JPH0521410B2 - - Google Patents

Info

Publication number
JPH0521410B2
JPH0521410B2 JP15952284A JP15952284A JPH0521410B2 JP H0521410 B2 JPH0521410 B2 JP H0521410B2 JP 15952284 A JP15952284 A JP 15952284A JP 15952284 A JP15952284 A JP 15952284A JP H0521410 B2 JPH0521410 B2 JP H0521410B2
Authority
JP
Japan
Prior art keywords
vortex
pipe
flow
vortex generator
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15952284A
Other languages
Japanese (ja)
Other versions
JPS6138421A (en
Inventor
Koji Hotsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOBARU KK
Original Assignee
OOBARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOBARU KK filed Critical OOBARU KK
Priority to JP15952284A priority Critical patent/JPS6138421A/en
Publication of JPS6138421A publication Critical patent/JPS6138421A/en
Publication of JPH0521410B2 publication Critical patent/JPH0521410B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3209Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices
    • G01F1/3218Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices bluff body design

Description

【発明の詳細な説明】 技術分野 本発明は、渦流量計、より詳細には、渦信号を
検出整形増幅して発信されるパルス信号としての
メータ係数を求める新規な渦流量計に関する。
TECHNICAL FIELD The present invention relates to a vortex flowmeter, and more particularly to a novel vortex flowmeter that detects, shapes, and amplifies a vortex signal to obtain a meter coefficient as a pulse signal transmitted.

従来技術 無限流路内に置かれた物体、即ち、渦発生体の
後流に生ずる所謂カルマン渦の発生周波数(Hz)
は、渦発生体の代表長さをdとし、流速をVとす
ると、 =SV/d ……(1) であらわされることは周知の通りである。ここ
に、比例定数Sはストローハル数と呼び、渦発生
体の形状が定まれば、あるレイノズル数の範囲で
一定な無次元数である。このように無限流路内に
おいてはストローハル数は一義的に定められる。
しかし、口径Dの管路内を流れる流体に対向して
代表長さdの渦発生体が配設される場合において
は、カルマン渦は管壁の影響を受ける。この影響
の度合は渦と壁面との距離に関係するため、d/
Dの大きさによりストローハル数が変化し、上記
無限流路内でのようにストローハル数一定として
流速を求めることはできない。実験によると、渦
発生体の形状を断面三角とした場合、ストローハ
ル数は、d/Dが大きくなるに従つて漸増する。
ここにおいて、今、Sを管路内流速Vを基準とし
たストローハル数、S′を渦発生体を通過する流速
V′を基準としたストローハル数とすると、これ
らの間には、 =SV/d=S′V′/d ……(2) の関係がある。ストローハル数S′はSに比し、
d/Dの変化に対する変化は小さいが、ストロー
ハル数一定として渦周波数を算出することは誤差
を大きくし、このようにして求めた渦周波数から
メータ係数を算出することは、誤差が大きすぎて
実用的でなく、従来はこのメータ係数を実験的に
求めなければならなず不経済で、また、わずらわ
しかつた。
Prior art Generation frequency (Hz) of the so-called Karman vortex that occurs in the wake of an object placed in an infinite flow path, that is, a vortex generator
As is well known, it is expressed as =SV/d (1) where d is the representative length of the vortex generator and V is the flow velocity. Here, the proportionality constant S is called the Strouhal number, and once the shape of the vortex generator is determined, it is a dimensionless number that is constant within a certain Raynozzle number range. In this way, the Strouhal number is uniquely determined within the infinite flow path.
However, in a case where a vortex generating body having a representative length d is disposed opposite to a fluid flowing in a pipe having a diameter D, the Karman vortex is influenced by the pipe wall. The degree of this influence is related to the distance between the vortex and the wall, so d/
The Strouhal number changes depending on the size of D, and the flow velocity cannot be determined by assuming a constant Strouhal number as in the infinite flow path described above. According to experiments, when the shape of the vortex generator is triangular in cross section, the Strouhal number gradually increases as d/D increases.
Here, S is the Strouhal number based on the flow velocity V in the pipe, and S' is the flow velocity passing through the vortex generator.
Assuming that the Strouhal number is based on V', there is a relationship between them as follows: =SV/d=S'V'/d...(2). The Strouhal number S′ is compared to S,
Although the change in response to changes in d/D is small, calculating the vortex frequency by assuming a constant Strouhal number increases the error, and calculating the meter coefficient from the vortex frequency determined in this way causes too large an error. Conventionally, this meter coefficient had to be determined experimentally, which was uneconomical and troublesome.

目 的 本発明は、以上に述べた問題点を解決するため
になされたもので、d/Dの変化に対して極値を
もつデルタ数δという無次元数を導入することに
より渦発生体の代表長さdと管路径Dを計算して
d/Dを求めるようにし、もつて、実験によらず
にδ数を算出し得るようにして正確に渦流量計の
メータ係数を求めるようにしたものである。
Purpose The present invention was made in order to solve the above-mentioned problems, and by introducing a dimensionless number called delta number δ that has an extreme value with respect to changes in d/D, the vortex generating body can be improved. The representative length d and the pipe diameter D are calculated to determine d/D, and the δ number can be calculated without experimentation, thereby accurately determining the meter coefficient of the vortex flowmeter. It is something.

構 成 第1図は、渦流量計の一例を説明するたの断面
図で、A図は側断面図、B図はA図のB−B線断
面図で、図中、10は被測定流体が流れる管路、
1は渦発生体で、無限流路10内に置かれた渦発
生体1の後流に生ずるカルマン渦に関して、渦の
発生周波数(Hz)が、 =SV/d で表わされることは前述の通りである。ここで、
は周波数、Vは流速、dは渦発生体の代表長
さ、Sはストローハル数と呼ばれる無次元量で、
あるレイノズル数の範囲で一定値を保つとされて
いる。
Configuration Fig. 1 is a sectional view for explaining an example of a vortex flowmeter, Fig. A is a side sectional view, and Fig. B is a sectional view taken along the line B-B of Fig. A. In the figure, 10 indicates the fluid to be measured. The pipe through which the
1 is a vortex generator, and as mentioned above, regarding the Karman vortex generated in the wake of the vortex generator 1 placed in the infinite flow path 10, the vortex generation frequency (Hz) is expressed as =SV/d. It is. here,
is the frequency, V is the flow velocity, d is the representative length of the vortex generator, and S is a dimensionless quantity called the Strouhal number.
It is said to maintain a constant value within a certain Raynozzle number range.

しかしながら、密閉された管路10内に渦発生
体1がある渦流量計の場合、カルマン渦は管壁の
影響(鏡像)を受け、第2図の曲線A,Bに示す
ように、d/Dの変化に対してストローハル数は
一定とならない。デルタ型渦流量計(三角柱)に
よる実験によると、ストローハル数は第3図の曲
線A,Bに示す如く、d/Dが大きくなるに従つ
て漸増する。ここで、Sは管内流速Vを基準とし
たもの、S′は渦発生体を通過する流速V′を基準と
したもので、これらの間には、前述のように、 =SV/d=S′V′/d の関係がある。即ち、ストローハル数は管内流速
Vよりも渦発生体近傍の流速V′を基準にした方
が一定性を保つが、S′=constと考えるとその誤
差は、非常に大きく、渦流量計として使用するこ
とは出来ない。一方、渦流量計のパルス定数(メ
ータ係数)をK(cm3/p)(pはパルス数)とする
と、Aを管路の断面積、A′を渦発生体翌傍の断
面積として、 K=1/AV=1/A′V′ ……(3) となる。
However, in the case of a vortex flowmeter with a vortex generator 1 in a sealed pipe 10, the Karman vortex is influenced by the pipe wall (mirror image), and as shown in curves A and B in FIG. The Strouhal number does not remain constant as D changes. According to experiments using a delta-type vortex flowmeter (triangular prism), the Strouhal number gradually increases as d/D increases, as shown by curves A and B in FIG. Here, S is based on the flow velocity V in the pipe, and S' is based on the flow velocity V' passing through the vortex generator, and between these, as mentioned above, =SV/d=S There is a relationship of 'V'/d. In other words, the Strouhal number remains more constant when based on the flow velocity V' near the vortex generator than on the flow velocity V in the pipe, but if we consider that S' = const, the error is extremely large, and it cannot be used as a vortex flowmeter. It cannot be used. On the other hand, if the pulse constant (meter coefficient) of the vortex flowmeter is K (cm 3 /p) (p is the number of pulses), then A is the cross-sectional area of the pipe, and A' is the cross-sectional area next to the vortex generator. K=1/AV=1/A'V'...(3).

d/D=0.35の場合 A′≒A(1−1.25d/D)と考えられるので、 K=π/4SD2d=π/4S′(1−1.25d/D)D2d =π/4S d/DD3=π/4S′ d/D(1−1.25d
/D)D3 ……(4) となる。故に δ=π/4S d/D=π/4S′ d/D(1−1.25
d/D) ……(5) とし、このδをデルタ数と名付けると、δは無次
元量で、 K=δD3 ……(6) で表わされる。このδを求めると、第3図の曲線
Cの如くなる。通常、渦流量計の場合、d/Dの
値は0.2〜0.3程度であり、この範囲では、ストロ
ーハル数Sを一定と考えるより、デルタ数δを一
定とした方が誤差は少ないことが判る。即ち、
d/D=0.2〜0.3の範囲に於ける平均ストローハ
ル数S0,S0′及び平均デルタ数δ0を用い、(S0
S)/S0,(S0′−S′)/S0′、及び(δ0−δ)/
δ0を求めると、S0=CONST/S0′=constと考え
たときの誤差は10%以上に及ぶが、δ0=constと
することによる誤差は1.5以内に留まる。従つて、
渦流量計の場合、管の口径Dを正確に計測し、K
=δ0D3とすることにより、その流量計のパルス
定数Kを定めることが出来る。
When d/D=0.35, it is considered that A'≒A (1-1.25d/D), so K=π/4SD 2 d=π/4S'(1-1.25d/D) D 2 d = π/ 4S d/DD 3 = π/4S' d/D (1-1.25d
/D)D 3 ...(4). Therefore, δ=π/4S d/D=π/4S' d/D(1-1.25
d/D) ...(5) and this δ is named the delta number, δ is a dimensionless quantity and is expressed as K=δD 3 ...(6). When this δ is determined, it becomes a curve C in FIG. Normally, in the case of a vortex flowmeter, the value of d/D is around 0.2 to 0.3, and in this range, it is clear that the error is smaller if the delta number δ is constant than if the Strouhal number S is constant. . That is,
Using the average Strouhal numbers S 0 , S 0 ′ and the average delta number δ 0 in the range of d/D=0.2 to 0.3, (S 0
S)/S 0 , (S 0 ′−S′)/S 0 ′, and (δ 0 −δ)/
When determining δ 0 , the error when considering S 0 =CONST/S 0 ′=const is more than 10%, but the error due to setting δ 0 =const remains within 1.5. Therefore,
In the case of a vortex flowmeter, accurately measure the pipe diameter D, and
By setting = δ 0 D 3 , the pulse constant K of the flowmeter can be determined.

効 果 以上の説明から明らかなように、本発明による
と、渦発生体の代表長さdと管路径Dを計測して
d/Dを求め、これよりδ数を算出してメータ係
数を求めるようにしたので、実験によることなく
メータ係数を求めることができるので、従来技術
に比して経済的にかつ容易にメータ係数を求める
ことができる。
Effects As is clear from the above explanation, according to the present invention, the representative length d of the vortex generator and the pipe diameter D are measured to obtain d/D, and the δ number is calculated from this to obtain the meter coefficient. With this arrangement, the meter coefficient can be determined without experimentation, and therefore the meter coefficient can be determined more economically and easily than in the prior art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、デルタメータの一例を説明するため
の図、第2図は、渦発生体の代表長さdと管路径
Dとの比d/Dとストローハル数S及びデルタ数
δとの関係を示す図、第3図は、d/Dと誤差の
関係を示す図である。 1……渦発生体、10……流路管。
FIG. 1 is a diagram for explaining an example of a delta meter, and FIG. 2 is a diagram showing the ratio d/D of the representative length d of the vortex generator and the pipe diameter D, the Strouhal number S, and the delta number δ. A diagram showing the relationship, FIG. 3, is a diagram showing the relationship between d/D and error. 1... Vortex generator, 10... Channel pipe.

Claims (1)

【特許請求の範囲】 1 口径Dの流路管と、該流路管内に配設され流
れに面した代表長さdの渦発生体を有し、該渦発
生体の代表長さdと流路管口径Dとの比d/Dが
0.2〜0.3の範囲で、前記流路管内の流速を基準と
して定められたストローハル数Sに比例した交番
渦信号をパルス信号として発信する渦流量計にお
いて、無次元のデルタ数δを δ=π/4S d/D と定め、流量の重みをもつ上記パルス信号として
のメータ係数Kを K=δD3 より求めることを特徴とする渦流量計。
[Scope of Claims] 1. A flow path pipe having a diameter D, and a vortex generator having a representative length d disposed within the flow path facing the flow, wherein the representative length d of the vortex generator and the flow The ratio d/D to the pipe diameter D is
In a vortex flowmeter that transmits an alternating vortex signal as a pulse signal that is proportional to the Strouhal number S, which is determined based on the flow velocity in the flow pipe in the range of 0.2 to 0.3, the dimensionless delta number δ is expressed as δ=π /4S d/D, and the meter coefficient K as the above-mentioned pulse signal having a weight of the flow rate is determined from K=δD 3 .
JP15952284A 1984-07-30 1984-07-30 Vortex flowmeter Granted JPS6138421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15952284A JPS6138421A (en) 1984-07-30 1984-07-30 Vortex flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15952284A JPS6138421A (en) 1984-07-30 1984-07-30 Vortex flowmeter

Publications (2)

Publication Number Publication Date
JPS6138421A JPS6138421A (en) 1986-02-24
JPH0521410B2 true JPH0521410B2 (en) 1993-03-24

Family

ID=15695603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15952284A Granted JPS6138421A (en) 1984-07-30 1984-07-30 Vortex flowmeter

Country Status (1)

Country Link
JP (1) JPS6138421A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272922A (en) * 1988-04-25 1989-10-31 Agency Of Ind Science & Technol Vortex flowmeter
EP0591557B1 (en) * 1992-04-27 1999-07-21 Citizen Watch Co. Ltd. Hand-indication electronic timepiece

Also Published As

Publication number Publication date
JPS6138421A (en) 1986-02-24

Similar Documents

Publication Publication Date Title
US4638672A (en) Fluid flowmeter
US4350047A (en) Vortex-shedding flowmeter having two bluff bodies
JPH0521410B2 (en)
JP3119782B2 (en) Flowmeter
JP3197352B2 (en) Vortex flow meter
JPS58189518A (en) Mass flowmeter
JPH037780Y2 (en)
JPH06180243A (en) Vortex flowmeter
JPH0454892B2 (en)
Delsing Ultrasonic gas flow meter with corrections for large dynamic metering range
JPS59132313A (en) Krmn vortex flow speed meter
JPS6231851Y2 (en)
JPS5953490B2 (en) Movable orifice flowmeter
JP2000002567A (en) Composite type mass flow meter
JPS6343687B2 (en)
GB1482699A (en) Flowmeters
JPS61253424A (en) Vortex flowmeter
JPH0532732Y2 (en)
RU2057295C1 (en) Flowmeter
JPH01250023A (en) Vortex flowmeter
JPS6324411Y2 (en)
AU594362C (en) Fluid flowmeter
JPH0634417A (en) Vortex flowmeter
JPS60129619A (en) Current meter for mixed phase flow
JPH0321455Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term