JPH0521309B2 - - Google Patents

Info

Publication number
JPH0521309B2
JPH0521309B2 JP58224701A JP22470183A JPH0521309B2 JP H0521309 B2 JPH0521309 B2 JP H0521309B2 JP 58224701 A JP58224701 A JP 58224701A JP 22470183 A JP22470183 A JP 22470183A JP H0521309 B2 JPH0521309 B2 JP H0521309B2
Authority
JP
Japan
Prior art keywords
lithium
cobalt oxide
nickel oxide
oxide
molten carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58224701A
Other languages
Japanese (ja)
Other versions
JPS60117566A (en
Inventor
Hide Koshina
Hisaaki Gyoten
Junji Niikura
Akihiro Hosoi
Tsutomu Iwaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58224701A priority Critical patent/JPS60117566A/en
Publication of JPS60117566A publication Critical patent/JPS60117566A/en
Publication of JPH0521309B2 publication Critical patent/JPH0521309B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電極を改良した溶融炭酸塩料電池に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to molten carbonate batteries with improved electrodes.

従来例の構成とその問題点 溶融炭酸塩燃料電池は、その電解質である炭酸
塩の融点を越える温度(約500℃以上)で作動す
るため、電極、電解質保持体やセルマウントなど
を構成する材料は極めて厳しい条件を満足しなけ
ればならない。これらのうち特にカソードは液相
側で溶融炭酸塩と接し、気相側では高温の空気と
炭酸ガスの混合気体に常に触れている。このよう
な環境で、ガス拡散電極の材料として必要な条件
は、(1)高温酸化雰囲気に耐えること、(2)溶融炭酸
塩に対して溶解やその他の化学的および物理的変
化をしないこと、(3)高温において比抵抗が十分小
さいことなどが挙げられる。
Conventional structure and its problems Molten carbonate fuel cells operate at temperatures exceeding the melting point of the carbonate electrolyte (approximately 500°C or higher), so the materials that make up the electrodes, electrolyte holder, cell mount, etc. must satisfy extremely strict conditions. Among these, the cathode in particular is in contact with molten carbonate on the liquid phase side, and constantly in contact with a mixed gas of high temperature air and carbon dioxide gas on the gas phase side. In such an environment, the required conditions for materials for gas diffusion electrodes are: (1) resistance to high-temperature oxidizing atmospheres; (2) non-dissolution or other chemical and physical changes to molten carbonates; (3) Specific resistance is sufficiently small at high temperatures.

従来の溶融炭酸塩燃料電池のカソード材料とし
て酸化ニツケルや不定比化合物のリチウムニツケ
ルオキサイド(LixNi1-xO)などが使用されてき
た。しかしながら、酸化ニツケルの場合は溶融炭
酸塩の一成分であるリチウム塩と反応し、そのた
めに電解質の組成がずれ、電解質の電導度の低下
が起こる。その結果として電池電圧の降下が生じ
る。従つて酸化ニツケルは溶融炭酸塩燃料電池の
電極材料としては使い難い。
Nickel oxide and the non-stoichiometric compound lithium nickel oxide (Li x Ni 1-x O) have been used as cathode materials for conventional molten carbonate fuel cells. However, in the case of nickel oxide, it reacts with lithium salt, which is a component of the molten carbonate, which shifts the composition of the electrolyte and causes a decrease in the conductivity of the electrolyte. As a result, a drop in battery voltage occurs. Therefore, nickel oxide is difficult to use as an electrode material for molten carbonate fuel cells.

しかし、酸化ニツケルが溶融炭酸塩中のリチウ
ム塩と反応してできた物質がリチウムニツケルオ
キサイドであり、この物質はp型半導体であり、
温度の上昇とともに著しく比抵抗が小さくなる。
また溶融炭酸塩との反応最終生成物であることか
ら耐食性も非常に優れている。
However, the substance formed by the reaction of nickel oxide with the lithium salt in the molten carbonate is lithium nickel oxide, and this substance is a p-type semiconductor.
The specific resistance decreases significantly as the temperature rises.
Furthermore, since it is the final product of the reaction with molten carbonate, it has excellent corrosion resistance.

次にこのリチウムニツケルオキサイドの場合
は、前述したように溶融炭酸塩に対する耐食性に
優れ、かつ高温で比抵抗が小さくなることがわか
つている。さらに酸化物焼結体であるが故に高温
酸化雰囲気にも強いという特徴をもつ。しかしな
がら、反面リチウムニツケルオキサイドの結晶構
造の基体となつている酸化ニツケルは岩塩型構造
をとり、活性な電極材料とは言えない。その他に
リチウムニツケルオキサイド焼結体をカソードと
して電池を組み、作動させた場合、すなわち電極
に電位がかかつている状態においてリチウムニツ
ケルオキサイド中の微量のニツケルが溶解し、ア
ノードで金属析出を起こし、短絡の原因となる欠
点もあることがわかつている。
Next, in the case of lithium nickel oxide, as mentioned above, it is known that it has excellent corrosion resistance against molten carbonate and that its resistivity decreases at high temperatures. Furthermore, because it is an oxide sintered body, it is resistant to high-temperature oxidizing atmospheres. However, on the other hand, nickel oxide, which is the base of the crystal structure of lithium nickel oxide, has a rock salt-type structure and cannot be said to be an active electrode material. In addition, when a battery is assembled and operated using a lithium nickel oxide sintered body as a cathode, that is, when a potential is applied to the electrode, a small amount of nickel in the lithium nickel oxide dissolves, causing metal precipitation at the anode, resulting in a short circuit. It is known that there are also drawbacks that can cause

発明の目的 本発明の目的は上記問題点を解決するために、
耐食性、電導性に優れ、さらに従来の材料よりも
高活性な物質を電極に使用することにより、溶融
炭酸塩燃料電池の性質を向上させることにある。
Purpose of the invention The purpose of the present invention is to solve the above problems.
The objective is to improve the properties of molten carbonate fuel cells by using materials for electrodes that have excellent corrosion resistance and conductivity, and are more active than conventional materials.

発明の構成 本発明は従来のリチウムニツケルオキサイドを
電極材料として使用せず、リチウムコバルトオキ
サイド(LixCo1-xO)を使用したものである。こ
のリチウムコバルトオキサイドは、リチウム含有
量xの値を0.05〜0.2とし、さらに耐食性、電導
性を高め、また焼結温度を好ましくは850℃以上
950℃以下にすることにより、高活性な電極材料
となる。
Structure of the Invention The present invention uses lithium cobalt oxide (Li x Co 1-x O) instead of the conventional lithium nickel oxide as an electrode material. This lithium cobalt oxide has a lithium content x of 0.05 to 0.2, further improves corrosion resistance and conductivity, and has a sintering temperature of preferably 850°C or higher.
By keeping the temperature below 950°C, it becomes a highly active electrode material.

実施例の説明 リチウムコバルトオキサイドは、コバルト金属
微粉末焼結体を炭酸リチウム粉体または水酸化リ
チウム水溶液でリチウムの分散を行つたものと、
出発物質に酸化コバルト(Co2O3)微粉末を用い
たものとを使用した。比抵抗についてはコバルト
金属微粉末焼結体の方が酸化コバルト微分末焼結
対より、粒子間距離が小さいため、リチウム化後
の比抵抗は小さくなる。またリチウムの分散は粉
体の炭酸リチウムより水溶液で使用できる水酸化
リチウムの方が均一に分散できることがわかつ
た。
Description of Examples Lithium cobalt oxide is obtained by dispersing lithium in a cobalt metal fine powder sintered body with lithium carbonate powder or lithium hydroxide aqueous solution,
Cobalt oxide (Co 2 O 3 ) fine powder was used as the starting material. Regarding specific resistance, the cobalt metal fine powder sintered body has a smaller interparticle distance than the cobalt oxide differential powder sintered pair, so the specific resistance after lithiation becomes smaller. It was also found that lithium hydroxide, which can be used in an aqueous solution, can be more uniformly dispersed than powdered lithium carbonate.

次に焼結温度を約700℃から1200℃まで変化さ
せて種々のリチウムコバルトオキサイドを作製し
た。その結果、850℃未満の温度では焼結が十分
進まないことがわかり、また950℃以下と950℃を
越す焼結温度とでは生成物が多少異なることわか
つた。この焼結温度の異なる2種類のリチウムコ
バルトオキサイドをカソードとして電池を組み、
試験した。その結果950℃以下で焼結したリチウ
ムコバルトオキサイドの方が電池電圧が高く、よ
り活性な電極となり得ることがわかつた。しかし
ながら、950℃を越える温度で焼結したリチウム
コバルトオキサイドもリチウムニツケルオキサイ
ドと同等以上の性能をもつことがわかつた。
Next, various lithium cobalt oxides were produced by varying the sintering temperature from about 700°C to 1200°C. As a result, it was found that sintering did not proceed sufficiently at temperatures below 850°C, and that the products produced at sintering temperatures below 950°C and those above 950°C were somewhat different. A battery is assembled using these two types of lithium cobalt oxide with different sintering temperatures as cathodes.
Tested. The results showed that lithium cobalt oxide sintered at temperatures below 950°C has a higher battery voltage and can be used as a more active electrode. However, it was found that lithium cobalt oxide sintered at temperatures above 950°C has performance equivalent to or better than lithium nickel oxide.

以上、焼結温度を850℃以上950℃以下としたリ
チウムコバルトオキサイドについて記す。
The above describes lithium cobalt oxide whose sintering temperature is 850°C or more and 950°C or less.

上記方法により得たリチウムコバルトオキサイ
ド(x=0.2)1グラムを約650℃での炭酸リチウ
ム−炭酸ナトリウム−炭酸カリウムの共融塩30グ
ラムに約1ヶ月浸漬した結果、塩1グラム中に
0.01ミリグラム未満の溶解量を示した。この溶解
量は同じ条件下においたリチウムニツケルオキサ
イドと同等であつた。
One gram of lithium cobalt oxide (x=0.2) obtained by the above method was immersed in 30 grams of eutectic salt of lithium carbonate-sodium carbonate-potassium carbonate at about 650℃ for about one month.
It showed a dissolved amount of less than 0.01 milligram. This amount of dissolution was equivalent to that of lithium nickel oxide under the same conditions.

また、上記方法のうち酸化コバルトを出発物と
し、炭酸リチウムでリチウム化したリチウムコバ
ルトオキサイドでリチウム含有量xが0.2のもの
は、リチウム含有量の同量のリチウムニツケルオ
キサイドの比抵抗が650℃で5×10-2Ωcmである
のに対して同温度で5×10-1とわずかに大きい
が、電極の厚さを約1mmとした場合に電池の電圧
にはほとんど影響はない。さらにリチウム含有量
を0.05〜0.2の範囲で変化させても、リチウムコ
バルトオキサイドの比抵抗の変化は3.8×10-1
5.0×10-1Ωcmであり、電池電圧にはほとんど影響
はない。しかしながら、xが0.2以上にリチウム
を添加した場合、リチウムはLi2Oの形で存在し、
比抵抗の減少に対し優位性はなく、また0.05以下
でもリチウム添加に対し、比抵抗の減少には寄与
するが、0.05以上で特に寄与する。
Among the above methods, cobalt oxide is used as a starting material and lithium cobalt oxide is lithiated with lithium carbonate, and the lithium content x is 0.2. Although it is slightly larger at 5 x 10 -1 at the same temperature compared to 5 x 10 -2 Ωcm, it has almost no effect on the battery voltage when the electrode thickness is about 1 mm. Furthermore, even if the lithium content is changed in the range of 0.05 to 0.2, the change in resistivity of lithium cobalt oxide is 3.8 × 10 -1 ~
It is 5.0×10 -1 Ωcm, and has almost no effect on the battery voltage. However, when lithium is added when x is 0.2 or more, lithium exists in the form of Li 2 O,
It has no advantage in reducing the specific resistance, and even if it is less than 0.05, it contributes to reducing the specific resistance compared to the addition of lithium, but if it is more than 0.05, it particularly contributes.

次にリチウム含有量xを0.2としたリチウムコ
バルトオキサイド微粒子焼結体を溶融炭酸塩燃料
電池のカソードに使用した場合と従来のリチウム
ニツケルオキサイドを使用した時の単セルの電圧
と電流密度の関係を図に示した。さらに比較のた
めにリチウムコバルトオキサイド中に20重量パー
セントのリチウムニツケルオキサイドを添加した
場合も示した。ここで作動温度は650℃である。
図中のイが本発明のリチウムコバルトオキサイド
使用の電池の電圧電流曲線である。また比較とし
て示したロがリチウムニツケルオキサイド使用の
ものであり、ハ(点線)で示したにはリチウムコ
バルトオキサイドに20重量パーセントのリチウム
ニツケルオキサイドを添加したものである。これ
らの電池はカソード材料が異なる以外は同様の部
品を用いている。この図より、リチウムコバルト
オキサイドがリチウムニツケルオキサイドより優
れた性能をもつていることがわかる。またリチウ
ムコバルトオキサイドにリチウムニツケルオキサ
イドを添加しても性能が下がることがわかる。
Next, we will examine the relationship between the voltage and current density of a single cell when a sintered lithium cobalt oxide fine particle with a lithium content x of 0.2 is used as the cathode of a molten carbonate fuel cell, and when conventional lithium nickel oxide is used. Shown in the figure. Furthermore, for comparison, a case in which 20 weight percent of lithium nickel oxide was added to lithium cobalt oxide is also shown. The operating temperature here is 650°C.
A in the figure is a voltage-current curve of a battery using lithium cobalt oxide according to the present invention. For comparison, B shows a product using lithium nickel oxide, and C (dotted line) shows a product in which 20% by weight of lithium nickel oxide is added to lithium cobalt oxide. These cells use similar components except for different cathode materials. This figure shows that lithium cobalt oxide has better performance than lithium nickel oxide. It can also be seen that the performance decreases even when lithium nickel oxide is added to lithium cobalt oxide.

そして、リチウムニツケルオキサイドで問題に
なつた微量のニツケルの溶出とアノードでの析出
にともなう短絡現象はリチウムコバルトオキサイ
ドでは認められないことが電池試験の結果わかつ
た。
Furthermore, battery tests revealed that the short-circuit phenomenon caused by the elution of trace amounts of nickel and precipitation at the anode, which was a problem with lithium nickel oxide, was not observed with lithium cobalt oxide.

発明の効果 以上のように本発明によれば、コバルト金属も
しくはコバルト酸化物(Co2O3)を炭酸リチウム
や水酸化リチウムなどでリチウム含有量xを0.05
から0.2までの範囲内でリチウム含化し、好まし
くは焼結温度を850℃から950℃までに設定するこ
とにより得たリチウムコバルトオキサイドは非常
に耐食性、導電性に優れ、かつ高活性な電極材料
であり、従来のものより優れた電極性能を得るこ
とができる。この電極材料を使用することで溶融
塩燃料電池の特性が大きく向上する。
Effects of the Invention As described above, according to the present invention, cobalt metal or cobalt oxide (Co 2 O 3 ) is mixed with lithium carbonate, lithium hydroxide, etc. so that the lithium content x is 0.05.
Lithium cobalt oxide obtained by containing lithium within the range of from It is possible to obtain better electrode performance than conventional ones. Use of this electrode material greatly improves the characteristics of molten salt fuel cells.

【図面の簡単な説明】[Brief explanation of the drawing]

図は溶融炭酸塩燃料電池の単セルの電圧と電流
密度の関係を示す図である。 1……カソードにリチウムコバルトオキサイド
使用の電池の電圧電流曲線、2……リチウムニツ
ケルオキサイド使用の電池の電圧電流曲線、3…
…リチウムコバルトオキサイドに20重量パーセン
トリチウムニツケルオキサイドを添加した電極を
使用した電池の電圧電流曲線。
The figure is a diagram showing the relationship between voltage and current density of a single cell of a molten carbonate fuel cell. 1... Voltage-current curve of a battery using lithium cobalt oxide as a cathode, 2... Voltage-current curve of a battery using lithium nickel oxide, 3...
...Voltage-current curve of a battery using an electrode with 20 weight percent lithium nickel oxide added to lithium cobalt oxide.

Claims (1)

【特許請求の範囲】 1 リチウムコバルトオキサイド微粒子焼結体を
電極とする溶融炭酸塩燃料電池。 2 リチウムコバルトオキサイド(LixCo1-xO)
のリチウム含有量xの値が0.05〜0.2とすること
を特徴とする特許請求の範囲第1項記載の溶融炭
酸塩燃料電池。
[Claims] 1. A molten carbonate fuel cell using a lithium cobalt oxide fine particle sintered body as an electrode. 2 Lithium cobalt oxide (Li x Co 1-x O)
2. The molten carbonate fuel cell according to claim 1, wherein the value of the lithium content x is 0.05 to 0.2.
JP58224701A 1983-11-29 1983-11-29 Molten carbonate fuel cell Granted JPS60117566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58224701A JPS60117566A (en) 1983-11-29 1983-11-29 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58224701A JPS60117566A (en) 1983-11-29 1983-11-29 Molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS60117566A JPS60117566A (en) 1985-06-25
JPH0521309B2 true JPH0521309B2 (en) 1993-03-24

Family

ID=16817885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58224701A Granted JPS60117566A (en) 1983-11-29 1983-11-29 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPS60117566A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9001916A (en) * 1990-08-30 1992-03-16 Stichting Energie TAPE SUITABLE FOR USE IN FUEL CELLS, ELECTRODE SUITABLE FOR USE IN A FUEL CELL, METHOD FOR SINTERING SUCH ELECTRODE AND FUEL CELL FITTED WITH SUCH ELECTRODE.
IT1269173B (en) * 1994-01-04 1997-03-21 Finmeccanica Spa METHOD FOR THE MANUFACTURE OF FUEL CELL CATHODES
DE19603918C2 (en) * 1996-02-03 2000-10-05 Mtu Friedrichshafen Gmbh Process for producing an electrode for a molten carbonate fuel cell and its use

Also Published As

Publication number Publication date
JPS60117566A (en) 1985-06-25

Similar Documents

Publication Publication Date Title
US8394520B2 (en) Thermal battery electrolyte materials, electrode-electrolyte composites, and batteries including same
EP2417656B1 (en) Thermal battery cathode materials and batteries including same
US4085259A (en) Light metal galvanic element
CN102044674A (en) Anode material for lithium ion battery and preparation method thereof
Dallek et al. Decomposition kinetics of AgO cathode material by thermogravimetry
JPS61158667A (en) Nickel electrode for alkaline battery
US4804597A (en) Organic electrolyte cell
JPH0737591A (en) Molten carbonate type fuel cell cathode and its melting suppressing method
JPH0521309B2 (en)
US3853623A (en) Additive for an alkaline battery employing divalent silver oxide positive active material
US3726718A (en) Compositions containing lithium,potassium,sulfate and nitrate and/or nitrite ions
JP3550230B2 (en) Negative electrode active material for secondary battery, electrode using the same, and secondary battery
KR950021843A (en) Ni / Metal Hydrate Secondary Battery
JPH06275322A (en) Lithium battery
JP3054684B2 (en) Rechargeable battery
JP3587213B2 (en) Negative electrode active material for air-Ga primary battery and air-Ga primary battery using the same
JPS63226881A (en) Nonaqueous electrolyte cell
JPS61284061A (en) Organic electrolyte battery
Guidotti et al. Discharge characteristics of Ag2CrO4–based cells in LiNO3-KNO3 eutectic electrolyte
JP2714078B2 (en) Non-aqueous electrolyte battery
Miles et al. High Rate Discharge of Ca/LiClO4‐LiNO3 Thermal Battery Cells
JPH0520866B2 (en)
JPS63170863A (en) Fused carbonate fuel cell
Prasad et al. Silver arsenate amorphous electrolyte batteries: conduction characteristics and electrochemical performance
JPH06275283A (en) Positive electrode for molten carbonate fuel cell