JPH05215982A - Optical deflection device - Google Patents

Optical deflection device

Info

Publication number
JPH05215982A
JPH05215982A JP2119792A JP2119792A JPH05215982A JP H05215982 A JPH05215982 A JP H05215982A JP 2119792 A JP2119792 A JP 2119792A JP 2119792 A JP2119792 A JP 2119792A JP H05215982 A JPH05215982 A JP H05215982A
Authority
JP
Japan
Prior art keywords
polygon mirror
rotary polygon
screw
rotary
screws
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2119792A
Other languages
Japanese (ja)
Inventor
Toshiro Tomono
俊郎 友野
Atsutomo Yoshizawa
敦朋 吉澤
Masatoshi Ichikatai
雅俊 一方井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2119792A priority Critical patent/JPH05215982A/en
Publication of JPH05215982A publication Critical patent/JPH05215982A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To prevent position precision from decreasing rotation by tapering either of clamping members which champs a rotary polygon mirror to a flange and the contact surface of the rotary polygon mirror. CONSTITUTION:The rotary polygon mirror 12 is engaged with a rotary shaft 9, and the three clamping members (flat countersunk head screw or oval countersunk head screw) 18 having tapered screw heads are run through fitting holes 13 and clamped with female screws 15. Then binder screws (flat head screw) 17 are clamped with three female screws 15 formed in the seat of the rotary shaft 9. By using the flat countersunk heads 18 the tapered parts of the flat countersunk screws 18 is pressed against the corner parts of the screw holes of the rotary polygon mirror 12 to hold the mirror 12 therebetween and fixed with reaction forces generated by the tapered parts of the flat countersunk screws 18 against radius-directional forces. As the tapering angle is made smaller and smaller than 90 deg., the reaction forces from the corner parts of the screw holes are larger and larger to give more effect. The heads of the binder head screws 17 hold the rotary polygon mirror 12 therebetween against the force in the direction of the rotary shaft, thereby preventing the rotary polygon mirror 12 from shifting in position.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザー光源等からの
光束を偏向し、被照射体上を走査する光偏向装置におけ
る回転多面鏡の固定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of fixing a rotary polygon mirror in an optical deflecting device which deflects a light beam from a laser light source or the like and scans an irradiated object.

【0002】[0002]

【従来の技術】図9はレーザー走査装置の構成図を示
す。レーザドライバ1からの電流によりレーザー素子2
が発光駆動され、出射されたレーザービームはコリメー
タレンズ系3を経て平行光束とされ、回転する回転多面
鏡4により偏向反射され、fθレンズ群5により被照射
体である感光体ドラム6上で結像したスポット光で走査
を行う。このような装置において、回転多面鏡4は走査
のための偏向を高精度で行うために超高精度の平面を保
ち、回転多面鏡4を回転駆動するモータの消費電力を少
なくするために軽量であることが必要とされるため、反
射面に酸化防止の金属蒸着膜を形成したアルミニウム合
金が用いられている。
2. Description of the Related Art FIG. 9 is a block diagram of a laser scanning device. The laser element 2 is driven by the current from the laser driver 1.
Is driven to emit light, and the emitted laser beam is collimated by the collimator lens system 3 into a parallel light beam, which is deflected and reflected by the rotating rotary polygon mirror 4, and is combined by the fθ lens group 5 on the photoconductor drum 6 which is the irradiated body. Scan with the imaged spot light. In such a device, the rotary polygon mirror 4 maintains an ultra-high-precision plane for highly accurate deflection for scanning, and is lightweight in order to reduce the power consumption of the motor that rotationally drives the rotary polygon mirror 4. Therefore, an aluminum alloy having a metal vapor-deposition film for preventing oxidation formed on the reflection surface is used.

【0003】この回転多面鏡4は図8に示すように、隙
間ばめの状態で回転軸7を中心に挿通し、回転軸7に設
けられたフランジにねじ8によりねじ止めされている。
つまり、回転多面鏡4に等間隔で複数のねじ挿入孔を設
け、ここに雌ねじ8を通し、回転軸7のフランジに設け
られた複数の雌ねじ部にてい合することにより、雌ねじ
8のねじ頭とフランジの間に回転多面鏡4が挟持されて
いる。このような固定方法はコスト,組立性の面からみ
れば非常に優れた方法である。
As shown in FIG. 8, the rotary polygonal mirror 4 is inserted around a rotary shaft 7 in a clearance fit state, and is screwed to a flange provided on the rotary shaft 7 with a screw 8.
That is, the rotary polygon mirror 4 is provided with a plurality of screw insertion holes at equal intervals, the female screw 8 is passed through this hole, and the plurality of female screw portions provided on the flange of the rotary shaft 7 are brought into contact with each other, whereby the screw head of the female screw 8 is The rotary polygon mirror 4 is sandwiched between and the flange. Such a fixing method is a very excellent method in terms of cost and assembling.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上述の従
来例では、ねじの加工精度によって締結力にばらつきが
生じる。回転多面鏡の回転時にねじの締結力を上回る力
がかかると、回転多面鏡の回転中心がずれる。このずれ
量が同じ場合、回転多面鏡が大型なものほど発生する振
動が大きく、被照射体への記録画像品位が著しく低下す
る。
However, in the above-mentioned conventional example, the fastening force varies depending on the machining accuracy of the screw. When a force exceeding the fastening force of the screw is applied when the rotary polygon mirror rotates, the center of rotation of the rotary polygon mirror shifts. When the amount of deviation is the same, the larger the polygonal mirror, the greater the vibration that occurs, and the quality of the recorded image on the object to be irradiated deteriorates significantly.

【0005】[0005]

【課題を解決するための手段】本発明の目的は、上述の
欠点を解消し、回転多面鏡が回転中に位置精度が低下し
ない回転多面鏡の固定方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks and to provide a fixing method for a rotary polygon mirror in which the positional accuracy does not deteriorate during rotation of the rotary polygon mirror.

【0006】上述の目的を達成するための本発明に係る
光偏向装置は、回転軸に設けたフランジに当接させるこ
とにより回転多面鏡の回転軸方向の位置決めを行う場合
において、回転多面鏡のねじ孔に頭部がテーパ状を取っ
たねじを圧接することによって前記回転軸に固定したこ
とを特徴とするものである。
The optical deflecting device according to the present invention for achieving the above-mentioned object is provided with a rotary polygon mirror when the rotary polygon mirror is positioned in the rotary axis direction by abutting against a flange provided on the rotary shaft. The screw is fixed to the rotary shaft by pressing a screw having a tapered head into the screw hole.

【0007】上述の構成を有する回転多面鏡の固定方法
によれば、テーパ状のねじ部と回転多面鏡のねじ孔との
くさび作用によって回転多面鏡を固定しているため、回
転多面鏡の慣性力、もしくは遠心力によって回転多面鏡
の中心が回転軸に対して移動する恐れがない。
According to the method of fixing the rotary polygon mirror having the above-mentioned structure, since the rotary polygon mirror is fixed by the wedge action of the tapered screw portion and the screw hole of the rotary polygon mirror, the inertia of the rotary polygon mirror is fixed. There is no fear that the center of the rotary polygon mirror will move with respect to the rotation axis due to force or centrifugal force.

【0008】[0008]

【実施例】本発明の光偏向装置を図1から図7に図示の
実施例に基づいて詳細に説明する。図1は固定前の回転
多面鏡と回転軸の分解図を示す。アルミニウム製の高さ
の低い略角柱体である回転多面鏡12が鉄製の回転軸9
に締合される前の状態を示している。回転多面鏡12は
複数の側面11が平面反射鏡である。回転多面鏡12の
中心には、回転軸9とかん合する為の孔10が開けられ
ており、回転軸9と回転多面鏡12の回転中心を合わせ
る機能を有する。孔10の外側には、回転多面鏡12の
中心を中心とする略円上に等間隔で6個の取付孔13が
形成され、これらは孔10と同軸度(孔の中心軸が平行
であること)を保っている。回転多面鏡12を位置決め
固定するために受けるための回転軸9の座14は、高精
度に平面が出され、回転多面鏡12に形成された小孔1
3と同径の位置に等角間隔で6カ所雌ねじ15が切られ
ている。さらに、中心の孔10と同軸度を保って回転多
面鏡12と回転軸9を固定したときに回転バランスをと
るバランスウエイトを取り付ける為の円形溝16が設け
られている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The optical deflecting device of the present invention will be described in detail based on the embodiments shown in FIGS. FIG. 1 shows an exploded view of a rotary polygon mirror and a rotary shaft before being fixed. The rotary polygonal mirror 12 which is a low prism and is made of aluminum and which is a substantially rectangular prism is a rotary shaft 9 made of iron.
The state before being tightened is shown. The rotary polygon mirror 12 has a plurality of side surfaces 11 which are plane reflecting mirrors. At the center of the rotary polygon mirror 12, a hole 10 for engaging with the rotary shaft 9 is opened, and it has a function of aligning the rotary centers of the rotary shaft 9 and the rotary polygon mirror 12. Outside the hole 10, six mounting holes 13 are formed at equal intervals on a substantially circle centered on the center of the rotary polygon mirror 12, and these are coaxial with the hole 10 (the central axes of the holes are parallel to each other). That). The seat 14 of the rotary shaft 9 for receiving the rotary polygonal mirror 12 for positioning and fixing has a flat surface with high precision, and the small hole 1 formed in the rotary polygonal mirror 12
Female screws 15 are cut at six positions equiangularly at positions having the same diameter as 3. Further, there is provided a circular groove 16 for attaching a balance weight that balances the rotation when the rotary polygon mirror 12 and the rotary shaft 9 are fixed while maintaining the coaxiality with the central hole 10.

【0009】上記構成部品の組立は次のように行われ
る。まず、回転多面鏡12を回転軸9にかん合させ、テ
ーパー状のねじ頭を有する3本の締結部材(一般にはさ
ら頭のねじ、丸さら頭のねじと呼ばれる)18を取付孔
13に通し雌ねじ15に締結する。次に、バインド頭の
ねじ17を3本を同様に回転軸9の座に設けられた雌ね
じ15に締結する。バインド頭とはテーパー状でない平
面状の頭である。図2および図3は、回転多面鏡を固定
後の主要部の断面図である。回転多面鏡には以下の力が
働く。
The above-mentioned components are assembled in the following manner. First, the rotary polygon mirror 12 is engaged with the rotary shaft 9, and three fastening members (generally called a countersunk screw or a round countersunk screw) 18 having a tapered screw head are passed through the mounting hole 13. It is fastened to the female screw 15. Next, three bind head screws 17 are similarly fastened to the female screw 15 provided on the seat of the rotary shaft 9. The bind head is a flat head that is not tapered. 2 and 3 are cross-sectional views of the main part after the rotary polygon mirror is fixed. The following forces act on the rotating polygon mirror.

【0010】(1)回転多面鏡自身の慣性力:T1 (2)回転多面鏡の自身と回転中心のずれより生じる遠
心力:F1 回転多面鏡の慣性モーメントをJ(=1.36×10-4
[m2 kg])、回転多面鏡の質量をm(=0.1[k
g])角加速度をα(=5×104 [rad/s2 ]、
角速度ω(=2094[rad/s])、バインド頭の
ねじの締付力P(=1300[N])、ねじの締め付け
力より生じる回転多面鏡を締結する力Fb、バインド頭
のねじの締め付け力より生じる回転多面鏡を締結するト
ルクTb、バインド頭のねじと回転多面鏡間の静摩擦係
数μ(=0.28)、回転軸の回転中心からバインド頭
のねじの締結部までの距離R(=15×10
-3[m])、バインド頭のねじの締結数N(=3)、回
転軸の回転中心と回転多面鏡の中心の最大ずれ量ε(=
20×10-6[m])とおく。ねじ頭と回転多面鏡の静
摩擦係数は図10に示すように、回転多面鏡(アルミニ
ウム)とねじ頭(鉄)とそれぞれ同材質なものを用いて
FとNを測定してもとめた。回転多面鏡の内径の寸法公
差と回転軸の外形の寸法公差を考慮して、回転軸の回転
中心と回転多面鏡の重心のずれ量は求めた。
(1) Inertial force of the rotating polygon mirror itself: T1 (2) Centrifugal force generated by the deviation between the rotating polygon mirror itself and the center of rotation: F1 The inertia moment of the rotating polygon mirror is J (= 1.36 × 10 − Four
[M 2 kg]), and the mass of the rotating polygon mirror is m (= 0.1 [k
g]) the angular acceleration is α (= 5 × 10 4 [rad / s 2 ],
Angular velocity ω (= 2094 [rad / s]), binding head screw tightening force P (= 1300 [N]), force Fb for fastening the rotary polygon mirror generated by screw tightening force, binding head screw tightening Torque Tb for fastening the rotary polygon mirror generated by the force, coefficient of static friction μ (= 0.28) between the screw of the bind head and the rotary polygon mirror, distance R (from the center of rotation of the rotating shaft to the fastening portion of the screw of the bind head) = 15 × 10
-3 [m]), the number N of fastenings of the bind head screw (= 3), and the maximum deviation ε (=) between the center of rotation of the rotating shaft and the center of the rotating polygon mirror.
20 × 10 −6 [m]). As shown in FIG. 10, the static friction coefficient between the screw head and the rotary polygon mirror was determined by measuring F and N using the same materials as the rotary polygon mirror (aluminum) and the screw head (iron), respectively. The amount of deviation between the center of rotation of the rotating shaft and the center of gravity of the rotating polygon mirror was determined in consideration of the dimensional tolerance of the inner diameter of the rotating polygon mirror and the dimensional tolerance of the outer shape of the rotating shaft.

【0011】(1)の力については以下様に計算され
る。
The force of (1) is calculated as follows.

【0012】T1=Jα=6.8[Nm] (2)の力については以下のように計算される。The force of T1 = Jα = 6.8 [Nm] (2) is calculated as follows.

【0013】F1=mεω2 =8.76[N] バインド頭のねじのみで締結した場合を考える。バイン
ド頭のねじは、ねじ頭17aと回転多面鏡間との静摩擦
によって回転多面鏡を締結している。したがって、F
b,Tbは以下のように計算される。
F1 = mεω2 = 8.76 [N] Let us consider the case of fastening with only the bind head screw. The bind head screw fastens the rotary polygon mirror by static friction between the screw head 17a and the rotary polygon mirror. Therefore, F
b and Tb are calculated as follows.

【0014】Tb=μPRN=16.3[Nm] Fb=μPN=1092[N] 計算上ではTb>T1,Fb>F1であるが、ねじの加
工精度によって静摩擦係数μにばらつきが生じ回転多面
鏡に作用するT1がTbを越えてしまう可能性がある。
バインド頭のねじの締結数を増やしても回転多面鏡の回
転中心が回転中心の対して移動する可能性は残ったまま
である。
Tb = μPRN = 16.3 [Nm] Fb = μPN = 11092 [N] Although Tb> T1 and Fb> F1 are calculated, the coefficient of static friction μ varies depending on the machining accuracy of the screw, and the rotary polygon mirror. There is a possibility that T1 which acts on T will exceed Tb.
Even if the number of binding head screws is increased, the possibility that the center of rotation of the rotary polygon mirror moves with respect to the center of rotation remains.

【0015】しかし、さら頭のねじを用いれば、さら頭
のねじ18のテーパ部18aが回転多面鏡のねじ孔の角
部に圧接し、回転多面鏡12が挟持されて、半径方向の
力に対してはさら頭のねじのテーパ部より反力が生じ固
定される。テーパの角度を90゜より小さくするほど、
ねじ孔の角部からの反力が大きくなり有効である。回転
軸方向の力に対しては、バインド頭のねじ17の頭17
aが回転多面鏡12を挟持しているため、大型の回転多
面鏡を用いた場合や20000rpmといった高速で回
転多面鏡を回転させる場合においても回転軸の座と回転
多面鏡とのずれを生じさせない。
However, if a countersunk screw is used, the taper portion 18a of the countersunk screw 18 comes into pressure contact with the corner of the screw hole of the rotary polygonal mirror, and the rotary polygonal mirror 12 is clamped to generate a radial force. On the other hand, a reaction force is generated from the taper portion of the screw of the head, and the screw is fixed. The smaller the taper angle is from 90 degrees,
This is effective because the reaction force from the corners of the screw holes increases. The head 17 of the screw 17 of the binding head is
Since a holds the rotary polygon mirror 12, the displacement of the seat of the rotary shaft and the rotary polygon mirror does not occur even when a large rotary polygon mirror is used or when the rotary polygon mirror is rotated at a high speed of 20000 rpm. ..

【0016】回転多面鏡の固定の原理を以下に説明す
る。図4はさら頭のねじの取付部を拡大したものであ
る。回転多面鏡12の取付孔はφ3.5mm、面取り
0.3mm、さら頭のねじ18のテーパ部を60゜とす
る。さら頭のねじ18を締め付けた場合、図5に示すよ
うに、ねじ頭のテーパ部18aの全周がねじ孔に圧接す
る。さらに、さら頭のねじを締め付けた場合には回転軸
と回転多面鏡の内径の1点が接するため、さら頭のねじ
を1本以上用いれば回転多面鏡を回転軸に固定すること
ができ、慣性力,遠心力によって回転多面鏡の回転中心
が移動することはない。なお上述した実施例では、安全
面を考慮してさら頭のねじを3本用いた例を示した。ま
た、上述した実施例では、更なる安全面を考慮してバイ
ンド頭のねじも3本併せ用いた。
The principle of fixing the rotary polygon mirror will be described below. FIG. 4 is an enlarged view of the mounting portion of the flat head screw. The mounting hole of the rotary polygon mirror 12 has a diameter of 3.5 mm, a chamfer of 0.3 mm, and the taper portion of the countersunk screw 18 is 60 °. When the countersunk screw 18 is tightened, as shown in FIG. 5, the entire circumference of the taper portion 18a of the screw head is pressed against the screw hole. Further, when the countersunk screw is tightened, the rotary shaft and one point of the inner diameter of the rotary polygon mirror come into contact with each other, so that the rotary polygon mirror can be fixed to the rotary shaft by using one or more countersunk screws. The center of rotation of the rotary polygon mirror does not move due to inertial force and centrifugal force. In addition, in the above-described embodiment, an example in which three countersunk screws are used in consideration of safety is shown. In addition, in the above-described embodiment, three bind head screws are also used in consideration of further safety.

【0017】図7は、従来の固定方法と本発明の固定方
法を用いた場合の回転多面鏡側の偏重心距離の変化を現
したものである。停止状態から定常回転数20000r
pmに達し停止させるサイクルを繰り返したものであ
る。従来の固定方法では、偏重心距離が1回目に大きく
変化しその後も変化し続ける。しかしながら本発明の固
定方法ではほとんど偏重心距離が変化しないことが確認
された。
FIG. 7 shows changes in the distance of the eccentric center of gravity on the rotary polygon mirror side when the conventional fixing method and the fixing method of the present invention are used. From the stopped state, steady rotation speed 20000r
This is a repeated cycle of reaching pm and stopping. In the conventional fixing method, the eccentric center-of-gravity distance largely changes the first time and continues to change thereafter. However, it was confirmed that the eccentric center-of-gravity distance hardly changed by the fixing method of the present invention.

【0018】図6は、図2に示した3本のさら頭のねじ
の代わりにさら頭のボルトを用いて回転多面鏡と回転軸
を締結させたものである。第1の実施例と同様に、さら
頭のボルト19のテーパ部19aが回転多面鏡12のね
じ孔の角部に圧接し、回転多面鏡12が狭持されてい
る。
FIG. 6 shows a structure in which the rotary polygon mirror and the rotary shaft are fastened by using countersunk bolts instead of the three countersunk screws shown in FIG. Similar to the first embodiment, the tapered portion 19a of the bolt 19 having a flat head is pressed against the corner portion of the screw hole of the rotary polygon mirror 12, and the rotary polygon mirror 12 is held.

【0019】図11は、回転多面鏡12のねじ頭との接
触面をテーパ形状にしないで、ねじの頭部のみをテーパ
形状にした変形例である。さら頭のねじ20はテーパ部
20aを有する。
FIG. 11 shows a modification in which the contact surface of the rotary polygon mirror 12 with the screw head is not tapered, but only the screw head is tapered. The countersunk screw 20 has a tapered portion 20a.

【0020】図12は、回転多面鏡12のねじ頭との接
触面のみをテーパ形状にし、ねじの頭部をテーパ形状に
しない変形例である。バインド頭のねじ21の頭部21
aは平面状である。
FIG. 12 shows a modification in which only the contact surface of the rotary polygon mirror 12 with the screw head is tapered and the screw head is not tapered. Head 21 of bind head screw 21
a is flat.

【0021】[0021]

【発明の効果】以上説明したように本発明に係る回転多
面鏡の固定方法によれば、回転多面鏡の中心軸が回転の
影響を受けることによってずれることがないため、偏向
された光束にふれが生じることがない。
As described above, according to the method of fixing a rotary polygon mirror according to the present invention, the central axis of the rotary polygon mirror does not shift due to the influence of the rotation, so that the deflected light flux is touched. Does not occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】回転多面鏡を固定前の分解図である。FIG. 1 is an exploded view of a rotary polygon mirror before being fixed.

【図2】回転多面鏡を固定後の断面図である。FIG. 2 is a cross-sectional view after fixing the rotary polygon mirror.

【図3】回転多面鏡を固定後の断面図である。FIG. 3 is a cross-sectional view after fixing the rotary polygon mirror.

【図4】さら頭のねじの取付箇所の拡大図である。FIG. 4 is an enlarged view of a mounting location of a countersunk screw.

【図5】ねじのテーパ部のねじ孔の面取り部への接し方
を示す図である。
FIG. 5 is a diagram showing how a taper portion of a screw is in contact with a chamfered portion of a screw hole.

【図6】さらボルト取付箇所の拡大図である。FIG. 6 is an enlarged view of a bolt mounting portion.

【図7】耐久回数と偏重心距離の関係を示す図である。FIG. 7 is a diagram showing a relationship between the number of times of endurance and an eccentric center of gravity distance.

【図8】従来例の回転多面鏡の平面図である。FIG. 8 is a plan view of a conventional rotary polygon mirror.

【図9】レーザ走査装置の構成図である。FIG. 9 is a configuration diagram of a laser scanning device.

【図10】静摩擦係数の測定法である。FIG. 10 is a method for measuring the coefficient of static friction.

【図11】さら頭のねじの取付箇所の拡大図である。FIG. 11 is an enlarged view of a mounting position of a flat head screw.

【図12】バインド頭のねじの取付箇所の拡大図であ
る。
FIG. 12 is an enlarged view of a mounting portion of a binding head screw.

【符号の説明】[Explanation of symbols]

9 回転軸 10 孔 11 平面鏡 12 回転多面鏡 13 小孔 14 回転軸の座 15 雌ねじ 16 円形溝 17 バインド頭のねじ 18 さら頭のねじ 9 rotary shaft 10 hole 11 plane mirror 12 rotary polygon mirror 13 small hole 14 rotary shaft seat 15 female screw 16 circular groove 17 bind head screw 18 countersunk screw

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 回転軸に設けたフランジに当接させるこ
とにより回転多面鏡の回転軸方向の位置決めを行う光偏
向装置において、前記回転多面鏡を前記フランジに締結
する締結部材と前記回転多面鏡の接触面のうち少なくと
もどちらか一方をテーパ状にした事を特徴とする光偏向
装置。
1. An optical deflecting device for positioning a rotary polygon mirror in the direction of the rotation axis by abutting a flange provided on the rotary shaft, and a fastening member for fastening the rotary polygon mirror to the flange, and the rotary polygon mirror. An optical deflecting device characterized in that at least one of the contact surfaces of the above is tapered.
【請求項2】 上記締結部材を複数用いて前記回転多面
鏡を前記フランジに固定した請求項1に記載の光偏向装
置。
2. The optical deflector according to claim 1, wherein the rotary polygon mirror is fixed to the flange by using a plurality of the fastening members.
JP2119792A 1992-02-06 1992-02-06 Optical deflection device Pending JPH05215982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2119792A JPH05215982A (en) 1992-02-06 1992-02-06 Optical deflection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2119792A JPH05215982A (en) 1992-02-06 1992-02-06 Optical deflection device

Publications (1)

Publication Number Publication Date
JPH05215982A true JPH05215982A (en) 1993-08-27

Family

ID=12048247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2119792A Pending JPH05215982A (en) 1992-02-06 1992-02-06 Optical deflection device

Country Status (1)

Country Link
JP (1) JPH05215982A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019189202A1 (en) * 2018-03-29 2021-04-08 日本発條株式会社 Tensioner and engine structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019189202A1 (en) * 2018-03-29 2021-04-08 日本発條株式会社 Tensioner and engine structure

Similar Documents

Publication Publication Date Title
US4984881A (en) Rotation supporting device of a polygon mirror
US5430571A (en) Rotary mirror system
WO2018051757A1 (en) Galvanoscanner and mirror unit
US5867294A (en) Optical space communication apparatus
JPH05215982A (en) Optical deflection device
JP2989400B2 (en) Polygon mirror
JP2003177346A (en) Polygon scanner, optical scanner using the polygon scanner, and processing method for the polygon scanner
US7012725B2 (en) Polygon mirror, deflecting apparatus, image forming apparatus and method of manufacturing the polygon mirror
CN116643371B (en) Limiting locking device for quick reflection mirror and quick reflection mirror
JPH04244768A (en) Optical scanner
JP2591257B2 (en) Rotating mirror
US5910853A (en) Rotary polygon mirror optical scanning device
JPH09230268A (en) Polygon scanner driving device and its manufacture
Montagu Achieving optimal high resolution in galvanometric scanning systems
JPH02118513A (en) Structure for mounting of hologram disk
JPS63131121A (en) Polygon mirror assembly
JP3702678B2 (en) Optical deflection device
US7133175B2 (en) Light beam deflecting device
EP0310300A1 (en) Optical image rotators
JPH02293813A (en) Optical deflector
JPH0888953A (en) Actuator
JP2000267035A (en) Motor and manufacture thereof
JPH0444004A (en) Polygon mirror with two opposite reflecting surfaces and fitting structure thereof
JPH0438330Y2 (en)
JPH09127453A (en) Polygon mirror driving device and its assembling method