JPH05213281A - Intake for supersonic air flow - Google Patents

Intake for supersonic air flow

Info

Publication number
JPH05213281A
JPH05213281A JP5420992A JP5420992A JPH05213281A JP H05213281 A JPH05213281 A JP H05213281A JP 5420992 A JP5420992 A JP 5420992A JP 5420992 A JP5420992 A JP 5420992A JP H05213281 A JPH05213281 A JP H05213281A
Authority
JP
Japan
Prior art keywords
supersonic
sectional area
air flow
flow passage
shock wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5420992A
Other languages
Japanese (ja)
Other versions
JPH0818597B2 (en
Inventor
Akira Fujimoto
朗 藤本
Hideshi Shima
英志 嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP5420992A priority Critical patent/JPH0818597B2/en
Publication of JPH05213281A publication Critical patent/JPH05213281A/en
Publication of JPH0818597B2 publication Critical patent/JPH0818597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To provide a supersonic air flow intake which dispenses with a complex control mechanism, and always functions self-stably, and can be used in a high mach domain (M>=2.5). CONSTITUTION:An external domain is provided with the first supersonic diffuser section 3 whose sectional area of a flow passage is decreased by decreasing the space of a side wall 2 in the direction of an air flow and moreover the second supersonic diffuser section 5 which is constant in the space of the side wall and decreased in the sectional area of the flow passage in the direction of the air flow by a ramp 4 on the inside of an upper wall 1. An internal domain is provided with a throat section 13 to minimize the sectional area of the flow passage near a cowl lip 14 and a subsonic diffuser section 15 to increase the sectional area of the flow passage. The supersonic air flow is precompressed to about Mach number 2-3 in the first supersonic diffuser section, and even when a vertical shock wave formed in the throat section moves forward, high rear static pressure is leaked downward for preventing the occurrence of nonstarting.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音速空気流を取り入
れ、これを亜音速まで減速・圧縮して使用する高速航空
機用ターボ型エンジン、ラムジェットエンジン及び熱交
換機等に用いられる超音速空気流の取入口に係り、特に
高マッハ領域(M≧2.5)で使用される超音速空気流
の取入口に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supersonic air used for a high speed aircraft turbo engine, a ramjet engine, a heat exchanger or the like, which takes in a supersonic air flow, decelerates and compresses it to a subsonic speed. The present invention relates to a flow inlet, and particularly to a supersonic air flow inlet used in a high Mach region (M ≧ 2.5).

【0002】[0002]

【従来の技術】一般に、戦闘機等に用いられる超音速空
気流の取入口は、上壁と、その両側に垂設され、先端面
に超音速で流入する空気流方向に対して後退角を有する
側壁とからなる下向きチャンネル状の外部領域(開流路
区間)において、間隔一定の側壁に対して上壁内面のラ
ンプにより空気流方向に流路断面積を漸次減少させて全
ての超音速圧縮を行うと共に、外部領域に連ねて設けら
れ、両側壁間の下部をカウル(底蓋)によって閉鎖した
内部領域(閉流路区間)において、カウルリップ付近に
設けられた流路断面積が最小となるスロート部により空
気流をほぼ音速になるように減速・圧縮し、かつスロー
ト部に垂直衝撃波を立て、それ以降の流れを亜音速とす
る一方、スロート部以降の流路断面積を漸次増大させた
亜音速ディフューザ部により亜音速状態で所定のマッハ
数まで減速・圧縮するように構成されている。
2. Description of the Related Art In general, supersonic airflow inlets used in fighters and the like are vertically installed on the upper wall and both sides thereof, and have a receding angle with respect to the airflow direction flowing into the tip surface at supersonic speed. In the downward channel-shaped outer region (open channel section) consisting of the side wall and the side wall, the ramp cross section is gradually reduced in the air flow direction by the ramp on the inner surface of the upper wall with respect to the side wall with a constant spacing, and all supersonic compression is performed. In addition, in the inner region (closed flow passage section) which is connected to the outer region and the lower part between both side walls is closed by the cowl (bottom cover), the flow passage cross-sectional area provided near the cowl lip is minimized. By decelerating and compressing the air flow by the throat part so that it becomes almost sonic speed, and making a vertical shock wave at the throat part, and making the flow after that a subsonic speed, gradually increase the cross-sectional area of the flow path after the throat part. Subsonic Diffuse And it is configured to decelerate and compressing subsonic state until a predetermined Mach number by parts.

【0003】この形式の空気取入口は、全ての超音速圧
縮を外部領域で行うため、外部圧縮型と呼ばれるが、実
用マッハ数上限が2.5程度で、高マッハ領域には向か
ない。
This type of air intake is called an external compression type because all supersonic compression is performed in the external region, but the practical Mach number upper limit is about 2.5 and is not suitable for the high Mach region.

【0004】これは、超音速空気流を効率よく減速・圧
縮するには、ランプによる流れの偏向角(流れは下向き
に曲げられる)をマッハ数の増大と共に大きくする必要
があり、偏向角を大きくし過ぎると、その分カウルを下
方に大きく膨らませる必要を生じ、結果として、高マッ
ハ領域ではカウル抵抗が急増し、この速度域での使用に
不向きとなるからである。
This is because in order to effectively decelerate and compress the supersonic air flow, it is necessary to increase the deflection angle of the flow by the ramp (the flow is bent downward) with the increase of the Mach number, and the deflection angle is increased. If too much, it is necessary to inflate the cowl to a large extent correspondingly, and as a result, the cowl resistance increases rapidly in the high Mach region, making it unsuitable for use in this speed range.

【0005】このため、従来、高マッハ領域で使用され
る超音速空気流の取入口は、図9〜図16に示すよう
に、上壁31と、その両側に垂設され、先端面(図9,
図10においては左端面)に超音速で流入する空気流方
向(図9,図10における白抜き矢印方向)に対して後
退角を有する側壁32とからなる下向きチャンネル状の
外部領域において、間隔一定の側壁に対して上壁31内
面のランプ33により空気流方向に流路断面積を漸次減
少させて超音速圧縮の一部を行うと共に、外部領域に連
ねて設けられ、両側壁32間の下部をカウル34によっ
て閉鎖した内部領域において、残りの超音速圧縮を行
い、カウルリップ35から適宜内方における流路断面積
が最小となるスロート部36で空気流がほぼ音速になる
ように減速・圧縮し、かつスロート部36に垂直衝撃波
37を立て、それ以降の流れを亜音速とする一方、スロ
ート部36以降の流路断面積を漸次増大させた亜音速デ
ィフューザ部38により亜音速状態で所定のマッハ数ま
で減速・圧縮するように構成されている。
For this reason, as shown in FIGS. 9 to 16, the inlet for the supersonic air flow conventionally used in the high Mach region is vertically provided on the upper wall 31 and both sides thereof, and the front end surface (see FIG. 9,
In the outer region of the downward channel, which is composed of the side wall 32 having a receding angle with respect to the air flow direction (the direction of the white arrow in FIGS. 9 and 10) that flows into the supersonic velocity at the left end face in FIG. The ramp 33 on the inner surface of the upper wall 31 with respect to the side wall of the upper wall 31 gradually reduces the flow passage cross-sectional area in the air flow direction to perform a part of the supersonic compression, and is provided in a continuous manner in the outer region, and the lower portion between the side walls 32 is In the inner region closed by the cowl 34, the remaining supersonic compression is performed, and the throat portion 36 from the cowl lip 35 is appropriately decelerated / compressed so that the air flow is almost sonic at the throat portion 36 having the smallest flow passage cross-sectional area. In addition, a vertical shock wave 37 is set up in the throat section 36 to make the flow thereafter subsonic, and to the subsonic diffuser section 38 in which the flow passage cross-sectional area after the throat section 36 is gradually increased. And it is configured to decelerate and compressing to a predetermined Mach number at the rear acoustic velocity state.

【0006】この形式の空気取入口は、超音速圧縮の一
部を外部領域、残りを内部領域で行うため、混合圧縮型
と呼ばれる。
This type of air intake is called a mixed compression type because a part of supersonic compression is performed in the outer region and the rest is performed in the inner region.

【0007】[0007]

【発明が解決しようとする課題】この従来の混合圧縮型
の超音速空気流の取入口では、主流路出口39における
静圧を適節に制御することにより、スロート部36に垂
直衝撃波37を定在させる必要がある。通常、これはエ
ンジン回転数、燃料噴射量、バイパス流路への空気流量
等を常に能動的に制御してこの状態を維持する。
In this conventional mixed compression type supersonic air flow inlet, the vertical shock wave 37 is fixed in the throat portion 36 by controlling the static pressure at the main flow passage outlet 39 to an appropriate degree. Need to be present. Normally, this is always maintained by actively controlling the engine speed, the fuel injection amount, the air flow rate to the bypass passage, and the like.

【0008】もし、主流路出口39での静圧が適正静圧
より低いと、スロート部36の垂直衝撃波37は後方
(図9,図10においては右方)へ移動し、圧力がバラ
ンスする安定点に自動的に止まる。このように、垂直衝
撃波37を後方に飲み込んだ状態をいわゆる始動状態と
いう。
If the static pressure at the main flow path outlet 39 is lower than the proper static pressure, the vertical shock wave 37 of the throat portion 36 moves rearward (to the right in FIGS. 9 and 10) to stabilize the pressure. Stops automatically at the point. In this way, the state in which the vertical shock wave 37 is swallowed backward is called a so-called starting state.

【0009】逆に、主流路出口39での静圧が適正静圧
より高いと、垂直衝撃波37はスロート部36の前方
(図9,図10においては左方)へ移動しようとする。
内部領域内において、何等かの原因で垂直衝撃波37が
前方へ移動を始めると、移動前に比べて衝撃波直前のマ
ッハ数が上昇し、衝撃波が強くなる。結果的に衝撃波直
後の静圧が上昇し、更に前方にこれを押し出そうとする
力が働く。従って、垂直衝撃波37が一旦スロート部3
6を通り越し、その前方に入ると、衝撃波は直ちに外部
領域に吐き出され、吐き出された垂直衝撃波37がカウ
ルリップ35に達すると、流路が開流路区間となり、衝
撃波後方の高い静圧は下方へ抜けるため、自然に圧力が
バランスする位置で衝撃波の移動が止まる。これが、い
わゆる不始動状態である。
On the contrary, when the static pressure at the outlet 39 of the main flow path is higher than the proper static pressure, the vertical shock wave 37 tries to move to the front of the throat portion 36 (to the left in FIGS. 9 and 10).
When the vertical shock wave 37 starts to move forward due to some cause in the internal region, the Mach number immediately before the shock wave increases and the shock wave becomes stronger than before the movement. As a result, the static pressure immediately after the shock wave rises, and the force that pushes this out further acts. Therefore, the vertical shock wave 37 once becomes
After passing 6 and entering in front of it, the shock wave is immediately discharged to the external area, and when the discharged vertical shock wave 37 reaches the cowl lip 35, the flow path becomes an open flow path section, and the high static pressure behind the shock wave is downward. The shock wave stops moving at the position where the pressure naturally balances as it escapes. This is the so-called non-starting state.

【0010】上述したように、始動から不始動への状態
移行は瞬時に発生するため、エンジンコップレッサの失
速、燃焼器の吹き消え等を誘発する場合が多い。又、航
空機が超高速で飛行中に不始動が発生すると、カウルリ
ップ35からの圧力漏れにより新たな外部衝撃波が発生
して造波抵抗が急増するため、急激な機体姿勢の変化を
誘発し、最悪の場合、操縦不能に陥って墜落する危険性
もある。
As described above, since the state transition from the start to the non-start occurs instantaneously, it often causes the stall of the engine copressor, the blowout of the combustor, and the like. In addition, if the aircraft fails to start at a very high speed during flight, a new external shock wave is generated due to pressure leakage from the cowl lip 35, and the wave-making resistance increases rapidly. In the worst case, there is also the risk of falling out of control and crashing.

【0011】上記混合圧縮型の超音速空気流の取入口に
おいては、不始動の発生を回避あるいは遅らせるため
に、スロート部36にスロット型若しくは多孔壁型のス
ロート抽気孔40を設け、衝撃波後方の圧力をここで逃
がす構造を採用している。しかし、このスロート抽気孔
40の抽気量を多くすると、不始動発生までのマージン
が大きくなる一方、抽気抵抗が増加する欠点がある。
又、この構造だけでは不始動を完全に抑えることは不可
能で、主流路出口39での静圧を精密に制御する複雑な
機構が必要となる。
At the inlet of the mixed compression type supersonic air flow, in order to avoid or delay the occurrence of a non-start, a slot type or perforated wall type throat extraction hole 40 is provided, and a throat extraction hole 40 is provided at the rear of the shock wave. It adopts a structure that allows pressure to escape here. However, if the amount of air extracted from the throat air extraction hole 40 is increased, the margin until the occurrence of a non-start increases, but the air extraction resistance increases.
Further, this structure alone cannot completely prevent the non-startup, and a complicated mechanism for precisely controlling the static pressure at the main flow path outlet 39 is required.

【0012】なお、不始動は、ランプ33で発生する斜
め衝撃波41と境界層との干渉による剥離によっても発
生するので、これを抑えるために、通常、ランプ面上あ
るいは側壁に多孔壁型の抽気孔42,43が設けられ
る。
Since the non-starting is also caused by the peeling due to the interference between the oblique shock wave 41 generated in the lamp 33 and the boundary layer, in order to suppress this, the porous wall type extraction is usually performed on the lamp surface or on the side wall. Pores 42, 43 are provided.

【0013】図9において44はスロート抽気孔40の
排出口、45,46は抽気孔42,43の排出口であ
る。
In FIG. 9, reference numeral 44 is a discharge port of the throat extraction hole 40, and 45 and 46 are discharge ports of the extraction holes 42 and 43.

【0014】そこで、本発明は、複雑な制御機構を必要
とせず、常に自己安定的に作動し、かつ、高マッハ領域
で使用可能な超音速空気流の取入口の提供を目的とす
る。
Therefore, an object of the present invention is to provide a supersonic airflow intake port that does not require a complicated control mechanism, always operates in a self-stable manner, and can be used in a high Mach region.

【0015】[0015]

【課題を解決するための手段】前記課題を解決するた
め、本発明の超音速空気流の取入口は、超音速の空気流
を取り入れ、これを亜音速まで減速・圧縮する超音速空
気流の取入口であって、下向きチャンネル状の外部領域
に、超音速で流入する空気流方向に側壁の間隔の減少に
より流路断面積を減少させた第1超音速ディフューザ部
が設けられると共に、側壁の間隔を一定としかつ上壁内
面のランプにより空気流方向に流路断面積を減少させた
第2超音速ディフューザ部が第1超音速ディフューザ部
に連ねて設けられ、外部領域に連ねて設けられ、下部を
カウルによって閉鎖した内部領域に、流路断面積を最小
とするスロート部がカウルリップ付近に設けられると共
に、スロート部に連ねて流路断面積を増大させた亜音速
ディフューザ部が設けられているものである。
In order to solve the above-mentioned problems, the inlet of the supersonic airflow of the present invention is a supersonic airflow which takes in a supersonic airflow and decelerates / compresses it to a subsonic speed. A first supersonic diffuser portion having a flow passage cross-sectional area reduced due to a decrease in the distance between the side walls in the direction of the air flow flowing in at the supersonic speed, which is the intake port, is provided in the outer region of the side wall. A second supersonic diffuser portion, which has a constant interval and whose flow passage cross-sectional area is reduced in the air flow direction by a ramp on the inner surface of the upper wall, is provided so as to be continuous with the first supersonic diffuser portion, and is continuously provided for an external region, A throat part that minimizes the flow passage cross-sectional area is provided near the cowl lip in the inner area where the lower part is closed by a cowl, and a subsonic diffuser that increases the flow passage cross-sectional area is connected to the throat part. It is what is.

【0016】[0016]

【作用】上記手段においては、スロート部に形成された
垂直衝撃波が前方に移動しても、その後方の高い静圧は
カウルリップ前方の開流路で下方に漏れるため急激な挙
動変化は起こらず、圧力が適当にバランスする位置で衝
撃波は自然に止まり、又、高マッハ数で流入する超音速
空気流は第1超音速ディフューザ部で側壁によって形成
される斜め衝撃波によりマッハ数2〜3程度まで予圧縮
される。
In the above means, even if the vertical shock wave formed in the throat moves forward, the high static pressure behind it leaks downward due to the open flow path in front of the cowl lip, so that there is no sudden change in behavior. , The shock wave naturally stops at the position where the pressure is properly balanced, and the supersonic airflow flowing in at a high Mach number is up to about Mach number 2-3 due to the oblique shock wave formed by the side wall in the first supersonic diffuser section. Pre-compressed.

【0017】[0017]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0018】図1、図2及び図3は本発明の一実施例の
超音速空気流の取入口の側面図、底面図及び正面図であ
る。
FIGS. 1, 2 and 3 are a side view, a bottom view and a front view of a supersonic airflow inlet according to an embodiment of the present invention.

【0019】厚さ一様で、矩形板状の上壁1と、その両
側に垂設され、先端面(図1,図2においては左端面)
に高マッハ数(M≧2.5)の超音速で流入する空気流
方向(図1,図2における白抜き矢印方向)に対して後
退角θを有する側壁2とからなる下向きチャンネル状の
外部領域(開流路区間)には、両側壁2の間隔を空気流
方向に向って漸次減少させる(図4,図5参照)ことに
より流路断面積を減少させた第1超音速ディフューザ部
3が設けられていると共に、両側壁2の間隔を一定とし
(図6参照)、かつ上壁1の内面に設けた所要勾配のラ
ンプ4により空気流方向に向って流路断面積を漸次減少
させた第2超音速ディフューザ部5が第1超音速ディフ
ューザ部3に連ねて設けられている。
A rectangular plate-shaped upper wall 1 having a uniform thickness and vertically extending on both sides of the upper wall 1 have a tip surface (left end surface in FIGS. 1 and 2).
A downward channel-shaped exterior consisting of a side wall 2 having a receding angle θ with respect to the direction of the air flow flowing in at a supersonic velocity of a high Mach number (M ≧ 2.5) (the direction of the white arrow in FIGS. 1 and 2). In the region (open channel section), the first supersonic diffuser section 3 has a channel cross-sectional area reduced by gradually reducing the distance between the side walls 2 in the air flow direction (see FIGS. 4 and 5). Is provided, the distance between the side walls 2 is made constant (see FIG. 6), and the ramp 4 having a required gradient provided on the inner surface of the upper wall 1 gradually reduces the flow passage cross-sectional area in the air flow direction. Further, the second supersonic diffuser portion 5 is provided in series with the first supersonic diffuser portion 3.

【0020】又、外部領域には、第1超音速ディフュー
ザ部3の側壁2及び上壁1の内面で発達する境界層を第
2超音速ディフューザ部5内に吸い込まないようにする
ため、ダイバータ構造が採用されている。
In addition, in order to prevent the boundary layer developed on the inner surfaces of the side wall 2 and the upper wall 1 of the first supersonic diffuser portion 3 from being sucked into the second supersonic diffuser portion 5 in the outer region, a diverter structure is provided. Has been adopted.

【0021】すなわち、ランプ4の下面には、隔壁6が
両側壁2から僅かに離隔して垂設されており、各隔壁6
とそれぞれの側壁2との間の空隙は、側壁2の外側に開
口し側方ダイバータ空気排出口7と各側壁2に穿設した
側方ダイバータ流路8(図7参照)を介して連通されて
いる一方、ランプ4直前の上壁1には、スロット型の上
方ダイバータ空気排出口9が設けられている。更に必要
に応じて、第2超音速ディフェーザ部5のランプ4上に
多孔壁型のランプ抽気孔10を設け、このランプ抽気孔
10を上壁1に設けたランプ抽気排出口11と連通さ
せ、ランプ4面上の境界層と衝撃波との干渉を低く抑え
るようにしてもよい。
That is, partition walls 6 are provided on the lower surface of the lamp 4 so as to be slightly separated from both side walls 2, and each partition wall 6 is provided.
And the respective side walls 2 are communicated with each other through the side diverter air discharge ports 7 which are open to the outside of the side walls 2 and the side diverter flow paths 8 (see FIG. 7) formed in each side wall 2. On the other hand, the upper wall 1 in front of the lamp 4 is provided with a slot-type upper diverter air outlet 9. Further, if necessary, a porous wall-type lamp extraction hole 10 is provided on the lamp 4 of the second supersonic dephasor unit 5, and the lamp extraction hole 10 is communicated with the lamp extraction port 11 provided on the upper wall 1, The interference between the boundary layer on the surface of the lamp 4 and the shock wave may be kept low.

【0022】上記外部領域には、両側壁2の下端部間を
カウル12によって閉鎖した内部領域(閉流路区間)が
連ねて設けられている。内部領域には、流路断面積を最
小とするスロート部13がカウルリップ14付近に設け
られていると共に、このスロート部13に連ねて流路断
面積を空気流方向に向けて漸次増大させた亜音速ディフ
ューザ部15が設けられており、亜音速ディフューザ部
15は、主流路出口16(図8参照)を経てエンジン
(図示せず)等と連通されている。そして、スロート部
13の上壁1には、垂直衝撃波17の上端をここに保持
するため、スロット型あるいは多孔壁型のスロート抽気
孔18が設けられており、このスロート抽気孔18は、
上壁1に穿設したスロート抽気流路19(図7参照)を
介して上壁1の上側に開口したスロート抽気排出口20
と連通されている。
In the outer region, an inner region (closed flow passage section) in which lower end portions of both side walls 2 are closed by a cowl 12 is provided in series. A throat portion 13 having a minimum flow passage cross-sectional area is provided in the vicinity of the cowl lip 14 in the internal region, and the flow passage cross-sectional area is gradually increased in the air flow direction in a continuous manner with the throat portion 13. A subsonic diffuser portion 15 is provided, and the subsonic diffuser portion 15 is communicated with an engine (not shown) and the like via a main flow path outlet 16 (see FIG. 8). The upper wall 1 of the throat portion 13 is provided with a slot type or perforated wall type throat extraction hole 18 in order to hold the upper end of the vertical shock wave 17 therein, and the throat extraction hole 18 is
Throat bleed air discharge port 20 opened above the upper wall 1 through a throat bleed air flow passage 19 (see FIG. 7) formed in the upper wall 1.
It is in communication with.

【0023】上記構成の超音速空気流の取入口において
は、高マッハ数の超音速で流入した空気は、外部領域に
おける第1超音速ディフューザ部3で両側壁2によって
形成される斜め衝撃波(図示せず)によりマッハ数2〜
3程度まで減速・予圧縮された後、第2超音速ディフュ
ーザ部5でほぼ音速まで減速・圧縮され、スロート部1
3に立てられた垂直衝撃波17により亜音速まで減速・
圧縮される。そして、スロート部13を通過した空気
は、亜音速ディフューザ部15において亜音速状態で更
に所要のマッハ数まで減速・圧縮されてエンジン等に供
給される。
At the supersonic airflow inlet having the above-mentioned structure, the air flowing in at a supersonic velocity of a high Mach number has an oblique shock wave formed by the side walls 2 in the first supersonic diffuser portion 3 in the outer region (see FIG. 2) by Mach number
After being decelerated and pre-compressed to about 3, the second supersonic diffuser section 5 decelerates and compresses to almost the sonic speed, and
Decelerate to subsonic speed by vertical shock wave 17 set up in 3
Compressed. Then, the air that has passed through the throat portion 13 is further decelerated / compressed to a required Mach number in the subsonic state in the subsonic diffuser portion 15 and supplied to the engine or the like.

【0024】上記超音速空気流の減速・圧縮に際し、何
等かの原因で主流路出口16の静圧が上昇した場合、垂
直衝撃波17が前方に移動しても、スロート部13がカ
ウルリップ14付近に存在し、その前方が開流路となっ
ているので、衝撃波後方の高い静圧は下方に漏れるため
急激な挙動変化は起こらず、圧力が適当にバランスする
位置で垂直衝撃波17は自然に止まる。
When the static pressure at the outlet 16 of the main flow path rises for some reason during deceleration / compression of the supersonic air flow, even if the vertical shock wave 17 moves forward, the throat portion 13 is in the vicinity of the cowl lip 14. Since there is an open channel in front of it, a high static pressure behind the shock wave leaks downward so that no sudden behavior change occurs, and the vertical shock wave 17 naturally stops at a position where the pressure is properly balanced. ..

【0025】なお、上述した実施例においては、ランプ
4の勾配を固定する場合について説明したが、これに限
定されるものではなく、ランプ角の可変機構を設け、ラ
ンプ4の勾配を可変にするようにしてもよい。
In the above embodiment, the case where the gradient of the lamp 4 is fixed has been described, but the present invention is not limited to this, and a ramp angle varying mechanism is provided to make the gradient of the lamp 4 variable. You may do it.

【0026】[0026]

【発明の効果】以上説明したように、本発明の超音速空
気流の取入口によれば、スロート部に形成された垂直衝
撃波が前方に移動したとしても、その後方の高い静圧は
カウルリップ前方の開流路で下方に漏れるため急激な挙
動変化は起こらず、圧力が適当にバランスする位置で衝
撃波は自然に止まるので、従来のように複雑な制御機構
を必要とすることなく、常に自己安定的に作動させるこ
とができる。
As described above, according to the supersonic airflow intake of the present invention, even if the vertical shock wave formed in the throat moves forward, the high static pressure behind it causes the cowl lip to have a high static pressure. Since the open flow path in the front leaks downward, there is no sudden behavior change, and the shock wave naturally stops at the position where the pressure is properly balanced, so there is no need for a complicated control mechanism as in the past, and self-control is always possible. It can be operated stably.

【0027】又、高マッハ数で流入する超音速空気流
は、第1超音速ディフューザ部で側壁によって形成され
る斜め衝撃波によりマッハ数2〜3程度まで予圧縮され
るので、高マッハ領域での使用を可能とすることができ
る。
Further, the supersonic airflow flowing in at a high Mach number is pre-compressed to a Mach number of about 2 to 3 by the oblique shock wave formed by the side wall in the first supersonic diffuser portion, so that in the high Mach region. Can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の超音速空気流の取入口の側
面図である。
FIG. 1 is a side view of an inlet for supersonic airflow according to one embodiment of the present invention.

【図2】本発明の一実施例の超音速空気流の取入口の底
面図である。
FIG. 2 is a bottom view of the supersonic airflow inlet of one embodiment of the present invention.

【図3】本発明の一実施例の超音速空気流の取入口の正
面図である。
FIG. 3 is a front view of an inlet for supersonic airflow according to an embodiment of the present invention.

【図4】図1におけるIV−IV線断面図である。4 is a sectional view taken along line IV-IV in FIG.

【図5】図1におけるV−V線断面図である。5 is a sectional view taken along line VV in FIG.

【図6】図1におけるVI−VI線断面図である。6 is a sectional view taken along line VI-VI in FIG.

【図7】図1における VII−VII 線断面図である。7 is a sectional view taken along line VII-VII in FIG.

【図8】図1におけるVIII−VIII線断面図である。8 is a sectional view taken along line VIII-VIII in FIG.

【図9】従来の超音速空気流の取入口の側面図である。FIG. 9 is a side view of a conventional supersonic airflow inlet.

【図10】従来の超音速空気流の取入口の底面図であ
る。
FIG. 10 is a bottom view of a conventional supersonic airflow inlet.

【図11】従来の超音速空気流の取入口の正面図であ
る。
FIG. 11 is a front view of a conventional supersonic airflow inlet.

【図12】図9における XII−XII 線断面図である。12 is a sectional view taken along line XII-XII in FIG.

【図13】図9におけるXIII−XIII線断面図である。13 is a sectional view taken along line XIII-XIII in FIG.

【図14】図9における XIV−XIV 線断面図である。14 is a sectional view taken along line XIV-XIV in FIG.

【図15】図9におけるXV−XV線断面図である。15 is a sectional view taken along line XV-XV in FIG.

【図16】図9における XVI−XVI 線断面図である。16 is a sectional view taken along line XVI-XVI in FIG.

【符号の説明】[Explanation of symbols]

1 上壁 2 側壁 3 第1超音速ディフューザ部 4 ランプ 5 第2超音速ディフューザ部 12 カウル 13 スロート部 14 カウルリップ 15 亜音速ディフューザ部 17 垂直衝撃波 1 Upper Wall 2 Side Wall 3 First Supersonic Diffuser Part 4 Lamp 5 Second Supersonic Diffuser Part 12 Cowl 13 Throat Part 14 Cowl Lip 15 Subsonic Diffuser Part 17 Vertical Shock Wave

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 超音速の空気流を取り入れ、これを亜音
速まで減速・圧縮する超音速空気流の取入口であって、
下向きチャンネル状の外部領域に、超音速で流入する空
気流方向に側壁の間隔の減少により流路断面積を減少さ
せた第1超音速ディフューザ部が設けられると共に、側
壁の間隔を一定とし、かつ上壁内面のランプにより空気
流方向に流路断面積を減少させた第2超音速ディフュー
ザ部が第1超音速ディフューザ部に連ねて設けられ、外
部領域に連ねて設けられ、下部をカウルによって閉鎖し
た内部領域に、流路断面積を最小とするスロート部がカ
ウルリップ付近に設けられると共に、スロート部に連ね
て流路断面積を増大させた亜音速ディフューザ部が設け
られていることを特徴とする超音速空気流の取入口。
1. An inlet for a supersonic air flow that takes in a supersonic air flow, decelerates and compresses it to a subsonic speed.
In the downward channel-shaped outer region, there is provided a first supersonic diffuser portion having a reduced flow passage cross-sectional area due to a decrease in the side wall spacing in the direction of the airflow flowing at supersonic speed, and the side wall spacing is kept constant, and The second supersonic diffuser part, whose flow passage cross-sectional area is reduced by the ramp on the inner surface of the upper wall, is provided so as to be connected to the first supersonic diffuser part, is provided so as to be connected to the outer region, and the lower part is closed by a cowl. In the inner region, a throat portion that minimizes the flow passage cross-sectional area is provided near the cowl lip, and a subsonic diffuser portion that is connected to the throat portion and has an increased flow passage cross-sectional area is provided. Intake of supersonic airflow.
JP5420992A 1992-02-05 1992-02-05 Intake of supersonic airflow Expired - Fee Related JPH0818597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5420992A JPH0818597B2 (en) 1992-02-05 1992-02-05 Intake of supersonic airflow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5420992A JPH0818597B2 (en) 1992-02-05 1992-02-05 Intake of supersonic airflow

Publications (2)

Publication Number Publication Date
JPH05213281A true JPH05213281A (en) 1993-08-24
JPH0818597B2 JPH0818597B2 (en) 1996-02-28

Family

ID=12964167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5420992A Expired - Fee Related JPH0818597B2 (en) 1992-02-05 1992-02-05 Intake of supersonic airflow

Country Status (1)

Country Link
JP (1) JPH0818597B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286900A (en) * 2002-03-29 2003-10-10 Japan Science & Technology Corp Scrum jet combustor and control method thereof
CN102996253A (en) * 2012-12-31 2013-03-27 中国人民解放军国防科学技术大学 Supersonic air intake duct and wall face determination method of supersonic air intake duct
JP2018016132A (en) * 2016-07-26 2018-02-01 三菱重工業株式会社 Opening cover and aircraft
CN115837398A (en) * 2022-12-28 2023-03-24 杭州楠大环保科技有限公司 Super-huge centralized kitchen waste phase change treatment equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286900A (en) * 2002-03-29 2003-10-10 Japan Science & Technology Corp Scrum jet combustor and control method thereof
CN102996253A (en) * 2012-12-31 2013-03-27 中国人民解放军国防科学技术大学 Supersonic air intake duct and wall face determination method of supersonic air intake duct
JP2018016132A (en) * 2016-07-26 2018-02-01 三菱重工業株式会社 Opening cover and aircraft
CN115837398A (en) * 2022-12-28 2023-03-24 杭州楠大环保科技有限公司 Super-huge centralized kitchen waste phase change treatment equipment

Also Published As

Publication number Publication date
JPH0818597B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
US5593112A (en) Nacelle air pump for vector nozzles for aircraft
US3938328A (en) Multicycle engine
US3430640A (en) Supersonic inlet
US4250703A (en) Swinging door particle separator and deicing system
US8757319B2 (en) Turbojet engine nacelle
EP0799982A3 (en) Internal compression supersonic engine inlet
US5216878A (en) Mixed exhaust flow supersonic jet engine and method
EP0719406B1 (en) Altitude gas turbine engine test cell
US3055614A (en) Air-ejector aircraft
JPH04228838A (en) Passive by-pass valve assembly
JP2001520149A (en) Engine air intake that reduces resistance by air injection
JP2000502425A (en) Noise suppressor exhaust structure
JPH07503427A (en) Method for controlling boundary layer of an aircraft aerodynamic surface and aircraft provided with boundary layer control device
GB9424495D0 (en) Aerodynamic low drag structure
GB2442337A (en) A turbofan jet engine wherein bypass ratio can be altered
US5088660A (en) Bleed stability door
US5664415A (en) After-burning turbo-fan engine with a fixed geometry exhaust nozzle having a variable flow coefficient
US3532100A (en) Silencing of gas turbine engines
JPH05213281A (en) Intake for supersonic air flow
US4023365A (en) Combustion engine with pressure filling by the thrust system
RU2670664C1 (en) Asymmetrical air-scoop for three flow engine of faster-than-sound aircraft
US6920890B2 (en) Airflow controller
US5826424A (en) Turbine bypass engines
JP3219177B2 (en) Switching method of turbo ram jet engine
JPS61241447A (en) Method and device for controlling cooling flow pressure of thrust intensifier by mixed flow type variable cycle gas turbine engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees