JPH052158B2 - - Google Patents

Info

Publication number
JPH052158B2
JPH052158B2 JP60128588A JP12858885A JPH052158B2 JP H052158 B2 JPH052158 B2 JP H052158B2 JP 60128588 A JP60128588 A JP 60128588A JP 12858885 A JP12858885 A JP 12858885A JP H052158 B2 JPH052158 B2 JP H052158B2
Authority
JP
Japan
Prior art keywords
band
linear prediction
coefficients
analysis
bands
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60128588A
Other languages
Japanese (ja)
Other versions
JPS61285499A (en
Inventor
Satoru Taguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP60128588A priority Critical patent/JPS61285499A/en
Publication of JPS61285499A publication Critical patent/JPS61285499A/en
Publication of JPH052158B2 publication Critical patent/JPH052158B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は線形予測分析手法を用いる帯域分割型
ボコーダに関し、特に合成側において分割された
各周波数帯域毎の線形予測パラメータから全周波
数帯域に互る線形予測パラメータを抽出して音声
を合成する帯域分割型ボコーダに関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a band division type vocoder that uses a linear prediction analysis method, and in particular, to a band division type vocoder that uses a linear prediction analysis method. This invention relates to a band division type vocoder that extracts linear prediction parameters and synthesizes speech.

(従来の技術) 帯域分割型ボコーダの目的は、線形予測分析手
法の欠点であるフオルマント帯域幅の過少推定
と、高次フオルマントにおける近似性の悪さの2
点を改善して分析精度を向上するところにある
が、その改善のために、派生的に帯域の境界周波
数における不連続性が合成音声のスペクトル包絡
の上に現われることが知られている。この不連続
性を除去するために従来、分析側から合成側に伝
送される分割された各周波数帯域毎の線形予測パ
ラメータより全周波数帯域にわたる線形予測パラ
メータを抽出して全周波数帯域に対応する音声合
成フイルタを制御する線形予測分析手段を合成側
に備える方法が行なわれていた。以上の内容は公
開特許公報昭58−220199、「帯域分割型ボコーダ」
に詳しく述べられている。
(Prior art) The purpose of the band-splitting vocoder is to overcome two drawbacks of linear predictive analysis methods: underestimation of formant bandwidth and poor approximation in high-order formants.
However, it is known that as a result of this improvement, discontinuities at the band boundary frequencies appear on the spectral envelope of the synthesized speech. In order to remove this discontinuity, conventionally, linear prediction parameters covering all frequency bands are extracted from linear prediction parameters for each divided frequency band transmitted from the analysis side to the synthesis side, and audio corresponding to all frequency bands is generated. A method has been used in which a linear predictive analysis means for controlling a synthesis filter is provided on the synthesis side. The above content is published in Patent Publication No. 58-220199, "Band division type vocoder"
is described in detail.

(発明が解決しようとする問題点) しかしながら帯域間の不連続性を除去するため
に全帯域に渡る線形予測分析を合成側で実施する
と以下に示す新しい欠点が生じる。即ちこの方法
は帯域分割の結果生じたスペクトルの不連続性
を、改めて全帯域の線形予測分析により取り除こ
うとするものであり、当然ながら分析側で分析さ
れた不連続なスペクトル包絡と合成側で改めて算
出されたスペクトル包絡とに差が生じ、線形予測
法の公知の性質からこの差の部分が全周波数帯域
に拡散される事は自明である。即ち従来の方法は
帯域間の不連続性を除去した結果、スペクトル包
絡全体に歪が発生するという欠点を有している。
(Problems to be Solved by the Invention) However, when linear prediction analysis over all bands is performed on the synthesis side in order to remove discontinuities between bands, the following new drawbacks occur. In other words, this method attempts to remove the spectral discontinuity caused as a result of band division by linear predictive analysis of the entire band, and of course, the discontinuous spectral envelope analyzed on the analysis side and the discontinuous spectral envelope analyzed on the synthesis side are It is obvious that a difference occurs in the calculated spectrum envelope, and from the known properties of the linear prediction method, this difference is spread over the entire frequency band. That is, the conventional method has the disadvantage that distortion occurs in the entire spectral envelope as a result of removing the discontinuity between bands.

本発明の目的は帯域間の不連続性を解決し、且
つ不連続性の除去に起因するスペクトル包絡全体
の歪が発生しない帯域分割型ボコーダを提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a band-splitting vocoder that solves discontinuities between bands and does not cause distortion of the entire spectral envelope due to the removal of discontinuities.

(問題点を解決するための手段) 本発明の帯域分割型ボコーダは、線形予測法を
用いる帯域分割型ボコーダであつて、分析側では
分析される帯域間に重複周波数区間を設けて各帯
域毎の線形予測係数を算出し、合成側ではこれら
の線形予測係数から帯域間に重複周波数区間を設
けずに帯域毎のスペクトル包絡を算出し、これら
のスペクトル包絡より全帯域の線形予測係数等の
スペクトル包絡を表現する係数を改めて算出する
手段を備えて構成される。
(Means for Solving the Problems) The band-splitting vocoder of the present invention is a band-splitting vocoder that uses a linear prediction method, and on the analysis side, overlapping frequency sections are provided between the bands to be analyzed. The synthesis side calculates the spectral envelope of each band from these linear prediction coefficients without creating an overlapping frequency interval between bands, and from these spectral envelopes, the spectrum of the linear prediction coefficients of all bands is calculated. The apparatus is configured to include means for recalculating coefficients expressing the envelope.

(実施例) 次に本発明の実施例を図を参照して詳細に説明
する。第1図は本発明の実施例を示すブロツク図
である。第1図に於いて一点鎖線100で囲んだ
部分は本発明の分析側の一点鎖線101で囲んだ
部分は本発明の合成側の構成である。
(Example) Next, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention. In FIG. 1, the part surrounded by a dashed line 100 is the analysis side of the present invention, and the part surrounded by the dashed dot line 101 is the composition of the synthesis side of the present invention.

入力端子1を介して音声信号がA/D変換器2
へ供給される。A/D変換器2は音声信号を
3.4KHzに帯域制限した後8KHzで標本化し窓処理
器3へ出力する。窓処理器3は音声サンプル256
個分を一組としてハミング係数の乗算を行ないフ
ーリエ変換器1,4へ出力する。尚、ハミング係
数の乗算は160サンプル毎移動して行なわれ、こ
れが処理の基本フレーム周期20mS=160/8と
なる。フーリエ変換器1,4は256個の窓処理さ
れた音声サンプルをFFTの手法によりフーリエ
変換し電力スペクトル算出器5へ求めた複素スペ
クトルデータを出力する。電力スペクトル算出器
5は複数スペクトルから公知の方法で電力スペク
トルを算出し、自己相関係数算出器1,6、自己
相関係数算出器2,7、および対数算出器8へ出
力する。
The audio signal is sent to the A/D converter 2 via the input terminal 1.
supplied to A/D converter 2 converts the audio signal into
After band-limiting to 3.4KHz, it is sampled at 8KHz and output to window processor 3. Window processor 3 has 256 audio samples
Each set is multiplied by a Hamming coefficient and output to Fourier transformers 1 and 4. Note that the multiplication of the Hamming coefficient is performed by moving every 160 samples, which results in a basic frame period of 20 mS=160/8. The Fourier transformers 1 and 4 perform Fourier transform on the 256 window-processed audio samples using the FFT method and output the obtained complex spectrum data to the power spectrum calculator 5. Power spectrum calculator 5 calculates a power spectrum from a plurality of spectra using a known method, and outputs it to autocorrelation coefficient calculators 1 and 6, autocorrelation coefficient calculators 2 and 7, and logarithm calculator 8.

自己相関係数算出器1,6は下記(1)式を用いて
非正規化自己相関係数φL(i)、i=0,1,…,
6を求める。
The autocorrelation coefficient calculators 1 and 6 calculate the unnormalized autocorrelation coefficient φ L (i), i=0, 1,..., using the following equation (1).
Find 6.

φL(i)=p(5)+238j=6 p(j)cos 〔(j−5)iπ/128〕 (1) ただし、p(k)、k=1,2,…,256は8KHzを
256分割したときの離散電力スペクトルであり
p(k)は(k−1)×4000/128Hzでの電力スペクト
ルを示す。即ち自己相関係数算出器1,6は125
〜1156.25Hzの範囲の周波数スペクトルを離散フ
ーリエ変換し非正規化自己相関係数φL(i)、i=
0,1,…,6を求めている。
φ L (i)=p(5)+2 38j=6 p(j)cos [(j-5)iπ/128] (1) However, p(k), k=1, 2,..., 256 is a discrete power spectrum when 8KHz is divided into 256, and p(k) is a power spectrum at (k-1)×4000/128Hz. In other words, autocorrelation coefficient calculators 1 and 6 are 125
Discrete Fourier transform is applied to the frequency spectrum in the range of ~1156.25Hz, and the unnormalized autocorrelation coefficient φ L (i), i=
We are looking for 0, 1,..., 6.

更に自己相関係数算出器1,6は出力ライン6
01を介して、電力情報に相当するφL(o)を量子
化器1,10へ出力する。次に自己相関係数算出
器1,6は下記(2)式を用いて正規化自己相関係数
ρL(i)、i=1,2,…,6を求め、線形予測分析
器1,9へ出力する。
Furthermore, the autocorrelation coefficient calculators 1 and 6 are connected to the output line 6.
01, outputs φ L (o) corresponding to power information to the quantizers 1 and 10. Next, the autocorrelation coefficient calculators 1 and 6 calculate the normalized autocorrelation coefficients ρ L (i), i=1, 2, ..., 6 using the following equation (2), and the linear prediction analyzers 1 and Output to 9.

ρL(i)=φL(i)/φL(o) (2) 自己相関係数算出器2,7は下記(3)、(4)式を用
いて非生規化自己相関係数φH(i)、i=0,1,
…,6、および正規化自己相関係数ρH(i)、i=
1,2,…,6を求め、φH(o)を出力ライン70
1を介して量子化器2,12へ、ρH(i)、i=1,
2,…,6を線形予測分析器2,11へ出力す
る。
ρ L (i) = φ L (i) / φ L (o) (2) The autocorrelation coefficient calculators 2 and 7 calculate the denormalized autocorrelation coefficient using the following formulas (3) and (4). φ H (i), i=0,1,
..., 6, and the normalized autocorrelation coefficient ρ H (i), i=
Find 1, 2,..., 6, and output φ H (o) to the output line 70.
1 to the quantizers 2 and 12, ρ H (i), i=1,
2, . . . , 6 are output to the linear predictive analyzers 2 and 11.

φH(i)=p(35)+2101j=36 p(j)cos 〔(j−35)iπ/128〕 (3) ρH(i)=φH(i)/φH(o)(i=1,2,…,6) (4) 即ち自己相関係数算出器2,7は1062.5〜3125
Hzの範囲の周波数成分を利用している。1062.5Hz
〜1156.25Hzの部分が自己相関係数算出器1,6
と自己相関係数算出器2,7との相方で分析され
ている点が本発明の1つの要点である。
φ H (i)=p(35)+2 101j=36 p(j)cos [(j−35)iπ/128] (3) ρ H (i)=φ H (i)/φ H (o )(i=1,2,...,6) (4) That is, autocorrelation coefficient calculators 2 and 7 are 1062.5 to 3125
It uses frequency components in the Hz range. 1062.5Hz
~1156. 25 Hz part is autocorrelation coefficient calculator 1, 6
One of the key points of the present invention is that the autocorrelation coefficient calculators 2 and 7 are used for analysis.

線形予測分析器1,9および線形予測分析器
2,11は角々供給されるρL(i)、ρH(i)、(i=1,
…,6)から各6ケのKパラメータKL(i)、KH(i)、
(i=1,2,…,6)を公知の手法、例えば自
己相関法を用いて算出し、出力ライン901、又
は1101を介してKL(i)を量子化器1,10へ、
KH(i)を量子化器2,12へ出力する。
The linear predictive analyzers 1 and 9 and the linear predictive analyzers 2 and 11 are supplied with ρ L (i), ρ H (i), (i=1,
..., 6), each of 6 K parameters K L (i), K H (i),
(i = 1, 2, ..., 6) using a known method, for example, the autocorrelation method, and send K L (i) to the quantizers 1, 10 via the output line 901 or 1101,
K H (i) is output to the quantizers 2 and 12.

量子化器1,10は供給されたφL(o)とKL(i)、
(i)=1,…,6)を所定のビツト数で量子化し多
重化器13へ出力する。同様に量子化器2,12
は供給されたφH(o)とKH(i)、(i=1,…,6)を
所定のビツト数で量子化し多量化器13へ出力す
る。
Quantizers 1 and 10 are supplied with φ L (o) and K L (i),
(i)=1, . . . , 6) is quantized with a predetermined number of bits and output to the multiplexer 13. Similarly, quantizers 2 and 12
quantizes the supplied φ H (o) and K H (i) (i=1, . . . , 6) using a predetermined number of bits and outputs it to the quantizer 13.

一方、対数算出器8は供給された電力スペクト
ルの対数値をテーブルルツクアツプにより求めフ
ーリエ変換器2,14へ出力する。フーリエ変換
器2,14は対数電力スペクトルをフーリエ変換
し、即ちケプストラム係数を算出し、Pitch、
V/uv判別器15へ出力する。Pitch、V/uv判
別器15はケプストラム係数を入力としての公知
の方法、例えばA.Michael Noll“Short−Time
Spec−trum and“Cepstrum”Techniques for
Vocal−Pitch Detection”、The Journal of
Acousti−cal Society of America、 vol.36、
No.2、Feb.1964、pp.296〜302に記載されている
方法を用いてPitch周期及びV/uv判別を行な
い、結果を量子化器3,16で所定のビツト数に
量子化し多重化器13へ出力する。
On the other hand, the logarithm calculator 8 calculates the logarithm value of the supplied power spectrum by table pickup and outputs it to the Fourier transformers 2 and 14. The Fourier transformers 2 and 14 perform Fourier transform on the logarithmic power spectrum, that is, calculate the cepstral coefficients, Pitch,
Output to the V/uv discriminator 15. Pitch, V/uv discriminator 15 uses a known method using cepstral coefficients as input, for example, A. Michael Noll "Short-Time".
Spec−trum and “Cepstrum” Techniques for
Vocal-Pitch Detection”, The Journal of
Acoustic Society of America, vol.36,
Pitch period and V/uv are determined using the method described in No. 2, Feb. 1964, pp. 296-302, and the results are quantized to a predetermined number of bits by quantizers 3 and 16 and multiplexed. output to the device 13.

さて分析側の量子化器1,10、量子化器2,
12、量子化器3,16で各々、所定のビツトに
量子化されたデータは多重化器13、伝送路1
7、多重分離器18を介して、復合化器1,1
9、復合化器2,20、復合化器3,21へ供給
され復合化される。復合化器1,19で復合化さ
れたφ´L(o)とK´L(i)、(i)=1,…,6)とは包絡算
出器1,22へ、復合化器2,20で復合化され
たφ´H(o)とK´H(i)、(i=1,…,6)とは包絡算

器2,23へ各々供給される。
Now, on the analysis side, quantizers 1 and 10, quantizer 2,
12. The data quantized into predetermined bits by the quantizers 3 and 16 is sent to the multiplexer 13 and the transmission line 1.
7. Demultiplexer 1, 1 via demultiplexer 18
9, the signal is supplied to the decoders 2 and 20 and the decoders 3 and 21 for decoding. φ ′ L (o) and K ′ L (i), (i)=1,...,6) decoded by the decoders 1 and 19 are sent to the envelope calculators 1 and 22, and then sent to the envelope calculators 1 and 22. φ ′ H (o) and K′ H (i), (i=1, . . . , 6) decoded in step 20 are supplied to envelope calculators 2 and 23, respectively.

包絡算出器1,22はK´L(i)、(i=1,…,
6)から正規化予測残差電力uLおよびαパラメー
タαL(i)、(i=1,…,6)を求め、下記(5)式に
より電力スペクトル包絡を算出する。
The envelope calculators 1 and 22 calculate K′ L (i), (i=1,...,
6), the normalized predicted residual power u L and the α parameters α L (i), (i=1,..., 6) are obtained, and the power spectrum envelope is calculated using the following equation (5).

ただし、AL(o)=6t=0 α2 L(t)、AL(r)=26-rt=0 αL(t)・αL
(t+r)、αL(o)=1である。
However, A L (o)= 6t=0 α 2 L (t), A L (r)=2 6-rt=0 α L (t)・α L
(t+r), α L (o)=1.

同様に包絡算出器2,23はK´H(i)、(i=1,
…,6)から正規化予測残差電力uHおよびαパラ
メータαH(i)、(i=1,…,6)を求め、下記(6)
式により電力スペストル包絡を算出する。
Similarly, the envelope calculators 2 and 23 use K′ H (i), (i=1,
..., 6), find the normalized predicted residual power u H and the α parameter α H (i), (i=1,..., 6), and use the following (6).
Calculate the power spectrum envelope using the formula.

ただし、AH(o)=6t=0 α2 H(t)、AH(r)(r)=26-rt=0 αH
(t)・αH(t+r)、αH(o)=0である。
However, A H (o)= 6t=0 α 2 H (t), A H (r)(r)=2 6-rt=0 α H
(t)・α H (t+r), α H (o)=0.

フイルタ係数算出器24は上記pL(i)、(i=5,
…,36)とpH(i)、(i=37,…,101)から全帯域
のスペクトル包絡を示すフイルタ係数を算出し音
声合成フイルタ25へ出力する。
The filter coefficient calculator 24 calculates the above p L (i), (i=5,
. . , 36) and p H (i), (i=37, . . . , 101), the filter coefficients representing the spectrum envelope of the entire band are calculated and output to the speech synthesis filter 25.

所で、供給されるpL(i)、(i=5,…,36)は
125〜1093.75Hzの離散スペクトル包絡であり、pH
(i)、(i=37,…,101)は1125〜3125Hzの離散ス
ペクトル包絡である。因に31、25=1125−1093.
75Hzは周波数サンプル間隔である。即ち分析側で
使用された周波数成分1093.75〜1156.25Hzおよび
1062.5〜1125Hzがフイルタ係数算出器24では使
用されていない。この点が本発明の他の要点であ
る。
Now, the supplied p L (i), (i=5,...,36) is
Discrete spectral envelope from 125 to 1093.75 Hz and p H
(i), (i=37,..., 101) are discrete spectral envelopes from 1125 to 3125 Hz. Therefore, 31, 25 = 1125−1093.
75 Hz is the frequency sample interval. That is, the frequency components used on the analysis side are 1093.75 to 1156.25 Hz and
1062.5 to 1125 Hz is not used by the filter coefficient calculator 24. This point is another key point of the present invention.

上述の様に本発明では帯域分析型ボコーダに於
いて、分析側では所定の帯域より余分の帯域境界
付近の成分を含めて分析し、合成側では余分な成
分を除去している。これにより帯域境界切出しに
起因するスペクトル包絡の不連続性が大幅に軽減
される。即ち、境界切出しに起因するスペクトル
包絡の歪は境界付近に集中する傾向があり、この
境界付近を合成側で切捨てるからである。
As described above, in the band analysis type vocoder of the present invention, the analysis side includes and analyzes components near the band boundaries that are extra than a predetermined band, and the synthesis side removes the extra components. This significantly reduces spectral envelope discontinuities caused by band boundary extraction. That is, the distortion of the spectral envelope caused by boundary cutting tends to concentrate near the boundary, and this is because the vicinity of this boundary is cut off on the synthesis side.

尚、フイルタ係数算出器24で算出するフイル
タ係数は全極型フイルタの係数でも、全零型フイ
ルタの係数でも一向に差し支えない。全極型フイ
ルタの係数を求める場合には前記公開特許公報昭
58−220199、644ページに記載されている自己相
関係数を介して全帯域の線形予測係数を求める方
法により、例えば16次のαパラメータを算出すれ
ばよい。又、全零型フイルタの係数を求める場合
には√L(i)、(i=5,…,36)、および√H(i)、
(i=37,…,101)をフーリエ変換し、例えば
129点のトランスバーサルフイルタの係数を算出
すればよい。
The filter coefficients calculated by the filter coefficient calculator 24 may be those of an all-pole filter or all-zero filter. When determining the coefficients of an all-pole type filter, refer to the above-mentioned published patent publication Sho.
For example, the 16th-order α parameter may be calculated by the method of determining the linear prediction coefficient of the entire band through the autocorrelation coefficient described in 58-220199, page 644. Also, when calculating the coefficients of an all-zero type filter, √ L (i), (i=5,...,36), and √ H (i),
(i=37,...,101) is Fourier transformed, for example
All you have to do is calculate the coefficients of the 129-point transversal filter.

一方、復号化器3,21で復号化されたPitch、
V/uv信号は各々ピツチ発生器26、スイツチ
27へ供給される。ピツチ発生器26はPitch情
報に基づきピツチパルス列を発生しスイツチ27
へ出力する。雑音発生器28は白色雑音を発生し
スイツチ27へ出力する。スイツチ27はV/
uv信号により有声時にはピツチパルス列を、無
声時には白色雑音を発生し音声合成フイルタ25
へ出力する。音声合成フイルタ25は音声を合成
しD/A変換器29へ出力する。D/A変換器2
9はアナログ音声を再生し出力端子30を介して
音声波形を出力する。
On the other hand, the pitch decoded by the decoders 3 and 21,
The V/uv signals are supplied to a pitch generator 26 and a switch 27, respectively. The pitch generator 26 generates a pitch pulse train based on the pitch information and the switch 27
Output to. The noise generator 28 generates white noise and outputs it to the switch 27. Switch 27 is V/
The uv signal generates a pitch pulse train when voiced and white noise when unvoiced, and sends it to the voice synthesis filter 25.
Output to. The speech synthesis filter 25 synthesizes speech and outputs it to the D/A converter 29. D/A converter 2
Reference numeral 9 reproduces analog audio and outputs an audio waveform via an output terminal 30.

(発明の効果) 以上述べた様に、本発明は帯域分割型ボコーダ
に於いて、分析側では所定の帯域より余分な帯域
境界付近の成分を含めて分析し、合成側では余分
な成分を除去することにより、帯域境界切出しに
起因するスペクトル包絡の不連続性が大幅に軽減
され極めて高品質なボコーダを実現し得るという
効果がある。
(Effects of the Invention) As described above, in a band division type vocoder, the analysis side includes and analyzes the components near the band boundaries that are extra than the predetermined band, and the synthesis side removes the extra components. This has the effect that discontinuities in the spectral envelope caused by band boundary extraction can be significantly reduced and a very high quality vocoder can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を説明するためのブロ
ツク図であり参照番号1〜16は分析側、17は
電送路、18〜30は合成側を示す。 2……A/D変換器、3……窓処理器、4……
フーリエ変換器、1,5……電力スペクトル算出
器、6……自己相関係数算出器、1,7……自己
相関係数算出器、2,8……対数算出器、9……
線形予測分析器、1,10……量子化器、1,1
1……線形予測分析器、2,12……量子化器、
2,13……多量化器、14……フーリエ変換
器、2,15……Pitch、V/uv判別器、16…
…量子化器、3,18……多重分離器、19……
復号化器、1,20……復号化器、2,21……
復号化器、3,22……包絡算出器、1,23…
…包絡算出器、2,24……フイルタ係数算出
器、25……音声合成フイルタ、26……ピツチ
発生器、27……スイツチ、28……雑音発生
器、29……D/A変換器。
FIG. 1 is a block diagram for explaining an embodiment of the present invention, and reference numbers 1 to 16 indicate the analysis side, 17 indicates the electrical transmission path, and 18 to 30 indicate the synthesis side. 2...A/D converter, 3...Window processor, 4...
Fourier transformer, 1, 5...power spectrum calculator, 6...autocorrelation coefficient calculator, 1,7...autocorrelation coefficient calculator, 2,8...logarithm calculator, 9...
Linear prediction analyzer, 1, 10...Quantizer, 1, 1
1... Linear prediction analyzer, 2, 12... Quantizer,
2, 13... Quantizer, 14... Fourier transformer, 2, 15... Pitch, V/uv discriminator, 16...
...Quantizer, 3, 18... Demultiplexer, 19...
Decoder, 1, 20...Decoder, 2, 21...
Decoder, 3, 22... Envelope calculator, 1, 23...
...Envelope calculator, 2, 24...Filter coefficient calculator, 25...Speech synthesis filter, 26...Pitch generator, 27...Switch, 28...Noise generator, 29...D/A converter.

Claims (1)

【特許請求の範囲】 1 線形予測分析手法を用いる帯域分割型ボコー
ダにおいて、 分析側では分析される帯域間に重複周波数区間
を設けて各帯域毎の線形予測係数を算出する手段
と、これらの線形予測係数を分析側へ送出する手
段と、 合成側では分析側で算出されたこれらの線形予
測係数から帯域間に重複周波数区間を設けること
なく帯域毎のスペクトル包絡を算出し、これらの
スペクトル包絡より全帯域のスペクトル包絡に対
応する音声合成フイルタの係数を算出する手段
と、この係数に基づいて音声合成を行う音声合成
フイルタとを具備することを特徴とする帯域分割
型ボコーダ。
[Claims] 1. In a band division type vocoder that uses a linear prediction analysis method, the analysis side includes means for providing overlapping frequency intervals between bands to be analyzed and calculating linear prediction coefficients for each band, and a means for calculating linear prediction coefficients for each band, and There is a means for sending the prediction coefficients to the analysis side, and a means for the synthesis side to calculate the spectral envelope for each band from these linear prediction coefficients calculated on the analysis side without creating overlapping frequency sections between bands, and from these spectral envelopes. What is claimed is: 1. A band-splitting vocoder comprising means for calculating coefficients of a speech synthesis filter corresponding to the spectral envelope of all bands, and a speech synthesis filter for synthesizing speech based on the coefficients.
JP60128588A 1985-06-13 1985-06-13 Band split type vocoder Granted JPS61285499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60128588A JPS61285499A (en) 1985-06-13 1985-06-13 Band split type vocoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60128588A JPS61285499A (en) 1985-06-13 1985-06-13 Band split type vocoder

Publications (2)

Publication Number Publication Date
JPS61285499A JPS61285499A (en) 1986-12-16
JPH052158B2 true JPH052158B2 (en) 1993-01-11

Family

ID=14988465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60128588A Granted JPS61285499A (en) 1985-06-13 1985-06-13 Band split type vocoder

Country Status (1)

Country Link
JP (1) JPS61285499A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833746B2 (en) * 1987-02-17 1996-03-29 シャープ株式会社 Band division coding device for voice and musical sound

Also Published As

Publication number Publication date
JPS61285499A (en) 1986-12-16

Similar Documents

Publication Publication Date Title
RU2667382C2 (en) Improvement of classification between time-domain coding and frequency-domain coding
JPH05346797A (en) Voiced sound discriminating method
US6678655B2 (en) Method and system for low bit rate speech coding with speech recognition features and pitch providing reconstruction of the spectral envelope
JPH11177434A (en) Voice code decoding system
JPH0439679B2 (en)
KR0155315B1 (en) Celp vocoder pitch searching method using lsp
JPH052158B2 (en)
Atal Linear prediction of speech—Recent advances with applications to speech analysis
US10354671B1 (en) System and method for the analysis and synthesis of periodic and non-periodic components of speech signals
JP2736157B2 (en) Encoding device
JPS62278598A (en) Band division type vocoder
KR0138878B1 (en) Method for reducing the pitch detection time of vocoder
JP2535809B2 (en) Linear predictive speech analysis and synthesis device
JPH08160993A (en) Sound analysis-synthesizer
Hermansky Analysis in Automatic Recognition of Speech
JP2560486B2 (en) Multi-pulse encoder
JPH0229233B2 (en)
Sharma Qualitative Spectral Parameter Coding for Hindi and English Speech Signals
Walter Interrelationship between several classes of narrowban digital speech communication techniques and an underlying canonical baseline system
Rabiner et al. Analysis of the performance of a tandem connection of a 16‐Kbps CVSD coder to a 2.4‐Kbps LPC vocoder
KR100322704B1 (en) Method for varying voice signal duration time
JPS61236600A (en) Pattern matching vocoder
Zahorian et al. Principal‐components analysis of speech spectra
Wittenburg Effects of Compression on Linguistically Relevant Speech Analysis Parameters
JP2000155599A (en) Voice coding/decoding device and communication equipment