JPH05214459A - Method and device for levitation heating of lump metal - Google Patents

Method and device for levitation heating of lump metal

Info

Publication number
JPH05214459A
JPH05214459A JP4047542A JP4754292A JPH05214459A JP H05214459 A JPH05214459 A JP H05214459A JP 4047542 A JP4047542 A JP 4047542A JP 4754292 A JP4754292 A JP 4754292A JP H05214459 A JPH05214459 A JP H05214459A
Authority
JP
Japan
Prior art keywords
metal
cylindrical body
induction heating
frequency induction
slits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4047542A
Other languages
Japanese (ja)
Other versions
JP3272020B2 (en
Inventor
Isao Matsumoto
勲 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK Co Ltd
Original Assignee
Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd filed Critical Denki Kogyo Co Ltd
Priority to JP04754292A priority Critical patent/JP3272020B2/en
Publication of JPH05214459A publication Critical patent/JPH05214459A/en
Application granted granted Critical
Publication of JP3272020B2 publication Critical patent/JP3272020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PURPOSE:To prevent scattering of molten metal resulted from the rotation onto the surroundings by uniformly achieving the high frequency induction heating of the lump metal in the levitation condition, and melting the metal lump immediately before the lump metal is melted by the high frequency induction heating under the condition where the rotation of the lump metal is stopped. CONSTITUTION:The intensity of the eddy current flowing in the surface of a lump metal 9 is partially differentiated by generating the variation in the magnetic field generated in a cylindrical body 11 by using the metallic cylindrical body 11 where the sharing ratio of slits 16 in the circumferential direction is differentiated. Then, the condition where the lump metal 9 is heated in the in-air float heating manner while the lump metal being rotated and the condition where the lump metal is heated in the levitation heating manner while the lump metal being stopped are selectively switched by adjusting the relative rotative position of the cylindrical body 11 relative to a high frequency induction heating coil 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属塊の空中浮揚加熱方
法及びその装置に関し、特に、高温活性の極めて高いチ
タンやチタン合金等を精密鋳造する際の溶解方法及び溶
解装置として用いて好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for floating and heating a metal lump in the air, and its apparatus, and more particularly, it is suitable for use as a melting method and a melting apparatus in precision casting of titanium or titanium alloy having extremely high temperature activity. It is a thing.

【0002】[0002]

【従来の技術】金属塊、特に高温活性の高いチタン等の
金属塊を高温に加熱(溶解)するに当っては、他の部材
と接触して反応を生じないように空中浮揚状態で高周波
誘導加熱するのが最も理想的である。そこで、本出願人
は、先に、図9及び図10に示す空中浮揚加熱装置1を
提案した。
2. Description of the Related Art When heating (melting) a metal mass, especially a metal mass such as titanium having high high temperature activity, to a high temperature, high frequency induction is performed in a floating state in the air so as not to contact with other members and cause a reaction. Most ideal is heating. Therefore, the present applicant previously proposed the airborne levitating heating device 1 shown in FIGS. 9 and 10.

【0003】本装置1を用いて金属塊の加熱を行なうに
際しては、加熱すべき金属塊2を、互いに等しい幅の複
数のスリット3が等間隔をおいて形成された金属製の円
筒体4の中空部内に配置すると共に、この円筒体4の外
周を取り囲むように配設した螺旋状の高周波誘導加熱コ
イル5に高周波電源6から高周波電流を供給することに
より、金属塊2に上方に向かう電磁力を作用せしめて空
中浮揚状態の下で高周波誘導加熱するようにしている。
そして、精密鋳造を行なう場合には、金属塊2を加熱溶
解して鋳型に鋳込むようにしている。
When heating a metal ingot using this apparatus 1, the metal ingot 2 to be heated is formed of a metal cylindrical body 4 in which a plurality of slits 3 having equal widths are formed at equal intervals. Electromagnetic force directed upward to the metal ingot 2 by supplying a high-frequency current from the high-frequency power source 6 to the spiral high-frequency induction heating coil 5 arranged in the hollow portion and surrounding the outer periphery of the cylindrical body 4. Is applied to perform high-frequency induction heating under a floating condition in the air.
When performing precision casting, the metal ingot 2 is heated and melted and cast into a mold.

【0004】ここで、金属塊2の加熱溶解のメカニズム
について説明すると次の通りである。すなわち、高周波
誘導加熱コイル5に高周波電流(Jo)を流すと、高周
波電流(Jo)が作る磁束(Φ)が円筒体4のスリット
3を通って金属塊2に作用し、この金属塊2に誘導電流
(Je)が流れる(図9及び図11参照)。これによ
り、金属塊2はジュール加熱される。この際、金属塊2
の表面に流れる誘導電流(Je)と磁束(Φ)との相互
作用により金属塊2に電磁力(F)が生じ、この電磁力
(F)の方向はフレミングの左手の法則により円筒体4
の軸心に向かう方向よりも上向きの方向(斜め方上)と
なる。それは、誘導電流(Je)は円筒体4の周方向に
沿う方向であり、金属塊2が置かれている円筒体4の上
端側位置における磁束(Φ)の方向は図11において矢
印Hで示す如く曲げられるからである。そのため、金属
塊2には上方に向う分力(Fu)が浮揚力とし作用し、
その結果、金属塊2が円筒体4内の上端部付近において
空中に浮揚された状態に保持されて高周波誘導加熱され
る。なお、前記電磁力(F)の大きさは、誘導電流(J
e)と磁束密度(B)との積に比例した値となる。
The mechanism of heating and melting the metal ingot 2 will be described below. That is, when a high frequency current (Jo) is passed through the high frequency induction heating coil 5, a magnetic flux (Φ) generated by the high frequency current (Jo) acts on the metal mass 2 through the slit 3 of the cylindrical body 4, and the metal mass 2 An induced current (Je) flows (see FIGS. 9 and 11). As a result, the metal ingot 2 is Joule heated. At this time, the metal block 2
An electromagnetic force (F) is generated in the metal ingot 2 by the interaction between the induced current (Je) flowing on the surface of the and the magnetic flux (Φ), and the direction of this electromagnetic force (F) is the cylindrical body 4 according to Fleming's left-hand rule.
The direction is upward (diagonally upward) with respect to the direction toward the axis center of. That is, the induced current (Je) is in the direction along the circumferential direction of the cylindrical body 4, and the direction of the magnetic flux (Φ) at the upper end side position of the cylindrical body 4 on which the metal mass 2 is placed is shown by an arrow H in FIG. Because it can be bent like this. Therefore, the upward component force (Fu) acts as a levitation force on the metal block 2,
As a result, the metal ingot 2 is held in a state of being levitated in the air in the vicinity of the upper end of the cylindrical body 4 and is subjected to high frequency induction heating. The magnitude of the electromagnetic force (F) depends on the induced current (J
The value is proportional to the product of e) and the magnetic flux density (B).

【0005】[0005]

【発明が解決しようとする課題】このような構成の空中
浮揚加熱装置1にあっては、高周波誘導加熱コイル5か
ら生じる磁束は、その巻回方向(周方向)において均一
でなく、各部の磁束密度は異なっている。具体的には、
前記コイル5のリード部5a,5bに流れる電流は逆向
きのため、これらのリード部5a,5b付近の磁束密度
は相対的に小さく、リード部5a,5bに対向するコイ
ル本体部分5c付近の磁束密度は相対的に大きくなる。
また、前記コイル5は螺旋状に巻回されているので、そ
の最上の巻回部は水平面に対して傾斜している。そのた
め、前記巻回部の最上部側に隣接する金属塊2の表面部
分に流れる誘導電流(渦電流)及びその表面部分に作用
する磁束密度が、その表面部分の反対側表面(前記巻回
部の最下部分に対応する金属塊2の表面部分)に比べて
大きくなり、前記表面部分に生じる電磁力は反対側の表
面部分よりも大きくなる。
In the aerial levitation heating device 1 having such a configuration, the magnetic flux generated from the high frequency induction heating coil 5 is not uniform in the winding direction (circumferential direction), and the magnetic flux of each part is not uniform. The densities are different. In particular,
Since the currents flowing through the lead portions 5a and 5b of the coil 5 are in opposite directions, the magnetic flux density near these lead portions 5a and 5b is relatively small, and the magnetic flux near the coil body portion 5c facing the lead portions 5a and 5b is relatively small. The density is relatively high.
Further, since the coil 5 is spirally wound, its uppermost winding portion is inclined with respect to the horizontal plane. Therefore, the induced current (eddy current) flowing in the surface portion of the metal ingot 2 adjacent to the uppermost side of the winding portion and the magnetic flux density acting on the surface portion are different from the surface opposite to the surface portion (the winding portion). Is larger than the surface portion of the metal ingot 2 corresponding to the lowermost portion), and the electromagnetic force generated on the surface portion is larger than the surface portion on the opposite side.

【0006】上述の如く、高周波誘導加熱コイル5から
金属塊2の各表面に作用する電磁力は異なるため、これ
に起因して、金属塊2は水平軸を中心に高速で一定の方
向に回転(自転)されながら、均一に高周波誘導加熱さ
れる。
As described above, since the electromagnetic force acting from the high frequency induction heating coil 5 on each surface of the metal ingot 2 is different, this causes the metal ingot 2 to rotate at a high speed in a certain direction around the horizontal axis. While being (rotated), it is uniformly induction heated.

【0007】しかしながら、金属塊2に回転を生じる
と、金属塊2が加熱溶解された時に、溶解金属が回転に
伴う遠心力にて周囲に飛散されるおそれがある。このよ
うな事態を生じると、材料(金属塊2)の損失を招くこ
ととなるばかりでなく、溶解作業に大きな危険を伴うこ
とにもなる。
However, when the metal block 2 is rotated, when the metal block 2 is heated and melted, the molten metal may be scattered around by the centrifugal force accompanying the rotation. If such a situation occurs, not only will the loss of the material (the metal block 2) be caused, but also the melting operation will be accompanied by a great risk.

【0008】本発明は、上記問題点を解消すべくなされ
たものであって、その目的は、金属塊が溶解温度に達す
る直前までは金属塊に回転を与えて均一加熱を施し、溶
解温度に達する直前に金属塊の回転を停止させることが
できるような空中浮揚加熱方法及びその装置を提供する
ことにある。
The present invention has been made to solve the above problems, and an object of the present invention is to impart uniform heat to a metal block by rotating it until just before the melt temperature reaches the melting temperature. An object of the present invention is to provide a method for floating and heating in the air, which can stop the rotation of a metal ingot immediately before reaching it, and an apparatus therefor.

【0009】[0009]

【課題を解決するための手段】上述の目的を達成するた
めに,本発明の空中浮揚加熱方法では、半径方向に沿っ
て放射状に延びる複数のスリットが形成された金属製の
円筒体の外周を高周波誘導加熱コイルにて同軸状に取り
囲むと共に、前記円筒体及び高周波誘導加熱コイルの軸
線を鉛直方向に沿って配置し、前記高周波誘導加熱コイ
ルに高周波電流を供給することにより前記円筒体の中空
部内で金属塊に上方に向かう電磁力を作用せしめ、前記
金属塊を空中浮揚させながら高周波誘導加熱するように
した方法において、周方向におけるスリットの占有割合
を異ならしめて成る金属製の円筒体を用い、前記高周波
誘導加熱コイルに対する前記円筒体の相対的回転位置を
調整することにより、前記金属塊を回転させつつ空中浮
揚加熱する状態と回転停止させて空中浮揚加熱する状態
とに選択的に切換えるようにしている。
In order to achieve the above-mentioned object, in the airborne levitating heating method of the present invention, the outer circumference of a metallic cylindrical body having a plurality of slits radially extending in the radial direction is formed. Inside the hollow portion of the cylindrical body by coaxially surrounding it with a high-frequency induction heating coil, arranging the axes of the cylindrical body and the high-frequency induction heating coil along the vertical direction, and supplying a high-frequency current to the high-frequency induction heating coil. By applying an electromagnetic force directed upward to the metal mass in the method of performing high frequency induction heating while levitating the metal mass in the air, using a metal cylindrical body made different in the occupation ratio of the slit in the circumferential direction, By adjusting the relative rotational position of the cylindrical body with respect to the high-frequency induction heating coil, a state of floating and heating in the air while rotating the metal block is obtained. Rolling is stopped so that switch selectively to the state of airborne heat.

【0010】また、本発明の空中浮揚加熱装置では、
(a) 半径方向に沿って放射状に延びる複数のスリッ
トを有し、かつ、周方向における前記スリット部分の占
有割合が前記周方向に沿って異ならしめられて成る金属
製の円筒体と、(b) 前記円筒体の外周を同軸状に取
り囲むように配設され、かつ、軸線が鉛直方向に沿って
配置される高周波誘導加熱コイルと、(c) 前記高周
波誘導加熱コイルに高周波電流を供給する高周波電源
と、(d) 前記円筒体を軸線を中心に前記高周波誘導
加熱コイルに対して回転駆動する回転駆動手段と、をそ
れぞれ具備し、前記高周波誘導加熱コイルに対する前記
円筒体の相対的回転位置を調整することにより、前記円
筒体の中空部内の金属塊を選択的に回転状態又は回転停
止状態にして空中浮揚加熱するように構成している。
Further, in the aerial levitation heating apparatus of the present invention,
(A) A metal cylindrical body having a plurality of slits radially extending along a radial direction and having different occupancy ratios of the slit portions in the circumferential direction along the circumferential direction, ) A high frequency induction heating coil which is arranged so as to coaxially surround the outer periphery of the cylindrical body and whose axis is arranged along the vertical direction, and (c) a high frequency which supplies a high frequency current to the high frequency induction heating coil. And a rotation driving means for rotating and driving the cylindrical body with respect to the high frequency induction heating coil about an axis, and (d) a relative rotation position of the cylindrical body with respect to the high frequency induction heating coil. By adjusting, the metal ingot in the hollow portion of the cylindrical body is selectively rotated or stopped to be floated and heated in the air.

【0011】[0011]

【実施例】以下、本発明の一実施例に付き図1〜図6を
参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0012】図1は、本発明に係る空中浮揚加熱方法を
実施するための空中浮揚加熱装置10を示すものであ
る。この装置10は、加熱すべき金属塊9を内部空間
(中空部)に収容する銅製の円筒体11と、この円筒体
11の外周を取り囲むように配設された螺旋状の高周波
誘導加熱コイル12と、このコイル12に高周波電流
(電力)を供給する高周波電源13とをそれぞれ具備し
ている。
FIG. 1 shows an aerial levitation heating apparatus 10 for carrying out the aerial levitation heating method according to the present invention. This apparatus 10 includes a copper cylindrical body 11 for accommodating a metal mass 9 to be heated in an internal space (hollow portion), and a spiral high-frequency induction heating coil 12 arranged so as to surround the outer circumference of the cylindrical body 11. And a high frequency power supply 13 for supplying a high frequency current (electric power) to the coil 12.

【0013】上述の円筒体11は、図2に示すように、
半径方向に沿って放射状に延びる複数のスリット16を
有しており、円筒体11の周方向におけるスリット16
部分の占有割合(配設割合)が前記周方向に沿って異な
らしめられている。すなわち、本例においては、複数の
スリット16が等角度間隔の位置に形成されており、円
筒体11の一方の半分部分11aに形成されるスリット
16aの幅L1 と、円筒体11の他方の半分部分11b
に形成されるスリット16bの幅L2 とが互いに異なら
しめられている(L1 >L2 )。
The above-mentioned cylindrical body 11 is, as shown in FIG.
It has a plurality of slits 16 extending radially along the radial direction, and the slits 16 in the circumferential direction of the cylindrical body 11 are provided.
Occupancy ratios (arrangement ratios) of the parts are made different along the circumferential direction. That is, in this example, the plurality of slits 16 are formed at equiangular intervals, and the width L 1 of the slit 16a formed in one half 11a of the cylindrical body 11 and the other of the cylindrical body 11 are equal to each other. Half part 11b
The widths L 2 of the slits 16b formed in 1 are different from each other (L 1 > L 2 ).

【0014】そして、スリット16間の各セグメント1
7は円筒体11の下端部において互いに結合されてい
る。さらに、各セグメント17の内部には冷却水通路1
8が形成され、この冷却水通路18の一端は導水パイプ
19に、その他端は排水パイプ20に接続されている。
Then, each segment 1 between the slits 16
7 are connected to each other at the lower end of the cylindrical body 11. Further, the cooling water passage 1 is provided inside each segment 17.
8 is formed, and one end of the cooling water passage 18 is connected to the water guide pipe 19 and the other end is connected to the drainage pipe 20.

【0015】一方、高周波誘導加熱コイル12は銅パイ
プを螺旋状に巻回して成るものであって、その中空部に
は冷却水が供給されると共に、リード部12a,12b
を介して高周波電源13から高周波電流が供給されるよ
うになっている。そして、このコイル12は円筒体11
の外周を同軸状に取り囲むように配置されると共に、前
記コイル12及び円筒体11はその軸線が鉛直方向に一
致されている。
On the other hand, the high frequency induction heating coil 12 is formed by spirally winding a copper pipe. Cooling water is supplied to the hollow portion of the high frequency induction heating coil 12 and the lead portions 12a, 12b.
A high-frequency current is supplied from the high-frequency power source 13 via the. The coil 12 is a cylindrical body 11.
The coil 12 and the cylindrical body 11 are arranged so as to coaxially surround the outer periphery thereof, and the axes of the coil 12 and the cylindrical body 11 are aligned in the vertical direction.

【0016】また、図示を省略したが、前記円筒体11
をその軸線を中心に回転させ、これにより、高周波誘導
加熱コイル12に対する円筒体11のスリット16a,
16bの相対位置を調整するための回転駆動機構が設け
られている。
Although not shown, the cylindrical body 11 is not shown.
Is rotated about its axis, whereby the slit 16a of the cylindrical body 11 with respect to the high frequency induction heating coil 12 is
A rotary drive mechanism for adjusting the relative position of 16b is provided.

【0017】本装置10の一具体例は次の通りである。 (1) インゴットの材質:鉄鋼(S−45C) (2) 形状:球形,直径43mmφ 重量,300g (5) コイル上端から円筒体上端部分の距離:15m
m (6) 高周波加熱条件 (a)予備加熱条件(非浮揚状態) (イ)周波数:10KHz (ロ)出力:10kW (ハ)加熱時間:8秒 (b)浮揚加熱条件 (イ)周波数:10KHz (ロ)出力:28kW
A specific example of the apparatus 10 is as follows. (1) Material of ingot: Steel (S-45C) (2) Shape: Spherical, diameter 43mmφ Weight, 300g (5) Distance from top of coil to top of cylinder: 15m
m (6) High frequency heating condition (a) Preheating condition (non-floating state) (a) Frequency: 10 KHz (b) Output: 10 kW (c) Heating time: 8 seconds (b) Floating heating condition (a) Frequency: 10 KHz (B) Output: 28 kW

【0018】次に、本装置10を用いて金属塊9を空中
浮揚加熱する際の動作並びに作用に付き説明する。
Next, the operation and action of the apparatus 10 for floating and heating the metal ingot 9 in the air will be described.

【0019】まず、加熱すべき金属塊9を図外の載置台
上に載置して金属塊9を円筒体11の下方から円筒体1
1の中空部内に移送し、高周波誘導加熱コイル12の最
上端部分に対応する浮揚加熱開始位置に配置する。しか
る後に、高周波電源13から前記コイル12に高周波電
流を供給し、これに伴って発生する電磁力の垂直分力に
て金属塊9を浮揚させる。一方、これと同時に図外の移
送機構を作動させることにより、金属塊9の載置台を円
筒体11の下方に移動せしめて円筒体11の直下位置か
ら外れた位置に移動させる。
First, the metal mass 9 to be heated is placed on a mounting table (not shown), and the metal mass 9 is placed from below the cylindrical body 11 to the cylindrical body 1.
It is transferred into the hollow portion of No. 1 and placed at the levitation heating start position corresponding to the uppermost end of the high frequency induction heating coil 12. Then, a high-frequency current is supplied from the high-frequency power source 13 to the coil 12, and the metal ingot 9 is levitated by the vertical component force of the electromagnetic force generated with the high-frequency current. On the other hand, at the same time, by operating a transfer mechanism (not shown), the mounting table for the metal mass 9 is moved below the cylindrical body 11 and moved to a position deviating from the position directly below the cylindrical body 11.

【0020】そして、高周波誘導加熱コイル12に供給
する高周波電流を調整することにより、金属塊9の水平
軸線が円筒体11の上端面11cよりも上方に配置され
かつ金属塊9の一部分が円筒体11の中空部内に配置さ
れる位置に前記金属塊9を空中浮揚させ、この位置で高
周波誘導加熱する。
Then, by adjusting the high-frequency current supplied to the high-frequency induction heating coil 12, the horizontal axis of the metal ingot 9 is arranged above the upper end surface 11c of the cylindrical body 11 and a part of the metal ingot 9 is formed in the cylindrical body. The metal ingot 9 is levitated in the air at a position arranged in the hollow portion 11 and high-frequency induction heating is performed at this position.

【0021】この際、図1に示すように、幅狭のスリッ
ト16bが設けられた円筒体11の半分部分11bを高
周波誘導加熱コイル12のリード部12a,12bに対
向せしめ、かつ幅広のスリット16aが設けられた円筒
体11の半分部分11aをリード部12a,12bに対
応するコイル本体部分12cに対向するように円筒体1
1を配置する。このようにすると、金属塊9の表面のう
ち、リード部12a,12bに対向する表面よりもコイ
ル本体部分12cに対向する表面に相対的に大きな電磁
力が斜め上方に作用するため、金属塊9はその水平軸を
中心に図2において矢印A方向に高速で回転されながら
高周波誘導加熱される。
At this time, as shown in FIG. 1, the half portion 11b of the cylindrical body 11 provided with the narrow slit 16b is made to face the lead portions 12a and 12b of the high frequency induction heating coil 12, and the wide slit 16a is provided. The cylindrical body 1 is provided such that the half portion 11a of the cylindrical body 11 provided with the coil body 11 faces the coil body portion 12c corresponding to the lead portions 12a and 12b.
Place 1 By doing so, a relatively large electromagnetic force acts obliquely upward on the surface of the metal lump 9 facing the coil body portion 12c than the surface of the metal lump 9 facing the lead portions 12a and 12b. Is rotated at a high speed in the direction of arrow A in FIG.

【0022】なお、高周波誘導加熱コイル12に対する
円筒体11の配置関係を図1及び図2に示す状態とは全
く逆の状態すなわち図3及び図4に示す如く180゜変
化させた状態にした場合には、スリット16a及び16
bの幅の選定条件に応じて金属塊9の回転方向は図4に
示す如く矢印A方向とは逆の矢印B方向となる。
When the arrangement of the cylindrical body 11 with respect to the high frequency induction heating coil 12 is completely opposite to the state shown in FIGS. 1 and 2, that is, the state is changed by 180 ° as shown in FIGS. 3 and 4. Slits 16a and 16
Depending on the selection condition of the width b, the direction of rotation of the metal ingot 9 is the direction of arrow B, which is the opposite of the direction of arrow A, as shown in FIG.

【0023】この状態の下で金属塊9が回転状態で均一
加熱されて金属塊9が溶解温度に達する直前に、図外の
回転駆動機構を作動させ、円筒体11をその軸線を中心
に例えばほぼ90゜(この回転角は、スリット16a,
16bの幅及び配設間隔、高周波誘導加熱コイル12の
円筒体11に対する傾斜角、並びにリード部12a,1
2bの配置等の条件により変わる。)だけ回転させる。
これにより、図5に示す如く、円筒体11の幅広のスリ
ット16aをリード部12aとコイル本体部12cとの
間の部分12dに対応配置させると共に、円筒体の幅狭
のスリット16bを前記部分12dの対向部分12eに
対応配置させる。このような配置関係にすると、金属塊
9の表面に作用する電磁力の大きさが等しくなり、回転
方向に働く力が相殺されるため、金属塊9の回転は停止
される。
Under this condition, the metal ingot 9 is uniformly heated in a rotating state and immediately before the metal ingot 9 reaches the melting temperature, a rotation drive mechanism (not shown) is activated to move the cylindrical body 11 around its axis, for example. Approximately 90 ° (This rotation angle is determined by the slit 16a,
16b width and arrangement interval, inclination angle of the high frequency induction heating coil 12 with respect to the cylindrical body 11, and lead portions 12a, 1
It depends on conditions such as the arrangement of 2b. ) Only rotate.
As a result, as shown in FIG. 5, the wide slit 16a of the cylindrical body 11 is arranged corresponding to the portion 12d between the lead portion 12a and the coil body portion 12c, and the narrow slit 16b of the cylindrical body is formed in the portion 12d. It is arranged corresponding to the facing portion 12e. With such an arrangement relationship, the magnitude of the electromagnetic force acting on the surface of the metal ingot 9 becomes equal and the forces acting in the rotation direction are offset, so that the rotation of the metal ingot 9 is stopped.

【0024】この状態の下で、高周波誘導加熱を継続
し、金属塊9を溶解温度以上に加熱して溶湯状態にす
る。これに伴い、溶湯9′はその表面張力により完全な
球状になる(図6参照)。
Under this condition, high-frequency induction heating is continued to heat the metal ingot 9 to a melting temperature or higher to bring it into a molten state. Along with this, the molten metal 9'becomes completely spherical due to its surface tension (see FIG. 6).

【0025】次いで、高周波誘導加熱コイル12への高
周波電流の供給を遮断する。これに伴い、溶湯9′に作
用する電磁力(浮揚力)が消失するため、溶湯9′は自
然落下して図外の鋳型に鋳込まれる。そして、鋳型に鋳
込まれた溶湯9′は自然冷却され、所定形状の精密鋳造
製品が得られる。
Then, the supply of the high frequency current to the high frequency induction heating coil 12 is cut off. Along with this, the electromagnetic force (levitation force) acting on the molten metal 9'disappears, so that the molten metal 9'falls naturally and is cast into a mold (not shown). Then, the molten metal 9'cast in the mold is naturally cooled, and a precision cast product having a predetermined shape is obtained.

【0026】上述の如き装置10によれば、金属塊9は
溶解温度に達する直前までは固形状態で回転されつつ高
周波誘導加熱されるため、金属塊9の全体を均一に加熱
することができると共に、溶解直前には高周波誘導加熱
コイル12に対する円筒体11の相対的回転位置を調整
することにより金属塊9の回転を停止せしめるようにし
ているので、溶湯9′が周囲に飛散するような事態の発
生を防止できる。また、加熱時における金属塊9の回転
速度は、円筒体11の回転位置の調整により任意に調整
可能である。
According to the apparatus 10 as described above, the metal ingot 9 is heated in the solid state while being rotated in the solid state until the melting temperature is reached, so that the whole metal ingot 9 can be heated uniformly. Immediately before melting, the rotation of the metal ingot 9 is stopped by adjusting the relative rotational position of the cylindrical body 11 with respect to the high-frequency induction heating coil 12, so that the molten metal 9 ′ may be scattered around. Occurrence can be prevented. Further, the rotation speed of the metal ingot 9 during heating can be arbitrarily adjusted by adjusting the rotation position of the cylindrical body 11.

【0027】以上、本発明の一実施例に付き述べたが、
本発明は既述の実施例に限定されるものではなく、本発
明の技術的思想に基いて各種の変形及び変更が可能であ
る。
The embodiment of the present invention has been described above.
The present invention is not limited to the embodiments described above, and various modifications and changes can be made based on the technical idea of the present invention.

【0028】例えば、円筒体11の複数のスリット16
の配置構成は種々に変更可能である。すなわち、図7に
示すように、各スリット16の幅を全て同一にして、円
筒体11の周方向におけるスリット16の配設間隔を異
ならしめ、スリットの配設割合(円筒体11の全周に対
してスリット16が占める割合)を周方向に沿って変化
させるようにしてもよい。また、図8に示すように、幅
が徐々に変化するスリット16を等角度間隔で配設する
ようにしてもよい。
For example, a plurality of slits 16 in the cylindrical body 11
The arrangement configuration of can be variously changed. That is, as shown in FIG. 7, the widths of the slits 16 are all the same, and the arrangement intervals of the slits 16 in the circumferential direction of the cylindrical body 11 are made different, and the arrangement ratio of the slits (the entire circumference of the cylindrical body 11 is On the other hand, the ratio occupied by the slit 16) may be changed along the circumferential direction. Further, as shown in FIG. 8, the slits 16 whose width gradually changes may be arranged at equal angular intervals.

【0029】[0029]

【発明の効果】以上の如く、本発明に係る方法及び装置
は、周方向におけるスリットの占有割合が異なる金属製
の円筒体を回転させて所定位置に配置することにより、
空中浮揚されている金属塊を回転又は回転停止状態に選
択的に切換えて高周波誘導加熱するようにしたものであ
るから、回転状態の下での均一加熱を行なうことができ
ると共に、溶解直前には回転を停止せしめて溶解金属の
飛散を防止することができる。そのため、本発明によれ
ば、簡単な装置にて、金属塊を他の部材とは無接触で均
一温度にしかも作業の安全を確保しつつ加熱(溶解)す
ることができ、高品質の鋳造製品等を得ることが可能と
なる。
As described above, according to the method and apparatus of the present invention, by rotating the metal cylindrical bodies having different occupying ratios of the slits in the circumferential direction and arranging them at the predetermined positions,
High-frequency induction heating is performed by selectively switching the metal mass floating in the air to the rotation or rotation stop state, so that uniform heating under the rotation state can be performed and immediately before melting. It is possible to prevent the molten metal from scattering by stopping the rotation. Therefore, according to the present invention, the metal ingot can be heated (melted) with a simple device at a uniform temperature without contacting with other members while ensuring the safety of work, and a high-quality cast product. Etc. can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る空中浮揚加熱装置の平面図であ
る。
FIG. 1 is a plan view of an aerial levitation heating apparatus according to the present invention.

【図2】図1に示す装置の断面図である。2 is a cross-sectional view of the device shown in FIG.

【図3】円筒体を図1に示す位置から180°回転させ
た位置に配置した状態を示す空中浮揚加熱装置の平面図
である。
FIG. 3 is a plan view of the airborne heating apparatus showing a state in which the cylindrical body is arranged at a position rotated by 180 ° from the position shown in FIG.

【図4】図3に示す装置の断面図である。4 is a cross-sectional view of the device shown in FIG.

【図5】円筒体を図1に示す位置からほぼ90°回転さ
せた位置に配置した状態を示す空中浮揚加熱装置の平面
図である。
5 is a plan view of the aerial levitation heating apparatus showing a state in which the cylindrical body is arranged at a position rotated by approximately 90 ° from the position shown in FIG. 1. FIG.

【図6】図5に示す装置の断面図である。6 is a cross-sectional view of the device shown in FIG.

【図7】円筒体に設けられるスリットの変形例を示す平
面図である。
FIG. 7 is a plan view showing a modified example of a slit provided in a cylindrical body.

【図8】円筒体に設けられるスリットの別の変形例を示
す平面図である。
FIG. 8 is a plan view showing another modified example of the slit provided in the cylindrical body.

【図9】同一幅のスリットが等間隔に設けられた円筒体
を備えた空中浮揚加熱装置の断面図である。
FIG. 9 is a cross-sectional view of an aerial levitation heating device including cylindrical bodies in which slits having the same width are provided at equal intervals.

【図10】図9に示す装置の平面図である。FIG. 10 is a plan view of the device shown in FIG.

【図11】上述の円筒体の一部を切欠いて示す断面図で
ある。
FIG. 11 is a sectional view showing a part of the above-mentioned cylindrical body by cutting out.

【符号の説明】[Explanation of symbols]

9 金属塊 10 空中浮揚加熱装置 11 円筒体 12 高周波誘導加熱コイル 16 スリット 16a 幅広のスリット 16b 幅狭のスリット L1 ,L2 スリット幅9 metal block 10 slits L 1 levitation heating device 11 the cylindrical body 12 of the wide high-frequency induction heating coil 16 slits 16a slit 16b narrow, L 2 slit width

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半径方向に沿って放射状に延びる複数の
スリットが形成された金属製の円筒体の外周を高周波誘
導加熱コイルにて同軸状に取り囲むと共に、前記円筒体
及び高周波誘導加熱コイルの軸線を鉛直方向に沿って配
置し、前記高周波誘導加熱コイルに高周波電流を供給す
ることにより前記円筒体の中空部内で金属塊に上方に向
かう電磁力を作用せしめ、前記金属塊を空中浮揚させな
がら高周波誘導加熱するようにした方法において、周方
向におけるスリットの占有割合を異ならしめて成る金属
製の円筒体を用い、前記高周波誘導加熱コイルに対する
前記円筒体の相対的回転位置を調整することにより、前
記金属塊を回転させつつ空中浮揚加熱する状態と回転停
止させて空中浮揚加熱する状態とに選択的に切換えるよ
うにしたことを特徴とする金属塊の空中浮揚加熱方法。
1. A high-frequency induction heating coil coaxially surrounds the outer circumference of a metal cylindrical body in which a plurality of slits radially extending in the radial direction are formed, and the axes of the cylinder and the high-frequency induction heating coil. Is arranged along the vertical direction, and by applying a high-frequency current to the high-frequency induction heating coil, an electromagnetic force is applied upward to the metal mass in the hollow portion of the cylindrical body, and the high-frequency wave is generated while levitating the metal mass in the air. In the method of performing the induction heating, using a metal cylinder made of different occupancy ratio of the slit in the circumferential direction, by adjusting the relative rotational position of the cylinder with respect to the high-frequency induction heating coil, the metal It is characterized in that it can be selectively switched between the state of floating and heating in the air while rotating the mass and the state of floating and heating in the air by stopping the rotation. A method for floating and heating a metal block in the air.
【請求項2】 前記金属塊の溶解温度直前までは、前記
金属塊を回転状態の下で空中浮揚加熱し、溶解温度に達
する直前に前記金属塊を回転停止状態にして、それ以後
は回転停止状態の下において空中浮揚加熱による溶解を
行なうようにしたことを特徴とする請求項1に記載の金
属塊の空中浮揚加熱方法。
2. Up to just before the melting temperature of the metal ingot, the metal ingot is levitationally heated in a rotating state, and the metal ingot is stopped in rotation just before reaching the melting temperature, and thereafter stopped in rotation. The method for airborne levitating and heating of a metal ingot according to claim 1, wherein melting is performed by air levitating and heating under a state.
【請求項3】(a) 半径方向に沿って放射状に延びる
複数のスリットを有し、かつ、周方向における前記スリ
ット部分の占有割合が前記周方向に沿って異ならしめら
れて成る金属製の円筒体と、 (b) 前記円筒体の外周を同軸状に取り囲むように配
設され、かつ、軸線が鉛直方向に沿って配置される高周
波誘導加熱コイルと、 (c) 前記高周波誘導加熱コイルに高周波電流を供給
する高周波電源と、 (d) 前記円筒体を軸線を中心に前記高周波誘導加熱
コイルに対して回転駆動する回転駆動手段と、 をそれぞれ具備し、前記高周波誘導加熱コイルに対する
前記円筒体の相対的回転位置を調整することにより、前
記円筒体の中空部内の金属塊を選択的に回転状態又は回
転停止状態にして空中浮揚加熱するようにしたことを特
徴とする金属塊の空中浮揚加熱装置。
3. (a) A metal cylinder having a plurality of slits radially extending along a radial direction and having different occupancy ratios of the slit portions in the circumferential direction along the circumferential direction. A body, and (b) a high-frequency induction heating coil arranged so as to coaxially surround the outer circumference of the cylindrical body and having an axis extending in the vertical direction, and (c) a high-frequency induction heating coil. A high-frequency power source for supplying an electric current; and (d) a rotation driving unit that rotationally drives the cylindrical body around the axis with respect to the high-frequency induction heating coil, respectively. By adjusting the relative rotational position, the metal ingot in the hollow portion of the cylindrical body is selectively put into a rotating state or a rotation-stopped state to be floated and heated in the air. Levitation heating device.
【請求項4】 前記複数のスリットの幅がすべて同一で
あり、周方向における前記複数のスリットの配置間隔が
部分的に異ならしめられていることを特徴とする請求項
3に記載の金属塊の空中浮揚加熱方法。
4. The metal ingot according to claim 3, wherein the widths of the plurality of slits are all the same, and the arrangement intervals of the plurality of slits in the circumferential direction are partially different. Levitation heating method.
【請求項5】 前記複数のスリットが周方向において等
間隔に配設され、前記複数のスリットの幅が部分的に異
ならしめられていることを特徴とする請求項3に記載の
金属塊の空中浮揚加熱方法。
5. The aerial of metal ingot according to claim 3, wherein the plurality of slits are arranged at equal intervals in the circumferential direction, and the widths of the plurality of slits are partially different. Levitation heating method.
JP04754292A 1992-02-03 1992-02-03 Method and apparatus for levitation heating of metal lump Expired - Fee Related JP3272020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04754292A JP3272020B2 (en) 1992-02-03 1992-02-03 Method and apparatus for levitation heating of metal lump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04754292A JP3272020B2 (en) 1992-02-03 1992-02-03 Method and apparatus for levitation heating of metal lump

Publications (2)

Publication Number Publication Date
JPH05214459A true JPH05214459A (en) 1993-08-24
JP3272020B2 JP3272020B2 (en) 2002-04-08

Family

ID=12778035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04754292A Expired - Fee Related JP3272020B2 (en) 1992-02-03 1992-02-03 Method and apparatus for levitation heating of metal lump

Country Status (1)

Country Link
JP (1) JP3272020B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10313960A1 (en) * 2003-03-27 2004-10-28 Von Ardenne Anlagentechnik Gmbh Continuous re-melting of material in an electric arc furnace under vacuum comprises uniformly pre-heating material pieces to a temperature corresponding to half the absolute melting temperature of the material before welding
US9376904B2 (en) 2013-09-09 2016-06-28 Korea Institute Of Geoscience And Mineral Resources (Kigam) Apparatus and method for solution mining using cycling process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10313960A1 (en) * 2003-03-27 2004-10-28 Von Ardenne Anlagentechnik Gmbh Continuous re-melting of material in an electric arc furnace under vacuum comprises uniformly pre-heating material pieces to a temperature corresponding to half the absolute melting temperature of the material before welding
DE10313960B4 (en) * 2003-03-27 2009-07-30 Von Ardenne Anlagentechnik Gmbh Method for continuous remelting of material in an electron beam furnace
US9376904B2 (en) 2013-09-09 2016-06-28 Korea Institute Of Geoscience And Mineral Resources (Kigam) Apparatus and method for solution mining using cycling process

Also Published As

Publication number Publication date
JP3272020B2 (en) 2002-04-08

Similar Documents

Publication Publication Date Title
US2963758A (en) Production of fine grained metal castings
EP1787078B1 (en) Casting method and apparatus
US20020096308A1 (en) Method for casting molten metal, apparatus for the same, and cast slab
US2686823A (en) Rotary electric field fluid stirring apparatus
CN111188036B (en) Alternating magnetic field assisted laser remanufacturing method under inclined angle
JP2006527661A (en) Continuous casting machine that electromagnetically rotates molten metal moving in the nozzle
JP3272020B2 (en) Method and apparatus for levitation heating of metal lump
JP4113813B2 (en) Induction heating device
GB2173380A (en) Electric arc melting apparatus and associated method
EP1281467A2 (en) Apparatus and method for forming a body
JP2011527942A (en) Electromagnetic braking device with continuous casting mold
CN111172531A (en) Alternating magnetic field auxiliary laser remanufacturing device under inclination angle
US3504148A (en) Method and apparatus for producing bimetallic articles by inductive heating and positioning means
CN211921696U (en) Alternating magnetic field auxiliary laser remanufacturing device under inclination angle
JP3041080B2 (en) Precision casting equipment
JP3167358B2 (en) Floating melting method
US4499583A (en) Induction furnace
US5218178A (en) Method of and apparatus for internal heating of solid bodies using electromagnetic induction
JP3122321B2 (en) Continuous casting equipment and melting furnace by induction heating with magnetic flux interruption device
JP3729657B2 (en) Method and apparatus for remelting treatment of primary coating layer
JP3145142B2 (en) Ingot dissolution method
EP1791665A1 (en) Methods and facilities for suppressing vortices arising in tundishes or ladles during their respective discharge
US2729692A (en) Rotary field stirring device with independently driven fan
JP2001316734A (en) Method for controlling concentration of flow flux in guiding tube
JP2000088467A (en) Floating melting apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees