JPH05217226A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH05217226A
JPH05217226A JP1759392A JP1759392A JPH05217226A JP H05217226 A JPH05217226 A JP H05217226A JP 1759392 A JP1759392 A JP 1759392A JP 1759392 A JP1759392 A JP 1759392A JP H05217226 A JPH05217226 A JP H05217226A
Authority
JP
Japan
Prior art keywords
magneto
magnetic layer
recording
layer
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1759392A
Other languages
Japanese (ja)
Inventor
Hirokazu Takada
宏和 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd, Dainippon Ink and Chemicals Co Ltd filed Critical NKK Corp
Priority to JP1759392A priority Critical patent/JPH05217226A/en
Publication of JPH05217226A publication Critical patent/JPH05217226A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a magneto-optical recording medium capable of recording with satisfactory characteristics in a smaller bias magnetic field than the conventional one. CONSTITUTION:This magneto-optical recording medium has 1st and 2nd magnetic substance layers on the substrate in a contact state. The 1st layer has >=10 kOe coercive force and is made of an amorphous rare earth element- transition metal alloy having a higher transition metal content than that of a compensation compsn. The 2nd layer has lower coercive force at room temp. than the 1st layer and a higher Curie temp. than the 1st layer and is made of an amorphous rare earth element-transition metal alloy. This recording medium has higher recording sensitivity to a bias magnetic field than the conventional one, electromagnets for generating a bias magnetic field can be miniaturized and electric power consumed by driving a magneto-optical disk can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザー光を用いて情報
の記録、再生、消去を行なう光磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium for recording, reproducing and erasing information by using laser light.

【0002】[0002]

【従来の技術】従来より、レーザー光による熱と外部磁
界により磁性薄膜の垂直方向に磁化した磁区形成するこ
とにより情報の記録を行い、この記録マークによるカー
効果、もしくはファラデー効果を利用して情報の再生を
行なう光磁気記録方式は、記録、消去の繰り返しが可能
でかつ信頼性の高い高密度情報記録方式として実用化さ
れている。これに用いられる光磁気記録媒体の記録膜に
用いる磁性体膜としては多くの種類の磁性体合金が提案
されているが、とりわけFe、Co等の遷移金属とT
b、Dy、Gd等の重希土類金属を主体とした非晶質合
金薄膜がキュリー温度が記録に適当な範囲であること、
非晶質であるため、再生時に粒界ノイズを生じないこ
と、スパッタリング等の方法で容易に垂直磁化膜を形成
できること、比較的大きな磁気−光カー効果を得られる
こと等の理由で最も多く用いられている。
2. Description of the Related Art Conventionally, information is recorded by forming magnetic domains perpendicularly magnetized in a magnetic thin film by heat from a laser beam and an external magnetic field, and information is recorded by using the Kerr effect or Faraday effect by the recording mark. The magneto-optical recording method for reproducing information has been put into practical use as a highly reliable high-density information recording method capable of repeating recording and erasing. Although many kinds of magnetic alloys have been proposed as the magnetic film used for the recording film of the magneto-optical recording medium used for this purpose, especially transition metals such as Fe and Co and T are used.
An amorphous alloy thin film mainly composed of a heavy rare earth metal such as b, Dy, or Gd has a Curie temperature within a range suitable for recording.
Since it is amorphous, it is most often used because it does not generate grain boundary noise during reproduction, can form a perpendicular magnetization film easily by a method such as sputtering, and can obtain a relatively large magnetic-optical Kerr effect. Has been.

【0003】この光磁気記録媒体においては、磁性体膜
の酸化による記録特性の経時劣化を防ぐ目的、また十分
な再生信号出力やCN比を得るために磁気−光カー効果
を増幅する目的で、磁性体層の両側もしくは磁性体層の
レーザー光が入射する側に透明誘電体層を設ける方法、
さらには反射層を設け、磁性体層を透過した光のファラ
デー効果も利用する方法も広く行われている。これらの
方法により、信頼性が高く、かつ記録特性の良好な光磁
気記録媒体が得られる。
In this magneto-optical recording medium, in order to prevent deterioration of recording characteristics due to oxidation of the magnetic film over time, and to amplify the magneto-optical Kerr effect in order to obtain a sufficient reproduction signal output and CN ratio, A method of providing transparent dielectric layers on both sides of the magnetic layer or on the side of the magnetic layer on which laser light is incident,
Further, a method of providing a reflective layer and utilizing the Faraday effect of light transmitted through the magnetic layer is also widely used. By these methods, a magneto-optical recording medium having high reliability and good recording characteristics can be obtained.

【0004】[0004]

【発明が解決しようとする課題】光磁気記録媒体の記録
及び再生は、バイアス磁界を印加しながらレーザー光を
照射することによって行われる。しかしながら、従来の
光磁気記録膜は、十分な記録、消去を行なうためには3
00Oe以上のバイアス磁界が必要であり、これに記録、
再生、消去を行なうための光磁気ディスク装置のバイア
ス磁界を発生する電磁石が大きくなり、かつ装置全体の
消費電力も大きくなるという欠点があった。そのため、
バイアス磁界に対する感度の良好な記録媒体が望まれて
いた。
Recording and reproduction on a magneto-optical recording medium are performed by irradiating laser light while applying a bias magnetic field. However, in the conventional magneto-optical recording film, in order to perform sufficient recording and erasing, 3
A bias magnetic field of 00 Oe or more is required,
There is a drawback that the electromagnet that generates the bias magnetic field of the magneto-optical disk device for performing reproduction and erasure becomes large, and the power consumption of the entire device also becomes large. for that reason,
A recording medium having good sensitivity to a bias magnetic field has been desired.

【0005】一般に希土類−遷移金属非晶質合金はその
組成を補償組成付近にすると飽和磁化が小さくなり、記
録膜の膜面に垂直方向に磁化された場合の反磁界が小さ
くなるために小さなバイアス磁界で記録を行なうことが
できる。しかしながら、小さなバイアス磁界で記録した
ときに形成された記録ドメインは不安定であり、記録マ
ークの形状が良好ではない。このため、このようにして
記録された記録マークからの再生信号は、ノイズレベル
が高く、かつCN比が低く、ジッタが大きい等良好な記
録特性が得られなかった。
In general, a rare earth-transition metal amorphous alloy has a small saturation magnetization when the composition thereof is in the vicinity of the compensating composition, and the demagnetizing field when magnetized in the direction perpendicular to the film surface of the recording film is small. Recording can be performed in a magnetic field. However, the recording domain formed when recording with a small bias magnetic field is unstable, and the shape of the recording mark is not good. Therefore, the reproduced signal from the recording mark recorded in this manner has a high noise level, a low CN ratio, large jitter, and other good recording characteristics cannot be obtained.

【0006】本発明が解決しようとする課題は、バイア
ス磁界に対する感度が良好で、記録マークの形状が良好
で、記録ドメインの安定性に優れた記録特性を有し、再
生信号のノイズレベルが低く、CN比が高く、ジッタが
小さい光磁気記録媒体を提供することにある。
The problem to be solved by the present invention is that it has good sensitivity to a bias magnetic field, good recording mark shape, excellent recording domain stability, and low reproduction signal noise level. , A high CN ratio and a small jitter are provided.

【0007】[0007]

【課題を解決するための手段】本発明は前記の課題を解
決するために、基板上に、保磁力が10kOe以上であ
り、かつ、補償組成よりも遷移金属側の組成を有する希
土類−遷移金属非晶質合金よりなる第1の磁性体層と、
これに接して室温での保磁力が第1の磁性体層よりも小
さく、キュリー温度が第1の磁性体層よりも高い希土類
−遷移金属非晶質合金よりなる第2の磁性体層を有する
ことを特徴とする光磁気記録媒体を提供する。
In order to solve the above problems, the present invention provides a rare earth-transition metal having a coercive force of 10 kOe or more on a substrate and a composition on the transition metal side of a compensating composition. A first magnetic layer made of an amorphous alloy;
In contact with this, a second magnetic layer made of a rare earth-transition metal amorphous alloy having a coercive force at room temperature lower than that of the first magnetic layer and a Curie temperature higher than that of the first magnetic layer is provided. A magneto-optical recording medium characterized by the above.

【0008】図1は、この第1の磁性体層と第2の磁性
体層の保磁力の温度依存性を示した概略図である。
FIG. 1 is a schematic diagram showing the temperature dependence of the coercive force of the first magnetic layer and the second magnetic layer.

【0009】さらに、この第2の磁性体層は初期化の段
階で第1の磁性体層の記録時の記録マークの磁化の方向
と同一の方向に磁化させておき、以後、記録、再生、消
去の全ての過程においてその磁化の方向を変えないこと
を特徴とする。本発明において情報の記録及び記録信号
の再生は第1の磁性体層で行われるため、第1の磁性体
層は第2の磁性体層に対してレーザー光の入射側、すな
わち一般には透明基板を通してレーザー光が入射される
ため、第1の磁性体層は第2の磁性体層に対して基板側
に位置していなければならない。この記録膜に記録され
る様子を図2に示した。
Further, this second magnetic layer is magnetized in the same direction as the magnetization direction of the recording mark at the time of recording on the first magnetic layer at the initialization stage, and thereafter, recording, reproduction, It is characterized in that the direction of its magnetization is not changed in all the processes of erasing. In the present invention, recording of information and reproduction of a recorded signal are performed in the first magnetic layer, so that the first magnetic layer is formed on the laser beam incident side of the second magnetic layer, that is, a transparent substrate in general. Since the laser beam is incident through the first magnetic layer, the first magnetic layer must be located on the substrate side with respect to the second magnetic layer. The state of recording on this recording film is shown in FIG.

【0010】本発明によれば、第1の磁性体層に形成さ
れた記録ドメインは、第2の磁性体層の磁気モーメント
との交換結合力により安定化されるため、小さなバイア
ス磁界を印加しながら記録を行った場合であっても形状
の良好な記録ドメインが形成され、記録ノイズが低く、
かつCN比が高く、ジッタの小さい記録特性の良好な記
録膜が得られる。
According to the present invention, since the recording domain formed in the first magnetic layer is stabilized by the exchange coupling force with the magnetic moment of the second magnetic layer, a small bias magnetic field is applied. Even when recording is performed, a recording domain with a good shape is formed, recording noise is low,
Further, a recording film having a high CN ratio and a small jitter and good recording characteristics can be obtained.

【0011】本発明で使用する基板としては、例えば、
ポリカーボネート、ポリメチルメタクリレート、アモル
ファスポリオレフィンのごとき樹脂又はガラスに直接案
内溝を形成した基板、ガラス又は樹脂の平板上にフォト
ポリマー法により案内溝を形成した基板などが挙げられ
る。
The substrate used in the present invention is, for example,
Examples thereof include substrates such as polycarbonate, polymethylmethacrylate, and amorphous polyolefin in which guide grooves are directly formed in resin or glass, substrates in which guide grooves are formed on a flat plate of glass or resin by a photopolymer method, and the like.

【0012】本発明の第1及び第2に磁性体層に用いら
れる希土類−遷移金属非晶質合金としては、例えば、T
bFeCo、DyFeCo、TbFe、GdTbFeC
o、NdDyFeCo、TbCo等が挙げられ、これら
の非晶質合金に耐酸化性の向上等の目的でその他の金属
を添加したものも使用できる。
The rare earth-transition metal amorphous alloy used in the first and second magnetic layers of the present invention is, for example, T
bFeCo, DyFeCo, TbFe, GdTbFeC
o, NdDyFeCo, TbCo, etc., and those obtained by adding other metals to these amorphous alloys for the purpose of improving oxidation resistance can also be used.

【0013】上記のように第1の磁性体層に用いる希土
類−遷移金属合金は遷移金属側の補償組成に近いものが
好ましく、具体的には保磁力が 10kOe以上のものが好
ましい。また、第2の磁性体層に用いられる希土類−遷
移金属合金は第1の磁性体層に記録を行なう際にも磁化
の反転が起こらないように、キュリー温度が十分高いも
のが望ましく、具体的には300℃以上のものが好まし
い。しかしながら、第2の磁性体層は、記録媒体の製造
時に磁化の向きを第1の磁性体層の記録側の方向に揃え
るという初期化を容易にするため、室温での保磁力が小
さいものを使用する必要がある。具体的には 5kOe以下
が好ましい。
As described above, the rare earth-transition metal alloy used in the first magnetic layer is preferably close to the compensating composition on the transition metal side, and specifically, the coercive force of 10 kOe or more is preferable. Further, the rare earth-transition metal alloy used for the second magnetic layer preferably has a sufficiently high Curie temperature so that reversal of magnetization does not occur during recording on the first magnetic layer. It is preferably 300 ° C. or higher. However, the second magnetic layer should have a small coercive force at room temperature in order to facilitate the initialization of aligning the magnetization direction with the recording side direction of the first magnetic layer when manufacturing the recording medium. Need to use. Specifically, it is preferably 5 kOe or less.

【0014】実用に際しては、本発明の二層よりなる磁
性体層は、酸化による特性の劣化を防止する目的、さら
にはカー効果をエンハンスし、出力の大きな再生信号を
得る目的で、その両側に無機誘電体層を設けた構造や、
さらには反射層を設けた構造で用いられる。
In practical use, the two magnetic layers of the present invention are provided on both sides of the magnetic layer for the purpose of preventing the deterioration of the characteristics due to oxidation and for enhancing the Kerr effect to obtain a reproduced signal with a large output. A structure with an inorganic dielectric layer,
Further, it is used in a structure provided with a reflective layer.

【0015】誘電体層には透明性の高い無機誘電体が用
いられる。その材質としては、例えば、SiNx、Si
x、AlSiON、AlSiN、AlN、AlTi
N、Ta25、ZnSなどが挙げられるが、なかでもS
iNx が好ましい。これら誘電体層の屈折率は1.8〜
2.5の範囲が好ましい。
An inorganic dielectric having high transparency is used for the dielectric layer. Examples of the material include SiN x and Si
O x , AlSiON, AlSiN, AlN, AlTi
N, Ta 2 O 5 , ZnS and the like can be mentioned, but among them, S
iN x is preferred. The refractive index of these dielectric layers is 1.8 to
A range of 2.5 is preferred.

【0016】反射層の材質としては、Al、Alと他の
金属との合金などが挙げられるが、Al、Al−Ti合
金、Al−Cr合金が好ましい。
Examples of the material of the reflective layer include Al and alloys of Al with other metals. Al, Al-Ti alloys and Al-Cr alloys are preferable.

【0017】誘電体層、磁性体層及び反射層は、スパッ
タリング、イオンプレーティングなどの物理蒸着法(P
VD)、プラズマCVDなどの化学蒸着法(CVD)な
どによって形成する。
The dielectric layer, magnetic layer and reflective layer are formed by physical vapor deposition (P, P, etc.) such as sputtering or ion plating.
VD), chemical vapor deposition (CVD) such as plasma CVD, or the like.

【0018】このようにして成膜した光磁気記録媒体
は、単体で使用してもよく、2枚を基板が外側にくるよ
うに貼り合わせて使用してもよい。
The magneto-optical recording medium thus formed may be used alone or may be used by laminating two substrates so that the substrates are on the outside.

【0019】[0019]

【実施例】以下、本発明に係る光磁気記録媒体を具体的
な実施例で説明する。
EXAMPLES The magneto-optical recording medium according to the present invention will be described below with reference to specific examples.

【0020】(実施例)図3は本実施例の係る光磁気記
録媒体の断面図であって、この図に示したように、本実
施例の記録媒体は透明基板上に、第1の誘電体層、記録
層である第1の磁性体層及び第2の磁性体層、第2の誘
電体層、反射層とを順次厚さ方向に積層してなる。
(Embodiment) FIG. 3 is a cross-sectional view of a magneto-optical recording medium according to this embodiment. As shown in FIG. 3, the recording medium of this embodiment has a first dielectric layer on a transparent substrate. A body layer, a first magnetic body layer and a second magnetic body layer that are recording layers, a second dielectric layer, and a reflective layer are sequentially laminated in the thickness direction.

【0021】本光磁気記録媒体は、グルーブ及びプリフ
ォーマットの形成された直径86mmのポリカーボネート
基板上に、マグネトロンスパッタリングによって各薄膜
を形成することによって作製した。まず第1の誘電体層
として、Siターゲットを用い N2を混合したArをス
パッタガスとしてRFスパッタ法で100nmの厚さのS
iN膜を成膜した。次に、記録膜の第1の磁性体層とし
て、DCスパッタ法で15nmのTb21Fe70Co9
を、さらに第2の磁性体層として15nmのTb15Fe70
Co15膜を成膜した。さらに、20nmのSiN層を第2
の誘電体層として上記第1の磁性体層と同様の方法で、
さらには反射層として Al95Ti4を50nmの厚さの膜
をDCスパッタ法で積層した。
The magneto-optical recording medium of the present invention was prepared by forming each thin film by magnetron sputtering on a polycarbonate substrate having a groove and a preformat and having a diameter of 86 mm. First, as the first dielectric layer, S having a thickness of 100 nm was formed by RF sputtering using Ar mixed with N 2 and Si as a sputtering gas.
An iN film was formed. Next, a 15 nm thick Tb 21 Fe 70 Co 9 film was formed by the DC sputtering method as the first magnetic layer of the recording film, and a 15 nm thick Tb 15 Fe 70 layer was formed as the second magnetic layer.
A Co 15 film was formed. In addition, a second 20 nm SiN layer
In the same manner as the first magnetic layer as the dielectric layer of
Further, a film of Al 95 Ti 4 having a thickness of 50 nm was laminated by a DC sputtering method as a reflection layer.

【0022】また、別にガラス基板上に上記の第1の磁
性体層及び第2の磁性体層を単独で成膜し、これらの磁
気特性を振動試料型磁力計を用いて測定を行ったとこ
ろ、第1の磁性体層、第2の磁性体層の保持力はそれぞ
れ14kOe、2kOeであった。またキュリー温度はそれぞ
れ、200℃、320℃であった。
Separately, the first magnetic layer and the second magnetic layer were separately formed on a glass substrate, and their magnetic characteristics were measured using a vibrating sample magnetometer. The coercive forces of the first magnetic layer and the second magnetic layer were 14 kOe and 2 kOe, respectively. The Curie temperatures were 200 ° C and 320 ° C, respectively.

【0023】(評価)上記の方法で作製した光磁気記録
媒体を電磁石を用い、 5kOeの磁界中で初期化を行っ
た。この光磁気記録媒体について光磁気ディスク記録特
性評価装置を用いて測定を行った。レーザー波長830
nm、回転数 1,800rpm、記録周波数2.9MHz、 パ
ルス幅90ns、記録レーザーパワー8mWの条件で記録を
行った。この場合のCN比の記録磁界強度依存性を図4
に示した。
(Evaluation) The magneto-optical recording medium manufactured by the above method was initialized by using an electromagnet in a magnetic field of 5 kOe. This magneto-optical recording medium was measured using a magneto-optical disk recording characteristic evaluation device. Laser wavelength 830
Recording was performed under the conditions of nm, rotation speed 1,800 rpm, recording frequency 2.9 MHz, pulse width 90 ns, and recording laser power 8 mW. FIG. 4 shows the dependency of the CN ratio on the recording magnetic field strength in this case.
It was shown to.

【0024】図4から、本実施例の光磁気記録媒体のC
N比は約100Oeの外部磁界で飽和することが分かる。
これは、記録の際、印加されるバイアス磁界強度が小さ
くとも記録膜に良好な形状の記録マークが形成され、こ
れにより記録ノイズが低いためであると推定される。
From FIG. 4, C of the magneto-optical recording medium of this embodiment is shown.
It can be seen that the N ratio is saturated with an external magnetic field of about 100 Oe.
It is presumed that this is because during recording, even if the applied bias magnetic field strength is small, a well-formed recording mark is formed on the recording film, and thus recording noise is low.

【0025】(比較例)実施例と同様のポリカーボネー
ト基板上に各層を積層した。これらの層のうち記録膜は
実施例の場合と異なり、上記第1の磁性体層と同じ組成
のTb21Fe70Co9を30nm成膜するのみとし、第2
の磁性体層は設けなかった。一方、その他の層の組成、
膜厚、及び積層順序は実施例の場合と全く同様とした。
Comparative Example Each layer was laminated on the same polycarbonate substrate as in the example. Of these layers, the recording film is different from the case of the embodiment, only Tb 21 Fe 70 Co 9 having the same composition as that of the first magnetic layer is formed to a thickness of 30 nm.
No magnetic layer was provided. On the other hand, the composition of the other layers,
The film thickness and the stacking order were exactly the same as in the example.

【0026】上記の光磁気記録媒体について光磁気ディ
スク記録特性評価装置を用いて実施例と同様の方法、条
件でCN比の記録磁界強度依存性を測定した結果を図4
に示した。
The magneto-optical disk recording characteristic evaluation apparatus for the above-mentioned magneto-optical recording medium was used to measure the recording magnetic field strength dependency of the CN ratio under the same method and conditions as in Example, and the results are shown in FIG.
It was shown to.

【0027】図4から、本比較例の光磁気記録媒体のC
N比が飽和するためには約300Oe以上のバイアス磁界
を必要とすることが分かる。これは、記録の際、印加さ
れるバイアス磁界強度が小さいと形成された記録マーク
の形状が不良であるため、記録ノイズが大きくなるため
と推定される。
From FIG. 4, C of the magneto-optical recording medium of this comparative example is shown.
It can be seen that a bias magnetic field of about 300 Oe or more is required to saturate the N ratio. It is presumed that this is because when the bias magnetic field strength applied at the time of recording is small, the shape of the formed recording mark is defective and the recording noise becomes large.

【0028】[0028]

【発明の効果】本発明によれば低バイアス磁界で記録を
行っても良好な記録特性が得られる光磁気記録媒体を作
製することができる。このためバイアス磁界を発生する
電磁石を小型化でき、さらに光磁気ディスクドライブの
消費電力を低減することが可能となる。
According to the present invention, it is possible to manufacture a magneto-optical recording medium which can obtain good recording characteristics even when recording is performed in a low bias magnetic field. Therefore, the electromagnet that generates the bias magnetic field can be downsized, and the power consumption of the magneto-optical disk drive can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の磁性体層と第2の磁性体層の保磁力の温
度依存性を示した図表である。
FIG. 1 is a table showing temperature dependence of coercive force of a first magnetic layer and a second magnetic layer.

【図2】本発明の記録膜に記録を行った場合の第1及び
第2の磁性体層の磁化の方向を示した説明図である。
FIG. 2 is an explanatory diagram showing directions of magnetization of first and second magnetic layers when recording is performed on the recording film of the present invention.

【図3】本発明の実施例の光磁気記録膜の層構成を示し
た断面図である。
FIG. 3 is a sectional view showing a layer structure of a magneto-optical recording film according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 第1の誘電体層 3 第1の磁性体層 4 第2の磁性体層 5 第2の誘電体層 6 反射層 1 Substrate 2 1st Dielectric Layer 3 1st Magnetic Layer 4 2nd Magnetic Layer 5 2nd Dielectric Layer 6 Reflective Layer

【図4】本発明の実施例と比較例の光磁気記録媒体に記
録を行った場合のCN比のバイアス磁界強度依存性を示
した図表である。
FIG. 4 is a table showing the bias magnetic field strength dependence of the CN ratio when recording is performed on the magneto-optical recording media of the example of the present invention and the comparative example.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、保磁力が10kOe以上であ
り、かつ、補償組成よりも遷移金属側の組成を有する希
土類−遷移金属非晶質合金よりなる第1の磁性体層と、
これに接して室温での保磁力が第1の磁性体層よりも小
さく、キュリー温度が第1の磁性体層よりも高い希土類
−遷移金属非晶質合金よりなる第2の磁性体層を有する
ことを特徴とする光磁気記録媒体。
1. A first magnetic layer made of a rare earth-transition metal amorphous alloy having a coercive force of 10 kOe or more and having a composition on the transition metal side of a compensating composition, on a substrate,
In contact with this, a second magnetic layer made of a rare earth-transition metal amorphous alloy having a coercive force at room temperature lower than that of the first magnetic layer and a Curie temperature higher than that of the first magnetic layer is provided. A magneto-optical recording medium characterized by the above.
【請求項2】 記録、再生、消去の全ての過程において
第2の磁性体層の磁化の方向が膜面に垂直で、かつ、一
定であることを特徴とする請求項1記載の光磁気記録媒
体。
2. The magneto-optical recording according to claim 1, wherein the magnetization direction of the second magnetic layer is perpendicular to the film surface and is constant in all processes of recording, reproducing and erasing. Medium.
【請求項3】 第2の磁性体層の磁化の方向が第1の磁
性体層の記録マークの磁化と同一方向であることを特徴
とする請求項2記載の光磁気記録媒体。
3. The magneto-optical recording medium according to claim 2, wherein the magnetization direction of the second magnetic layer is the same as the magnetization direction of the recording mark of the first magnetic layer.
【請求項4】 第1の磁性体層が第2の磁性体層よりも
基板側に位置することを特徴とする請求項1記載の光磁
気記録媒体。
4. The magneto-optical recording medium according to claim 1, wherein the first magnetic layer is located closer to the substrate than the second magnetic layer is.
JP1759392A 1992-02-03 1992-02-03 Magneto-optical recording medium Pending JPH05217226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1759392A JPH05217226A (en) 1992-02-03 1992-02-03 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1759392A JPH05217226A (en) 1992-02-03 1992-02-03 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH05217226A true JPH05217226A (en) 1993-08-27

Family

ID=11948198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1759392A Pending JPH05217226A (en) 1992-02-03 1992-02-03 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH05217226A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687197B1 (en) 1999-09-20 2004-02-03 Fujitsu Limited High density information recording medium and slider having rare earth metals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687197B1 (en) 1999-09-20 2004-02-03 Fujitsu Limited High density information recording medium and slider having rare earth metals
US6898158B2 (en) 1999-09-20 2005-05-24 Fujitsu Limited Information recording medium and information recording and reproducing slider

Similar Documents

Publication Publication Date Title
JP3781823B2 (en) Magneto-optical recording medium and reproducing method thereof
JP3492525B2 (en) Magneto-optical recording medium
JP3400251B2 (en) Method of reproducing magneto-optical recording medium and magneto-optical recording medium
JP3568787B2 (en) Magneto-optical recording medium and reproducing apparatus
JP3519293B2 (en) Magneto-optical recording medium, reproducing method of magneto-optical recording medium, magneto-optical recording and reproducing apparatus
JP2000163815A (en) Magneto-optical recording medium, reproducing device and reproduction method
JPH09231631A (en) Magneto-optical recording medium
US5462811A (en) Magneto-optical recording media and mangeto-optical device using the media
US5502692A (en) Method and apparatus for recording, reproducing and overwriting information on or from a magnetooptic disk having three magnetic layers
JPH07230637A (en) Magneto-optical recording medium and information recording and reproducing method using this medium
JPH05217226A (en) Magneto-optical recording medium
JP2001043579A (en) Magneto-optical recording medium and reproducing method for same
JPH0350344B2 (en)
JP2001134994A (en) Magneto-optical recording medium and method of recording in the same
JP3570922B2 (en) Magneto-optical recording medium
JP3995833B2 (en) Magneto-optical recording medium
JPH0350343B2 (en)
JP3570921B2 (en) Information recording method using magneto-optical recording medium
JP3592399B2 (en) Magneto-optical recording medium
US6048597A (en) Optical device and manufacturing method thereof
JP2000222787A (en) Magneto-optical recording medium
JP3516865B2 (en) Magneto-optical recording medium and reproducing apparatus
JPH07320320A (en) Magneto-optical recording medium, recording and reproducing method of magneto-optically recorded information
JPH05303777A (en) Magnetic optical recording medium and its production
JPH0644624A (en) Magneto-optical recording medium