country Link
JP (1) JPH05217856A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000057236A2 (en) * 1999-03-23 2000-09-28 Massachusetts Institute Of Technology Optical synthetic aperture array
JP2004504634A (en) * 2000-07-19 2004-02-12 エーエスエムエル ユーエス,インコーポレイテッド Method of characterizing an optical system using a holographic reticle
DE10325461A1 (en) * 2003-06-05 2004-12-30 Carl Zeiss Sms Gmbh Method and arrangement for realizing a switchable optical aperture
US7161684B2 (en) 2000-02-15 2007-01-09 Asml Holding, N.V. Apparatus for optical system coherence testing
US7242464B2 (en) 1999-06-24 2007-07-10 Asml Holdings N.V. Method for characterizing optical systems using holographic reticles
US7440078B2 (en) 2005-12-20 2008-10-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and maskless exposure units
US7443514B2 (en) 2006-10-02 2008-10-28 Asml Holding N.V. Diffractive null corrector employing a spatial light modulator
US7561252B2 (en) 2005-12-29 2009-07-14 Asml Holding N.V. Interferometric lithography system and method used to generate equal path lengths of interfering beams
US7751030B2 (en) 2005-02-01 2010-07-06 Asml Holding N.V. Interferometric lithographic projection apparatus
US8264667B2 (en) 2006-05-04 2012-09-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and other exposure
JP2013145863A (en) * 2011-11-29 2013-07-25 Gigaphoton Inc Two-beam interference apparatus and two-beam interference exposure system
US8934084B2 (en) 2006-05-31 2015-01-13 Asml Holding N.V. System and method for printing interference patterns having a pitch in a lithography system
CN116500711A (en) * 2023-04-14 2023-07-28 同济大学 Two-dimensional grating standard substance with self-tracing angle and preparation method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000057236A3 (en) * 1999-03-23 2001-01-04 Massachusetts Inst Technology Optical synthetic aperture array
US6548820B1 (en) 1999-03-23 2003-04-15 Massachusetts Institute Of Technology Optical synthetic aperture array
WO2000057236A2 (en) * 1999-03-23 2000-09-28 Massachusetts Institute Of Technology Optical synthetic aperture array
US7804601B2 (en) 1999-06-24 2010-09-28 Asml Holding N.V. Methods for making holographic reticles for characterizing optical systems
US7242464B2 (en) 1999-06-24 2007-07-10 Asml Holdings N.V. Method for characterizing optical systems using holographic reticles
US7161684B2 (en) 2000-02-15 2007-01-09 Asml Holding, N.V. Apparatus for optical system coherence testing
JP2004504634A (en) * 2000-07-19 2004-02-12 エーエスエムエル ユーエス,インコーポレイテッド Method of characterizing an optical system using a holographic reticle
DE10325461A1 (en) * 2003-06-05 2004-12-30 Carl Zeiss Sms Gmbh Method and arrangement for realizing a switchable optical aperture
US7751030B2 (en) 2005-02-01 2010-07-06 Asml Holding N.V. Interferometric lithographic projection apparatus
US7440078B2 (en) 2005-12-20 2008-10-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and maskless exposure units
US7561252B2 (en) 2005-12-29 2009-07-14 Asml Holding N.V. Interferometric lithography system and method used to generate equal path lengths of interfering beams
US8264667B2 (en) 2006-05-04 2012-09-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and other exposure
US8934084B2 (en) 2006-05-31 2015-01-13 Asml Holding N.V. System and method for printing interference patterns having a pitch in a lithography system
US7443514B2 (en) 2006-10-02 2008-10-28 Asml Holding N.V. Diffractive null corrector employing a spatial light modulator
JP2013145863A (en) * 2011-11-29 2013-07-25 Gigaphoton Inc Two-beam interference apparatus and two-beam interference exposure system
US9507248B2 (en) 2011-11-29 2016-11-29 Gigaphoton Inc. Two-beam interference apparatus and two-beam interference exposure system
CN116500711A (en) * 2023-04-14 2023-07-28 同济大学 Two-dimensional grating standard substance with self-tracing angle and preparation method thereof
CN116500711B (en) * 2023-04-14 2024-04-26 同济大学 Two-dimensional grating standard substance with self-tracing angle and preparation method thereof

Similar Documents

Publication Publication Date Title
CN105574293B (en) EUV design rule, the combined optimization of light source and mask and imaging modeling method
US5343292A (en) Method and apparatus for alignment of submicron lithographic features
KR101011732B1 (en) Calculation method, generation method, storage medium, exposure method, and mask fabrication method
JP4922112B2 (en) Method and apparatus for performing model-based OPC for pattern decomposition features
JP2715895B2 (en) Light intensity distribution simulation method
US20090180182A1 (en) Apparatus for exposing a substrate, photomask and modified illuminating system of the apparatus, and method of forming a pattern on a substrate using the apparatus
JPH05217856A (en) Method and apparatus for exposure
JPH07505507A (en) Lithography pattern formation method in semiconductor device manufacturing process
JPH06188169A (en) Method of image formation, exposure system, and manufacture of device
JP2008166777A (en) Lithographic device and method of manufacturing device
TWI448824B (en) A method, program product and apparatus for performing decomposition of a pattern for use in a dpt process
TWI736730B (en) Systems and methods for focus-sensitive metrology targets
TW201207893A (en) Improved polarization designs for lithographic apparatus
TW201007382A (en) Computer readable medium and exposure method
JP2817615B2 (en) Reduction projection exposure equipment
KR20090030216A (en) Mask data generation method, mask fabrication method, exposure method, device fabrication method, and storage medium
US7098995B2 (en) Apparatus and system for improving phase shift mask imaging performance and associated methods
JP2008009339A (en) Pattern inspection device, pattern inspection method, and method for manufacturing semiconductor device
JP2711194B2 (en) Exposure equipment
JP2003309066A (en) Measuring method for aberration of projection optical system
JP3025269B1 (en) Pattern line width simulation method and pattern line width simulator
JPS6358825A (en) Pattern formation
Borisov et al. Mathematical problems of holographic mask synthesis
JP2003059804A (en) Pattern-forming apparatus and method for manufacturing pattern
US7509620B2 (en) Dual phase shift photolithography masks for logic patterning

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408