JPH0521312B2 - - Google Patents

Info

Publication number
JPH0521312B2
JPH0521312B2 JP60123703A JP12370385A JPH0521312B2 JP H0521312 B2 JPH0521312 B2 JP H0521312B2 JP 60123703 A JP60123703 A JP 60123703A JP 12370385 A JP12370385 A JP 12370385A JP H0521312 B2 JPH0521312 B2 JP H0521312B2
Authority
JP
Japan
Prior art keywords
ruthenium
zinc
electrode
carbon plate
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60123703A
Other languages
Japanese (ja)
Other versions
JPS61284058A (en
Inventor
Takaya Shimada
Toshihide Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP60123703A priority Critical patent/JPS61284058A/en
Publication of JPS61284058A publication Critical patent/JPS61284058A/en
Publication of JPH0521312B2 publication Critical patent/JPH0521312B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/365Zinc-halogen accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、電気自動車用、電力貯蔵用等の二次
電池、特に亜鉛−臭素二次電池に使用される電極
およびその製造方法に関する。 (従来技術) 亜鉛−臭素二次電池は、上部に集合電池群を収
容した電解槽、負極液循環ポンプ、正極液循環ポ
ンプ、熱交換器、負極液タンク、正極液タンク、
セパレーター等から構成され、電解液には臭化亜
鉛水溶液が用いられ、集合電池群は亜鉛を負極活
物質とし、臭素を正極活物質として用いられてい
る。 この亜鉛−臭素二次電池は、充電時正極から発
生する臭素は多臭化テトラアルキルアンモニウム
のような多臭化物として貯蔵され、充電完了状態
では充電により電解液の臭化亜鉛濃度が減少す
る。放電時は多臭化物を集合電池へ供給する。放
電完了時は、電解液の臭化亜鉛濃度は増加する。 ところで斯かる亜鉛−臭素二次電池に用いる電
極には、従来、炭素板を塩化ルテニウム溶液に浸
して、塩化ルテニウムを含浸させ、乾燥後水素雰
囲気中で還元して、ルテニウムを担持させた電極
が一般に採用されてきた。 (発明が解決しようとする問題点) 然し乍ら、このようにして製造したルテニウム
担持電極は、ルテニウムが金属状態であること、
電解液として臭化亜鉛水和物を使用しているた
め、金属ルテニウムが電解液と反応して使用中に
電解液中に溶出し、電流効率の劣化を引きおこす
という欠点を有していた。 そこで本発明は、上記従来の亜鉛−臭素二次電
池用電極の問題点を解消すべくなされたもので、
所要量の酸化ルテニウムが均一に担持され、使用
中電解液中にルテニウムが溶出しない亜鉛−臭素
二次電池用電極およびその製造方法を提供するこ
とを目的とするものである。 (問題点を解決しようとする手段) 本発明の亜鉛−臭素二次電池用電極は、炭素板
に酸化ルテニウムを担持したことを特徴とするも
のである。 また本発明の亜鉛−臭素二次電池用電極の製造
方法は、炭素板にルテニウムを担持した後、これ
を酸化性雰囲気中で加熱してルテニウムを酸化ル
テニウムにすることを特徴とするものである。 本発明の方法において、炭素板にルテニウムを
担持する方法として、スパツタリングによりルテ
ニウムを直接担持するかあるいは塩化ルテニウム
溶液を含浸乾燥後還元性雰囲気中で280〜750℃に
加熱して塩化ルテニウムをルテニウムに還元する
ようにすれば、ルテニウムを強固に担持すること
ができるので好ましい。また担持されたルテニウ
ムを加熱して酸化するとき、120℃未満では十分
に酸化せず、500℃を超えると炭素板の消耗が激
しくなるので120℃〜500℃の範囲が好ましい。 実施例 1 厚さ2mm、幅150mm、高さ150mmの炭素板にスパ
ツタリングによりルテニウムを2mg/cm2担持し、
それを酸素雰囲気中150℃で30分間加熱し、酸化
ルテニウムを2.6mg/cm2担持した電極を製造した。 実施例 2 空孔率50%、厚さ2mm、幅150mm、高さ150mmの
多孔性炭素板を1g/の塩化ルテニウム水溶液
に浸漬し、次いで含浸した水溶液の水分を蒸発し
て乾燥させた後、水素雰囲気中450℃、40分間還
元処理し、さらに大気中450℃で30分間加熱して、
酸化ルテニウムを2.6mg/cm2担持した電極を製造
した。 (従来例) 大気中450℃の加熱以外は全て実施例2と同じ
方法でルテニウムを2mg/cm2担持した電極を製造
した。 このようにして製造した実施例1、2および従
来例の亜鉛−臭素二次電池用電極について、まず
飽和臭素水により、電極からのルテニウムの溶出
テストを行つたところ表1のような結果を得た。
(Industrial Application Field) The present invention relates to an electrode used in secondary batteries for electric vehicles, power storage, etc., particularly zinc-bromine secondary batteries, and a method for manufacturing the same. (Prior art) A zinc-bromine secondary battery consists of an electrolytic cell containing a group of assembled batteries in the upper part, a negative electrode liquid circulation pump, a positive electrode liquid circulation pump, a heat exchanger, a negative electrode liquid tank, a positive electrode liquid tank,
It is composed of separators, etc., and an aqueous zinc bromide solution is used as the electrolyte, and the assembled battery group uses zinc as the negative electrode active material and bromine as the positive electrode active material. In this zinc-bromine secondary battery, bromine generated from the positive electrode during charging is stored as a polybromide such as tetraalkylammonium polybromide, and when charging is complete, the concentration of zinc bromide in the electrolyte decreases due to charging. During discharge, polybromide is supplied to the assembled battery. At the end of discharge, the concentration of zinc bromide in the electrolyte increases. By the way, electrodes used in such zinc-bromine secondary batteries have conventionally been prepared by soaking a carbon plate in a ruthenium chloride solution to impregnate it with ruthenium chloride, drying it, and then reducing it in a hydrogen atmosphere to support ruthenium. It has been generally adopted. (Problems to be Solved by the Invention) However, in the ruthenium-supported electrode produced in this manner, ruthenium is in a metallic state;
Since zinc bromide hydrate is used as the electrolyte, metal ruthenium reacts with the electrolyte and is eluted into the electrolyte during use, causing deterioration in current efficiency. Therefore, the present invention was made to solve the above problems of the conventional zinc-bromine secondary battery electrode.
It is an object of the present invention to provide an electrode for a zinc-bromine secondary battery and a method for manufacturing the same, in which a required amount of ruthenium oxide is uniformly supported and ruthenium does not dissolve into an electrolytic solution during use. (Means for Solving the Problems) The electrode for a zinc-bromine secondary battery of the present invention is characterized in that ruthenium oxide is supported on a carbon plate. Further, the method for producing an electrode for a zinc-bromine secondary battery of the present invention is characterized by supporting ruthenium on a carbon plate and then heating it in an oxidizing atmosphere to convert the ruthenium into ruthenium oxide. . In the method of the present invention, ruthenium is supported on a carbon plate by directly supporting ruthenium by sputtering, or by impregnating and drying a ruthenium chloride solution and heating it to 280 to 750°C in a reducing atmosphere to convert ruthenium chloride into ruthenium. Reduction is preferable because ruthenium can be strongly supported. Further, when the supported ruthenium is heated and oxidized, the temperature is preferably in the range of 120°C to 500°C, since sufficient oxidation will not occur if the temperature is less than 120°C, and if it exceeds 500°C, the carbon plate will be severely consumed. Example 1 Ruthenium was supported at 2 mg/cm 2 by sputtering on a carbon plate with a thickness of 2 mm, a width of 150 mm, and a height of 150 mm.
This was heated at 150° C. for 30 minutes in an oxygen atmosphere to produce an electrode carrying 2.6 mg/cm 2 of ruthenium oxide. Example 2 A porous carbon plate with a porosity of 50%, a thickness of 2 mm, a width of 150 mm, and a height of 150 mm was immersed in a 1 g/a ruthenium chloride aqueous solution, and then the water in the impregnated aqueous solution was evaporated and dried. Reduction treatment was performed at 450°C for 40 minutes in a hydrogen atmosphere, and further heating was performed at 450°C for 30 minutes in the air.
An electrode supporting 2.6 mg/cm 2 of ruthenium oxide was manufactured. (Conventional Example) An electrode carrying 2 mg/cm 2 of ruthenium was manufactured in the same manner as in Example 2 except for heating at 450° C. in the air. For the zinc-bromine secondary battery electrodes of Examples 1 and 2 and the conventional example manufactured in this way, we first conducted a ruthenium elution test from the electrodes using saturated bromine water, and the results shown in Table 1 were obtained. Ta.

【表】 また、実施例1、実施例2および従来例の電極
を用いて亜鉛−臭素二次電池を組み立て、電流効
率を測定したところ、表2のような結果を得た。
さらにその電池の電解液をルテニウムについて原
子吸光分析したところ、表2右欄に示す結果を得
た。
[Table] Furthermore, when zinc-bromine secondary batteries were assembled using the electrodes of Example 1, Example 2, and the conventional example, and the current efficiency was measured, the results shown in Table 2 were obtained.
Furthermore, when the electrolyte of the battery was subjected to atomic absorption spectroscopy for ruthenium, the results shown in the right column of Table 2 were obtained.

【表】 以上の説明でわかるように本発明の亜鉛−臭素
二次電池用電極は、飽和臭素水によるルテニウム
の溶出、電解液中へのルテニウムの溶出がなく、
電流効率の劣化もほとんどないすぐれた亜鉛−臭
素二次電池用電極である。 (発明の効果) 以上の説明で判るように本発明の亜鉛−臭素二
次電池用電極は、酸化ルテニウムが担持されてい
るので、電解液中へのルテニウムの溶出がなく、
電流効率の劣化も殆どないものである。また本発
明の製造方法によれば、炭素板に所要量の酸化ル
テニウムを強固に均一に担持でき、電極性能の優
れた亜鉛−臭素二次電池用電極を得ることができ
るという優れた効果がある。
[Table] As can be seen from the above explanation, the zinc-bromine secondary battery electrode of the present invention does not elute ruthenium with saturated bromine water or into the electrolyte.
This is an excellent electrode for zinc-bromine secondary batteries with almost no deterioration in current efficiency. (Effects of the Invention) As can be seen from the above explanation, since the electrode for zinc-bromine secondary batteries of the present invention supports ruthenium oxide, there is no elution of ruthenium into the electrolyte.
There is almost no deterioration in current efficiency. Further, according to the manufacturing method of the present invention, the required amount of ruthenium oxide can be firmly and uniformly supported on the carbon plate, and an electrode for a zinc-bromine secondary battery with excellent electrode performance can be obtained, which is an excellent effect. .

Claims (1)

【特許請求の範囲】 1 炭素板に酸化ルテニウムを担持したことを特
徴とする亜鉛−臭素二次電池用電極。 2 炭素板にルテニウムを担持した後、これを酸
化性雰囲気中で加熱してルテニウムを酸化ルテニ
ウムにすることを特徴とする亜鉛−臭素二次電池
用電極の製造方法。 3 ルテニウムを、炭素板にスパツタリングによ
り担持することを特徴とする特許請求の範囲第2
項記載の方法。 4 ルテニウムを、炭素板に塩化ルテニウム水溶
液を含浸し、乾燥し、これを還元性雰囲気中で
280〜750℃に加熱して塩化ルテニウムをルテニウ
ムに還元することにより担持することを特徴とす
る特許請求の範囲第2項記載の方法。
[Claims] 1. An electrode for a zinc-bromine secondary battery, characterized in that ruthenium oxide is supported on a carbon plate. 2. A method for producing an electrode for a zinc-bromine secondary battery, which comprises supporting ruthenium on a carbon plate and then heating the ruthenium in an oxidizing atmosphere to convert the ruthenium into ruthenium oxide. 3. Claim 2, characterized in that ruthenium is supported on a carbon plate by sputtering.
The method described in section. 4 Ruthenium is prepared by impregnating a carbon plate with a ruthenium chloride aqueous solution, drying it, and drying it in a reducing atmosphere.
3. The method according to claim 2, wherein the ruthenium chloride is supported by heating to 280 to 750°C to reduce ruthenium chloride to ruthenium.
JP60123703A 1985-06-07 1985-06-07 Electrode for zinc-bromine secondary battery and its manufacture Granted JPS61284058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60123703A JPS61284058A (en) 1985-06-07 1985-06-07 Electrode for zinc-bromine secondary battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60123703A JPS61284058A (en) 1985-06-07 1985-06-07 Electrode for zinc-bromine secondary battery and its manufacture

Publications (2)

Publication Number Publication Date
JPS61284058A JPS61284058A (en) 1986-12-15
JPH0521312B2 true JPH0521312B2 (en) 1993-03-24

Family

ID=14867253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60123703A Granted JPS61284058A (en) 1985-06-07 1985-06-07 Electrode for zinc-bromine secondary battery and its manufacture

Country Status (1)

Country Link
JP (1) JPS61284058A (en)

Also Published As

Publication number Publication date
JPS61284058A (en) 1986-12-15

Similar Documents

Publication Publication Date Title
Tang et al. Hydrophobization engineering of the air–cathode catalyst for improved oxygen diffusion towards efficient zinc–air batteries
Watanabe et al. Applications of the gas diffusion electrode to a backward feed and exhaust (BFE) type methanol anode
JPH06103992A (en) Plymer solid electrolyte fuel cell
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
CN108539203B (en) Super-hydrophilic material modified electrode material for energy storage flow battery
US7910259B2 (en) Anode for fuel cell, manufacturing method thereof, and fuel cell including the same
CN110729528B (en) Solar-assisted rechargeable zinc-air battery with low charging potential
JPH08117598A (en) Catalyst for high-molecular solid electrolytic type fuel cell
JP4937527B2 (en) Platinum catalyst for fuel cell and fuel cell including the same
CN104716338B (en) Processing method of electrode used for liquid flow cell
JPH026190B2 (en)
US3405010A (en) Spinel-ruthenium catalyzed electrode
JPH0521312B2 (en)
CN104289256B (en) A kind of preparation method of electrocatalyst for fuel cell carrier
CN114824278A (en) SEI film reaction liquid, modification method of zinc negative electrode and modified zinc negative electrode
JPS62154466A (en) Manufacture of electrode for halogen reaction
Neyerlin et al. Electrochemical stability of PtCu and PtCuCo core-shell oxygen reduction reaction electrocatalysts in liquid electrolyte
JP2848726B2 (en) Gas diffusion electrodes for fuel cells
JPS61179064A (en) Halogen reaction electrode and its manufacture
JPS62154467A (en) Electrode for halogen reaction and its manufacture
US20220294004A1 (en) Method of manufacturing composite anode for lithium ion battery
JP2007287598A (en) Membrane/electrode joint body for direct methanol fuel cell and its method of manufacture
JP3336869B2 (en) Operating method of molten carbonate fuel cell
JP3100673B2 (en) Method for impregnating phosphoric acid in phosphoric acid type fuel cell electrode
US3682709A (en) Process for improving nickel base,nonnoble metal fuel cell catalysts