JPH0521616B2 - - Google Patents

Info

Publication number
JPH0521616B2
JPH0521616B2 JP9801186A JP9801186A JPH0521616B2 JP H0521616 B2 JPH0521616 B2 JP H0521616B2 JP 9801186 A JP9801186 A JP 9801186A JP 9801186 A JP9801186 A JP 9801186A JP H0521616 B2 JPH0521616 B2 JP H0521616B2
Authority
JP
Japan
Prior art keywords
membrane
polymer
copolymer
cyclodextrin
amino acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9801186A
Other languages
Japanese (ja)
Other versions
JPS62258702A (en
Inventor
Kyohide Matsui
Kazuhiko Ishihara
Kazumi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Original Assignee
Sagami Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute filed Critical Sagami Chemical Research Institute
Priority to JP9801186A priority Critical patent/JPS62258702A/en
Publication of JPS62258702A publication Critical patent/JPS62258702A/en
Publication of JPH0521616B2 publication Critical patent/JPH0521616B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、アミノ酸を効率良く光学分割しうる
重合体膜に関する。 特に本発明の重合体膜は化学合成法等により得
られるD,L−アミノ酸混合物を光学分割する膜
分離プロセスに有用である。 〔従来の技術〕 非多孔性の均一な重合体膜を用いた有機混合物
の分離法は、連続性、操作性、経済性の面から有
利であるばかりでなく、通常の蒸留法や再結晶法
では分離できないような混合物、例えば共沸混合
物、近沸点混合物、構造異性体、熱変性しやすい
物質を含む混合物の分離に有効である。 アミノ酸を医薬品、食料品、飼料等へ利用する
場合、天然型すなわちL−体であることが要求さ
れるため、化学合成法によりアミノ酸を合成した
場合は、得られるD,L−アミノ酸を光学分割
し、L−体を得る必要がある。従来、この光学分
割法として晶析法、クロマトグラフ法、酵素法等
が用いられているが、分離条件の選定が極めて難
かしいばかりか、操作が煩雑なため、連続性、安
定性の面で問題がある。 アミノ酸の光学分割に膜分離法を利用する試み
も行なわれており、分離膜としては、光学活性ア
ミノ酸を担持した重合体膜、光学活性物質を支持
膜上にプラズマ処理にて固定した膜または光学活
性クラウンエーテル化合物を含む液体を多孔性膜
に含浸した膜などが公知であるが、前二者は選択
性及び透過性が低く、また後者は膜安定性に問題
があり、実用化は困難である。 以上の様に、現在に至るまでアミノ酸光学異性
体を効率良く分離する重合体膜は知られていな
い。 また、本発明の如き、側鎖にシクロデキストリ
ンを共有結合で担持した重合体より膜を形成し、
その膜をアミノ酸の光学分割に用いた例は従来全
く知られていない。 〔発明が解決しようとする問題点〕 本発明は、アミノ酸光学異性体を効率良く分割
することのできる選択透過性に優れた重合体膜を
提供することにより、上記重合体膜の欠点を解決
しようとするものである。 〔問題点を解決するための手段〕 一般にシクロデキストリンは、分子内空孔に
種々の有機物質を包接することが知られている。
この包接体形成には、分子の大きさ、形、さらに
は分子不斉が反映されるため、構造が極めて類似
しが幾何異性体、光学異性体においてもシクロデ
キストリンによる包接能は異なる(M.L.ベンダ
ー、M.コミヤマ著゛シクロデキストリンの化学
゛学会出版センター参照)。 本発明はこの点に着目し、シクロデキストリン
の分子包接能を巧妙に利用した効率の良い膜分離
を実現しうる、シクロデキストリン残基を側鎖に
有する重合体より形成されるアミノ酸光学分割用
膜を提供するものである。 側鎖にシクロデキストリン残基を有する重合体
としては、膜状物を形成するものであればよい。
特に成膜性及び透過性の観点から一般式 で表わされる繰り返し単位及び一般式 で表わされる繰り返し単位より成る分子量1万
以上の共重合体が好ましい。(式、R1,R2は水素
原子、ハロゲン原子または低級アルキル基、Xは
二価の連結基、Yはα−、β−またはγ−シクロ
デキストリン残基を示す。)。 上記Xで示される二価の連結基としては、アル
キレン基、フエニレン基、
[Industrial Application Field] The present invention relates to a polymer film that can efficiently optically resolve amino acids. In particular, the polymer membrane of the present invention is useful in a membrane separation process for optically resolving a D,L-amino acid mixture obtained by chemical synthesis or the like. [Prior Art] A method for separating organic mixtures using a non-porous homogeneous polymer membrane is not only advantageous in terms of continuity, operability, and economy, but is also superior to conventional distillation and recrystallization methods. It is effective for separating mixtures that cannot be separated by conventional methods, such as azeotropic mixtures, near-boiling point mixtures, structural isomers, and mixtures containing substances that are easily denatured by heat. When amino acids are used in medicines, foods, feeds, etc., they are required to be in the natural form, that is, in the L-form. Therefore, when amino acids are synthesized by chemical synthesis, the resulting D, L-amino acids are optically resolved. However, it is necessary to obtain the L-form. Conventionally, crystallization methods, chromatography methods, enzymatic methods, etc. have been used for this optical resolution method, but not only is it extremely difficult to select separation conditions, but the operations are complicated, so they have problems in terms of continuity and stability. There's a problem. Attempts have also been made to use membrane separation methods for the optical resolution of amino acids. Separation membranes include polymer membranes supporting optically active amino acids, membranes in which optically active substances are immobilized on a support membrane by plasma treatment, and optical membranes. Membranes in which a porous membrane is impregnated with a liquid containing an active crown ether compound are known, but the former two have low selectivity and permeability, and the latter has problems with membrane stability, making it difficult to put them into practical use. be. As described above, to date, no polymer membrane has been known that efficiently separates amino acid optical isomers. Further, as in the present invention, a membrane is formed from a polymer having cyclodextrin covalently supported on its side chain,
There have been no known examples of using this membrane for optical resolution of amino acids. [Problems to be Solved by the Invention] The present invention aims to solve the above-mentioned drawbacks of the polymer membrane by providing a polymer membrane with excellent permselectivity that can efficiently separate amino acid optical isomers. That is. [Means for Solving the Problems] It is generally known that cyclodextrins include various organic substances in their intramolecular pores.
This inclusion body formation reflects the size, shape, and even molecular asymmetry of the molecule, so even though the structures are extremely similar, the inclusion ability by cyclodextrin is different even for geometric and optical isomers ( ML Bender, M. Komiyama, ``Chemistry of Cyclodextrin'', Japan Society Publishing Center). Focusing on this point, the present invention has developed an amino acid optical resolution system made of a polymer having cyclodextrin residues in its side chain, which can realize efficient membrane separation by cleverly utilizing the molecular inclusion ability of cyclodextrin. It provides a membrane. Any polymer having a cyclodextrin residue in its side chain may be used as long as it forms a membrane.
Especially from the viewpoint of film formability and permeability, the general formula Repeating unit and general formula represented by A copolymer having a molecular weight of 10,000 or more and consisting of repeating units represented by is preferred. (In the formula, R 1 and R 2 are a hydrogen atom, a halogen atom, or a lower alkyl group, X is a divalent linking group, and Y is an α-, β-, or γ-cyclodextrin residue.) The divalent linking group represented by X above includes an alkylene group, a phenylene group,

【式】−COO−、−O−、−S−、[Formula] -COO-, -O-, -S-,

【式】【formula】

【式】で示される基を例示する ことができ、さらにはこれらの二価の連結基の複
数を組み合わせることもできる。なお、アルキレ
ン基とはアルカンの異なる炭素原子から1個ずつ
水素原子を除いてできる2価基を意味し(但し、
メチレン基を含む)、R3,R4は水素原子、低級ア
ルキル基、フエニル基、またはアラルキル基、
R5,R6は低級アルキル基、フエニル基またはア
ラルキル基を示す。Yで示されるシクロデキスト
リン残基は、重合体主鎖に結合するための基X以
外には置換されていないことが好ましいが、アミ
ノ酸の包接を妨げない基で修飾されていても良
い。 この共重合体は、例えば一般式 (R1は上記と同一である。)で示されるアクリ
ロニトリル誘導体と一般式 (R2、X及びYは上記と同一である。)で示さ
れるシクロデキストリン置換ビニル単量体との共
重合体反応、もしくは、一般式()で示される
単量体と反応性の官能基を有するビニル単量体
(以下反応性単量体という)とを共重合して得ら
れる重合体に該反応性官能基と容易に反応し得る
基で予め修飾したシクロデキストリンを反応させ
ることにより得ることができる。 共重合体中のシクロデキストリン含有繰り返し
単位()の組成は5〜90モル%、好ましくは10
〜50モル%である。該繰り返し単位がこの範囲よ
り多い場合は、重合体膜としての強度が不足とな
り、少ない場合は、充分な選択性を得ることはで
きない。また該重合体の分子量は、成膜性の点よ
り1万以上好ましくは5万以上である。 反応性単量体としてはp−ニトロフエニルアク
リレート、m−ニトロフエニルメタクリレート、
グリシジルメタクリレート、2−メルカプトエチ
ルアクリレート、p−メルカプトスチレン、p−
アミノスチレン、2−アミノプロピルアクリレー
ト、2−クロロエチルメタクリルアミド、ペンタ
クロロフエニルアクリレート、アクリル酸、メタ
クリル酸、アクリル酸クロリド、p−ビニルフエ
ニルイソシアネートなどを例示することができ
る。 本発明の重合体膜は、上記の重合体を成膜して
得られる。その成膜方法は、特に限定されること
なく、公知あるいは周知の方法でよい。例えば重
合体溶液をテフロン板、金属板、ガラス板、また
は水面上などに展延した後、溶媒を蒸発させて丈
夫な膜とすることができる。また多孔質の支持体
を重合体溶液に浸漬したのち引き上げたり、支持
体に溶液を塗布、乾燥させるなどの方法も採用す
ることができる。重合体溶液を作製するための有
機溶媒としては、重合体を良く溶解するものであ
れば特に限定することなく用いることができる。 本発明の分離膜は、充分なアミノ酸透過量を与
え、かつ実用的な強度を持つために、膜の厚さが
0.01〜200μm、特に0.05〜100μmであることが好
ましい。膜厚が1μm以下の薄膜では支持体ととも
に用いることが好ましい。支持体としては、織布
状または不織布状支持体、ミクロフイルター、限
外濾過膜など膜を支持する充分な強度を有する多
孔質体であればこれを用いることができる。 重合体膜は架橋処理をしないで用いることが望
ましいが、分離の対象となる液体混合物に重合体
膜が著しく膨潤するか、あるいは溶解する際には
架橋処理により不溶化し用いることもできる。 本発明において、分離膜は均質膜、非対称膜、
複合膜あるいはこの分離膜を他の膜と重ね合せた
積層膜の形で用いることもできる。又、このよう
にして得られる膜は、平膜、管状膜、中空糸膜等
いかなる形状においても用いることができる。 本発明の重合体膜は膜の片側にアミノ酸光学異
性体混合物溶液を存在させ、膜中のシクロデキス
トリン残基の包接特異性を利用して光学異性体の
一方を重合体膜の反対側に優位に透過させるもの
である。 本発明の重合体膜により光学分割されるアミノ
酸としては、フエニル基、アルキル鎖などの比較
的疎水性基を有するものが好ましく、フエニルア
ラニン、フエニルグリシン、チロシン、ドーパ、
ヒスチジン、トリプトフアン、イソロイシン、バ
リン、3,5−ジヒドロキシフエニルグリシン、
プロリンなどを例示することができる。 以下、本発明を参考例及び実施例によりさらに
詳しく説明する。 参考例 1 β−シクロデキストリン(β−CD)20gをピリ
ジン352mlに溶解し、p−トルエンスルホニルク
ロライド6.36gを加え、室温にて1時間攪拌した
後、ピリジンを留去した。残渣に水を加えて全量
を80mlとし凍結乾燥後得られた白色粉末を水550
mlから再結晶した。さらにn−ブタノール
(BuOH)−エタノール−水(5:4:3)混合溶
媒150mlから再結晶をくり返し、モノ−6−p−
トルエンスルホニル−β−シクロデキストリン
8.36g(36.3%)を白色粉末として得た。 元素分析(%):実測値:C、43.74; H、6.10;S、2.71 C49H76O37S・3H2Oとしての計算値: C、43.82;H、6.15;S、2.59 NMR(ppm)(DMSO−d6): 2.43(3H)、4.16−4.62(7H)、 4.83(7H)、5.64(14H)、7.60(4H). 得られた6−モノトシル−β−シクロデキスト
リン1.25gをエチレンジアミン15mlに溶解し40℃
にて22時間攪拌後、反応液を濃縮し、残渣をアセ
トンに注入、沈殿させた。得られた淡黄色粉末を
メタノール水(3:1)に溶解し、アセトンに再
沈、この操作を繰り返し、モノエチレンジアミン
体0.49g(42.9%)を白色粉末として得た。 元素分析(%):C44H76O34N2・2BuOH 実測値:C、46.94;H、6.84; N、2.21;S、0. 計算値:C、47.13;H、7.30; N、2,21;S、0. NMR(ppm)(DMSO−d6):2.60 −2.94(2H)、3.31−3.66(27H)、 4,45(6H)、4.83(7H)、5.71(14H). 参考例 2 アクリロニトリル(AN)5.41g、p−ニトロ
フエニルアクリレート(PNPA)3.48gをガラス
製重合用アンプル管に仕込み(仕込みモル比
AN/PNPA=0.85/0.15)重合開始剤としてア
ゾビスイソブチロニトリル(AIBN)0.04g及び
重合溶媒としてジメチルホルムアミド(DMF)
51.1mlを加え常法に従い脱気後、高真空下に封管
した。これを60℃にて10時間振り混ぜることによ
り重合反応を行つた。反応混合物を大量のメタノ
ール中に投じることにより収率18.6%、収量
1.65gにてAN−PNPA共重合体を得た。 元素分析値より共重合体中のPNPAモル分率
は0.242であつた。またGPC測定により分子量は
ポリスチレン換算にて5.8×104であつた。 1R(cm-1):2250(C≡N)、1730 (C=O)、1540(NO2) 参考例 3〜5 ANとPNPAの仕入込みモル組成比を変化させ
た以外は参考例2と同様の操作にてAN−PNPA
共重合体を得た。結果を表1に示す。
The group represented by the formula can be exemplified, and moreover, a plurality of these divalent linking groups can be combined. In addition, an alkylene group means a divalent group formed by removing hydrogen atoms one by one from different carbon atoms of an alkane (however,
methylene group), R 3 and R 4 are hydrogen atoms, lower alkyl groups, phenyl groups, or aralkyl groups,
R 5 and R 6 represent a lower alkyl group, a phenyl group or an aralkyl group. The cyclodextrin residue represented by Y is preferably not substituted with a group other than the group X for binding to the polymer main chain, but may be modified with a group that does not interfere with amino acid inclusion. This copolymer has, for example, the general formula (R 1 is the same as above.) Acrylonitrile derivative and general formula Copolymer reaction with the cyclodextrin-substituted vinyl monomer represented by (R 2 , X and Y are the same as above) or a functional group reactive with the monomer represented by the general formula () It is obtained by reacting a polymer obtained by copolymerizing a vinyl monomer (hereinafter referred to as a reactive monomer) with a cyclodextrin that has been modified in advance with a group that can easily react with the reactive functional group. be able to. The composition of the cyclodextrin-containing repeating unit () in the copolymer is 5 to 90 mol%, preferably 10
~50 mol%. If the number of repeating units exceeds this range, the strength of the polymer membrane will be insufficient, and if there is less, sufficient selectivity cannot be obtained. Further, the molecular weight of the polymer is 10,000 or more, preferably 50,000 or more from the viewpoint of film-forming properties. Reactive monomers include p-nitrophenyl acrylate, m-nitrophenyl methacrylate,
glycidyl methacrylate, 2-mercaptoethyl acrylate, p-mercaptostyrene, p-
Examples include aminostyrene, 2-aminopropyl acrylate, 2-chloroethylmethacrylamide, pentachlorophenyl acrylate, acrylic acid, methacrylic acid, acrylic acid chloride, and p-vinylphenyl isocyanate. The polymer film of the present invention is obtained by forming the above polymer into a film. The film forming method is not particularly limited, and may be any known or well-known method. For example, a polymer solution can be spread on a Teflon plate, metal plate, glass plate, or water surface, and then the solvent can be evaporated to form a durable film. Alternatively, methods such as immersing a porous support in a polymer solution and then pulling it out, or applying the solution to the support and drying it can also be adopted. As the organic solvent for preparing the polymer solution, any organic solvent can be used without particular limitation as long as it dissolves the polymer well. The separation membrane of the present invention has a thickness that allows sufficient amino acid permeation and has practical strength.
It is preferably 0.01 to 200 μm, particularly 0.05 to 100 μm. For thin films with a thickness of 1 μm or less, it is preferable to use them together with a support. As the support, any porous material having sufficient strength to support the membrane can be used, such as a woven or nonwoven support, a microfilter, or an ultrafiltration membrane. It is preferable to use the polymer membrane without crosslinking treatment, but if the polymer membrane significantly swells or dissolves in the liquid mixture to be separated, it can also be used after being insolubilized by crosslinking treatment. In the present invention, the separation membrane is a homogeneous membrane, an asymmetric membrane,
It can also be used in the form of a composite membrane or a laminated membrane in which this separation membrane is laminated with other membranes. Further, the membrane thus obtained can be used in any shape such as a flat membrane, a tubular membrane, or a hollow fiber membrane. The polymer membrane of the present invention has an amino acid optical isomer mixture solution present on one side of the membrane, and utilizes the inclusion specificity of cyclodextrin residues in the membrane to transfer one of the optical isomers to the opposite side of the polymer membrane. It allows for superior penetration. The amino acids that can be optically resolved by the polymer film of the present invention are preferably those having relatively hydrophobic groups such as phenyl groups and alkyl chains, such as phenylalanine, phenylglycine, tyrosine, dopa,
histidine, tryptophan, isoleucine, valine, 3,5-dihydroxyphenylglycine,
Examples include proline. Hereinafter, the present invention will be explained in more detail with reference to Reference Examples and Examples. Reference example 1 20 g of β-cyclodextrin (β-CD) was dissolved in 352 ml of pyridine, 6.36 g of p-toluenesulfonyl chloride was added, and after stirring at room temperature for 1 hour, the pyridine was distilled off. Add water to the residue to make a total volume of 80 ml, and add the white powder obtained after freeze-drying to 550 ml of water.
Recrystallized from ml. Furthermore, recrystallization was repeated from 150 ml of n-butanol (BuOH)-ethanol-water (5:4:3) mixed solvent, and mono-6-p-
Toluenesulfonyl-β-cyclodextrin
Obtained 8.36g (36.3%) as a white powder. Elemental analysis (%): Actual value: C, 43.74; H, 6.10; S, 2.71 Calculated value as C49H76O37S 3H2O : C, 43.82 ; ) (DMSO−d 6 ): 2.43 (3H), 4.16−4.62 (7H), 4.83 (7H), 5.64 (14H), 7.60 (4H). 1.25 g of the obtained 6-monotosyl-β-cyclodextrin was dissolved in 15 ml of ethylenediamine and heated at 40°C.
After stirring for 22 hours, the reaction solution was concentrated, and the residue was poured into acetone to precipitate it. The obtained pale yellow powder was dissolved in methanol water (3:1) and reprecipitated in acetone. This operation was repeated to obtain 0.49 g (42.9%) of monoethylenediamine as a white powder. Elemental analysis (%): C44H76O34N2 2BuOH Actual value: C, 46.94; H, 6.84; N, 2.21; S , 0. Calculated value: C, 47.13; H, 7.30; N, 2, 21; S, 0. NMR (ppm) (DMSO- d6 ): 2.60-2.94 (2H), 3.31-3.66 (27H), 4,45 (6H), 4.83 (7H), 5.71 (14H). Reference example 2 5.41g of acrylonitrile (AN) and 3.48g of p-nitrophenyl acrylate (PNPA) were charged into a glass polymerization ampoule tube (charged molar ratio
AN/PNPA=0.85/0.15) 0.04g of azobisisobutyronitrile (AIBN) as a polymerization initiator and dimethylformamide (DMF) as a polymerization solvent
After adding 51.1 ml and degassing according to a conventional method, the tube was sealed under high vacuum. A polymerization reaction was carried out by shaking and mixing the mixture at 60°C for 10 hours. By pouring the reaction mixture into a large amount of methanol, the yield was 18.6%.
1.65g of AN-PNPA copolymer was obtained. According to elemental analysis, the mole fraction of PNPA in the copolymer was 0.242. Furthermore, the molecular weight was determined to be 5.8×10 4 in terms of polystyrene by GPC measurement. 1R (cm -1 ): 2250 (C≡N), 1730 (C=O), 1540 (NO 2 ) Reference Examples 3 to 5 Same as Reference Example 2 except that the molar composition ratio of AN and PNPA was changed. AN−PNPA by similar operation
A copolymer was obtained. The results are shown in Table 1.

【表】 参考例 6 PNPAの代わりにp−ニトロフエニルメタク
リレート(PNPM)を用いた以外は参考例2と
同様の方法にてAN−PNPM共重合体を得た。収
率19.3%、収量2.01g。共重合体中のPNPMモル
分率は0.131であった。またGPC測定により分子
量は6.00×104であつた。 参考例2で得たAN−PNPA共重合体0.2gをジ
メチルスルホキシド(DMSO)20mlに溶解し、
参考例1で得たモノアミノエチルアミノ−β−
CD0.594gを加え室温にて6日間攪拌した。反応
混合物をアセトン250mlに投じ、沈澱物を濾別し
た。これを再びDMSO5.5mlに溶解し、メタノー
ル水溶液中に投じることにより精製した。収量
0.34g、収率37.8%。 元素分析値(%) C:48.66、H:6.14、 N:8.23 IR(cm-1):3400(OH)、2950 (CH2)、2250(C≡N)、1650 (NHCO)、1600〜1100(C=O) 以上の分析結果より、側鎖にβ−CD残基を
24.2モル%含有する共重合体であることを確認し
た。 参考例 8〜12 参考例7と同様の方法にてAN−PNPA共重合
体もしくはAN−PNPM共重合体とモノ−アミノ
エチルアミノ−β−CDとの反応により側鎖にβ
−CD残基を有する共重合体を得た。結果を表2
に示す。
[Table] Reference Example 6 An AN-PNPM copolymer was obtained in the same manner as in Reference Example 2 except that p-nitrophenyl methacrylate (PNPM) was used instead of PNPA. Yield 19.3%, yield 2.01g. The PNPM mole fraction in the copolymer was 0.131. Furthermore, the molecular weight was found to be 6.00×10 4 by GPC measurement. 0.2 g of the AN-PNPA copolymer obtained in Reference Example 2 was dissolved in 20 ml of dimethyl sulfoxide (DMSO),
Monoaminoethylamino-β- obtained in Reference Example 1
0.594 g of CD was added and stirred at room temperature for 6 days. The reaction mixture was poured into 250 ml of acetone, and the precipitate was filtered off. This was dissolved again in 5.5 ml of DMSO and purified by pouring it into an aqueous methanol solution. yield
0.34g, yield 37.8%. Elemental analysis value (%) C: 48.66, H: 6.14, N: 8.23 IR (cm -1 ): 3400 (OH), 2950 (CH 2 ), 2250 (C≡N), 1650 (NHCO), 1600-1100 (C=O) From the above analysis results, β-CD residue is added to the side chain.
It was confirmed that the copolymer contained 24.2 mol%. Reference Examples 8 to 12 In the same manner as in Reference Example 7, β was added to the side chain by reacting AN-PNPA copolymer or AN-PNPM copolymer with mono-aminoethylamino-β-CD.
A copolymer having -CD residues was obtained. Table 2 shows the results.
Shown below.

【表】 実施例 1 参考例7で得られたβ−CD残基を有する共重
合体0.2gをDMF1mlに溶解した。この溶液をガラ
ス板上に流延し、40℃にてDMFを留去すること
により厚さ50μmの透明、均一な重合体膜を得た。
得られた膜をガラス製透過セルにはさみ込み、膜
の片側にアミノ酸水溶液、他方を純水とすること
によりアミノ酸の膜透過性を30℃にて測定した。
結果を表3に示す。
[Table] Example 1 0.2 g of the copolymer having a β-CD residue obtained in Reference Example 7 was dissolved in 1 ml of DMF. This solution was cast onto a glass plate and DMF was distilled off at 40°C to obtain a transparent and uniform polymer film with a thickness of 50 μm.
The resulting membrane was inserted into a glass permeation cell, and the membrane permeability of amino acids was measured at 30°C by placing an aqueous amino acid solution on one side of the membrane and pure water on the other side.
The results are shown in Table 3.

【表】 実施例 2〜8 参考例7〜12で得られたβ−CD残基を有する
共重合体を実施例1と同様の方法で成膜した。得
られた膜をガラス製透過セルにはさみ込み膜の片
側にフエニルアラニン(Phe)もしくはトリプト
フアン(Try)のラセミ体水溶液、他方を純水と
することによりPheもしくはTryの膜透過性を測
定した。さらに透過液中のL体及びD体の存在比
を旋光度測定より求めた。結果を表4に示す。
[Table] Examples 2 to 8 The copolymers having β-CD residues obtained in Reference Examples 7 to 12 were formed into films in the same manner as in Example 1. The membrane permeability of Phe or Try was measured by inserting the obtained membrane into a glass permeation cell and using a racemic aqueous solution of phenylalanine (Phe) or tryptophan (Try) on one side of the membrane and pure water on the other side. . Furthermore, the abundance ratio of L-form and D-form in the permeate was determined by optical rotation measurement. The results are shown in Table 4.

【表】【table】

Claims (1)

【特許請求の範囲】 1 側鎖にシクロデキストリン残基を有する重合
体から成るアミノ酸光学分割用膜。 2 シクロデキストリン残基を有する重合体が一
般式 で表わされる繰り返し単位及び一般式 で表わされる繰り返し単位より成る分子量1万
以上の共重合体である特許請求の範囲第1項に記
載のアミノ酸光学分割用膜(式、R1、R2は水素
原子、ハロゲン原子または低級アルキル基、Xは
二価の連結基、Yはα−、β−またはγ−シクロ
デキストリン残基を示す。)。 3 共重合体中の一般式()で表わされる繰り
返し単位の組成比が5〜90モル%である共重合体
を用いる特許請求の範囲第2項に記載のアミノ酸
光学分割用膜。
[Scope of Claims] 1. A membrane for optically resolving amino acids comprising a polymer having a cyclodextrin residue in its side chain. 2 A polymer having a cyclodextrin residue has the general formula Repeating unit and general formula represented by The membrane for optical resolution of amino acids according to claim 1 , which is a copolymer having a molecular weight of 10,000 or more and consisting of repeating units represented by , X represents a divalent linking group, and Y represents an α-, β- or γ-cyclodextrin residue). 3. The membrane for optical resolution of amino acids according to claim 2, which uses a copolymer in which the composition ratio of repeating units represented by the general formula () is 5 to 90 mol%.
JP9801186A 1986-04-30 1986-04-30 Polymer membrane for optical resolution of amino acid Granted JPS62258702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9801186A JPS62258702A (en) 1986-04-30 1986-04-30 Polymer membrane for optical resolution of amino acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9801186A JPS62258702A (en) 1986-04-30 1986-04-30 Polymer membrane for optical resolution of amino acid

Publications (2)

Publication Number Publication Date
JPS62258702A JPS62258702A (en) 1987-11-11
JPH0521616B2 true JPH0521616B2 (en) 1993-03-25

Family

ID=14207837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9801186A Granted JPS62258702A (en) 1986-04-30 1986-04-30 Polymer membrane for optical resolution of amino acid

Country Status (1)

Country Link
JP (1) JPS62258702A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762030A (en) * 1993-08-31 1995-03-07 Daicel Chem Ind Ltd Optically active acetylene polymer, its membrane and optical resolution by the same membrane
AU2009288234B2 (en) 2008-09-02 2014-08-21 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
WO2012037101A2 (en) * 2010-09-14 2012-03-22 Natrix Separations Inc. Chromatography membranes for the purification of chiral compounds
JP6272755B2 (en) 2011-05-17 2018-01-31 ナトリックス セパレイションズ インコーポレーテッド Layered tubular membrane for chromatography and method of use thereof
CN103880689B (en) * 2014-03-05 2015-12-30 上海师范大学 A kind of method based on poly-Dopamine HCL nanochannel amino acid separation enantiomer
CN114957024B (en) * 2022-05-30 2023-08-15 厦门理工学院 Chiral resolution method of DL-phenylalanine enantiomer

Also Published As

Publication number Publication date
JPS62258702A (en) 1987-11-11

Similar Documents

Publication Publication Date Title
JP2002530489A (en) Functionalized polyallylamine and method for producing the same
JPH0521616B2 (en)
US4268463A (en) Method of producing a film of high molecular substance
US4941972A (en) Chlorine-stable membrane compositions
US4758348A (en) Copolymer, separating membrane made thereof and method for separating charge transfer interactive substance from a liquid mixture containing the same
US5646205A (en) Ion complex membrane and a method for producing same
Ito et al. Silicon-containing block copolymer membranes
JPH0380187B2 (en)
JPH0523820B2 (en)
JPH0312104B2 (en)
JP2004331637A (en) Bifunctional cross-linking agent monomer, method for producing the same and cross-linked polymer
JPH07258202A (en) Polymerizable betaine compound
US5449728A (en) Optically active acetylene polymer, membrane thereof and optical resolution method using the same
JPH04317731A (en) Semipermeable synthetic film and its manufacture and method for separation of component in organic liquid phase or vapor phase using said film
US7445789B2 (en) Biocompatible polymeric systems carrying triflusal or HTB
SU1512982A1 (en) Method of producing polyorganosiloxanediols
JPS6094104A (en) Separation by permeation and vaporization
JPH0549951A (en) Crosslinked anion exchanger for purifying sugar solution
SU675057A1 (en) Method of obtaining polyelectrolytes
JPH0349293B2 (en)
SU979393A1 (en) Higher polyalkoxyphosphazines as film forming agents and process for producing thesame
JPS61236807A (en) Basic three-component copolymer
JPS61242603A (en) Membrane for separating liquid mixture
JPH0475050B2 (en)
JPS63264102A (en) Liquid mixture separation membrane and its use