JPH05212500A - Device for continuous casting - Google Patents

Device for continuous casting

Info

Publication number
JPH05212500A
JPH05212500A JP2018892A JP2018892A JPH05212500A JP H05212500 A JPH05212500 A JP H05212500A JP 2018892 A JP2018892 A JP 2018892A JP 2018892 A JP2018892 A JP 2018892A JP H05212500 A JPH05212500 A JP H05212500A
Authority
JP
Japan
Prior art keywords
mold
ceramic mold
ceramic
slab
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018892A
Other languages
Japanese (ja)
Inventor
Kozo Ota
晃三 太田
Masahiro Yoshihara
正裕 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2018892A priority Critical patent/JPH05212500A/en
Publication of JPH05212500A publication Critical patent/JPH05212500A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To enable casting of a cast slab having easy treatment without surface defect by extending a stepping part to the upper part of a mold, fitting a ceramic mold to the stepping part and forming the outer surface of the ceramic mold to a projecting curved surface. CONSTITUTION:The stepping part 11 reaching the upper end is extended up to the upper end of the mold 3 and in this part, the ceramic mold 4 is fitted. Since the solidified part at the initial stage of the cast slab is slowly cooled by using the ceramic mold 4 and a shell at the connecting part between a connected refractory part and the ceramic mold 4 is not formed and the shell in the mold is formed, the cast slab having no surface defect is obtd. Further, since the outer surface of the ceramic mold is formed to the recessed curving surface, the thickness of the ceramic mold becomes large at the lateral center part having large heat loading and the ceramic mold 4 has high rigidity, the projection of the ceramic mold 4 to the molten steel side is reduced. By this method, the rectangular cast slab having no surface defect and uneven thickness can continuously be cast.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表面欠陥の少ない角形
鋳片を製造するのに適した溶融金属の連続鋳造用装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for continuous casting of molten metal suitable for producing a rectangular slab having few surface defects.

【0002】[0002]

【従来の技術】溶融金属、特に溶鋼の鋳造は、図3に示
す連続鋳造法が主流となっている。この方法は、タンデ
ィッシュ1の溶鋼6を浸漬ノズル2を介して注入孔2aか
ら鋳型3内へ連続的に注入し、鋳型3からはガイドロー
ラ5を経て凝固シエル7を介してピンチロール8によっ
て引き出される。構造的にはタンディッシュ1と鋳型3
とが分離されている。鋳型3内の溶鋼上面には酸化物を
主体とするフラックス10がいわゆるパウダーとして添加
され、溶鋼上面の酸化防止、冷却防止を図っている。
2. Description of the Related Art The continuous casting method shown in FIG. 3 is mainly used for casting molten metal, especially molten steel. In this method, the molten steel 6 of the tundish 1 is continuously injected into the mold 3 from the injection hole 2a through the dipping nozzle 2, and then from the mold 3 through the guide roller 5 and the solidification shell 7 by the pinch roll 8. Be withdrawn. Structurally tundish 1 and mold 3
And are separated. On the upper surface of the molten steel in the mold 3, a flux 10 mainly composed of an oxide is added as a so-called powder to prevent oxidation and cooling of the upper surface of the molten steel.

【0003】しかしながら、この方法では浸漬ノズル2
からの注入流により溶鋼面が変動することによるパウダ
ーの巻き込み、あるいは鋳型内の凝固シェル7の部分的
な再溶解といった問題があり、鋳片表面に欠陥を生じる
ことがある。また最近、省工程の観点からできるだけ最
終製品の形状に近い鋳片を鋳造するニアネット連続鋳造
法へのニーズが高まっているが、従来の連続鋳造法にお
いてそのようなニアネット連続鋳造を行うと、小断面の
鋳片を鋳造する際には溶鋼上面へ前記フラックスを添加
することが不可能に近く、十分な保温ができないことか
ら浸漬ノズル閉塞の多発、浸漬ノズル周囲の溶鋼凝固の
発生が見られるため、浸漬ノズルの使用も不可能であっ
た。
However, in this method, the immersion nozzle 2
There is a problem that the molten steel surface fluctuates due to the injection flow from the inside of the mold, or there is a problem of partial remelting of the solidified shell 7 in the mold, which may cause defects on the surface of the slab. Recently, there is a growing need for a near-net continuous casting method that casts a slab that is as close to the shape of the final product as possible from the viewpoint of process saving, but when performing such near-net continuous casting in the conventional continuous casting method, When casting a slab with a small cross section, it is almost impossible to add the flux to the upper surface of the molten steel and sufficient heat retention is not possible, so many immersion nozzle blockages and solidification of molten steel around the immersion nozzle are observed. Therefore, it was impossible to use the immersion nozzle.

【0004】これに対し、近年、タンディッシュ−鋳型
直結式の装置を使った連続鋳造法が提案されている。図
4および図5に概念図で示すように、このタンディッシ
ュ−鋳型直結式の連続鋳造用装置では、浸漬ノズルが取
り去られ、タンディッシュと鋳型を一体化して構成して
いる。この方式によれば、浸漬ノズル閉塞、パウダー巻
き込みの心配がないため、特に小断面鋳片の鋳造に有効
であり、省工程(特に熱延工程)が可能であると考えら
れる。
On the other hand, in recent years, a continuous casting method using a tundish-mold direct connection type apparatus has been proposed. As shown in the conceptual views of FIGS. 4 and 5, in this tundish-mold direct connection type continuous casting apparatus, the immersion nozzle is removed and the tundish and the mold are integrated. According to this method, since there is no concern about blockage of the dipping nozzle or entrainment of powder, it is considered to be particularly effective for casting of small cross-section slabs, and a process saving (particularly hot rolling process) is possible.

【0005】さらに溶鋼はタンディッシュから鋳型まで
周囲雰囲気にさらされることがないため、清浄な鋳片の
製造をも期待することができる。しかし、水冷銅鋳型3
と接続耐火物9の接点で凝固シェルが生成し、鋳片断面
を一部示す図6においてそれぞれ記号 M、T で示すよう
な、引抜マークおよびホットティアという鋳片欠陥とな
る。ここに、引抜きマークM は引抜ピッチごとに表われ
る新旧シェルの継ぎ目(水冷銅鋳型からのシェルと接続
耐火物からのシェル)であり、ホットティアT は引抜ピ
ッチごとに表われる表面横割れである。これらの欠陥は
そのまま成品欠陥となるので、圧延加工に先立って切削
除去する必要がある。
Furthermore, since molten steel is not exposed to the ambient atmosphere from the tundish to the mold, it can be expected to produce clean slabs. However, water-cooled copper mold 3
A solidified shell is generated at the contact point between the refractory 9 and the connection refractory 9, resulting in slab defects such as a drawing mark and a hot tear as shown by symbols M and T in FIG. Here, the drawing mark M is the seam of the old and new shells (shell from the water-cooled copper mold and the shell from the connecting refractory) that appears at each drawing pitch, and the hot tier T is the surface lateral crack that appears at each drawing pitch. .. Since these defects directly become product defects, it is necessary to remove them by cutting prior to rolling.

【0006】タンディッシュ−鋳型直結式連続鋳造の引
抜マーク発生防止策の1つとして、セラミックス鋳型を
銅鋳型に内挿する方法が採用されている。例えば、特開
昭52−50929 号公報には耐火物と黒鉛管を内挿した鋳
型、また特開昭58−151939号公報には耐熱、潤滑、耐食
性サーメット導管−鋳型で鋼の鋳造が可能であることが
示されている。
[0006] As one of the measures for preventing the extraction marks from occurring in the tundish-mold direct connection type continuous casting, a method of inserting a ceramics mold into a copper mold is adopted. For example, Japanese Unexamined Patent Publication (Kokai) No. 52-50929 discloses a mold in which a refractory material and a graphite tube are inserted, and Japanese Unexamined Patent Publication (Kokai) No. 58-151939 discloses a heat-, lubrication- and corrosion-resistant cermet conduit-casting of steel. Has been shown to be.

【0007】さらに、特開昭64−27743 号公報にはセラ
ミックスの耐熱衝撃性を向上させるために焼きばめ等の
方法で内挿セラミックス材に圧縮応力を加える方法が、
特開平1−286967号公報には熱衝撃抵抗性、熱応力抵抗
性に優れた水冷銅鋳型に内挿するセラミックス鋳型の製
造方法が記述されている。セラミックス鋳型を使用する
理由は、冷却を緩和することであり、その効果として三
菱製鋼技法Vol.19, No.12(19885)に記載されているよう
に、引抜マークが軽減する。
Further, Japanese Laid-Open Patent Publication No. 64-27743 discloses a method of applying compressive stress to an interpolated ceramic material by a method such as shrink fitting in order to improve the thermal shock resistance of the ceramic.
Japanese Unexamined Patent Publication No. 1-286967 describes a method of manufacturing a ceramics mold which is inserted into a water-cooled copper mold having excellent thermal shock resistance and thermal stress resistance. The reason for using the ceramic mold is to alleviate the cooling, and the effect thereof is to reduce the drawing mark as described in Mitsubishi Steel Making Technique Vol. 19, No. 12 (19885).

【0008】しかし、上記の方法はいずれも事実上丸型
の鋳片に限られ、矩形断面をもった角型鋳片 (スラブ、
ブルーム、ビレット) の製造は、鋳型変形の様子を示す
図7からも分かるように鋳型が変形するため困難であっ
た。ここに図7は水冷銅鋳型3の上部にセラミックス鋳
型4を内挿した平坦な鋳込壁をもった鋳型の場合の鋳込
み時の鋳型のタワミの様子を示すもので、かなりの変形
がみられることが分かる。
However, all of the above methods are practically limited to round slabs, and square slabs having a rectangular cross section (slab,
It was difficult to manufacture the blooms and billets) because the mold was deformed, as can be seen from FIG. 7 showing the deformation of the mold. Here, FIG. 7 shows a state of bending of the mold during casting in the case of a mold having a flat casting wall in which the ceramics mold 4 is inserted on the upper part of the water-cooled copper mold 3, and considerable deformation is observed. I understand.

【0009】セラミックス鋳型を使用した角型鋳片のタ
ンディッシュ−鋳型直結式CC法については特開昭62−
45449 号公報に黒鉛鋳型の外挿の水冷ジャケットを幅方
向に分割して設けることにより黒鉛鋳型の変形を防止す
る方法が記述されている。しかし、鋳型の組立の効率が
悪く、実用的ではなかった。
A tundish of a square slab using a ceramics mold-a CC method directly connected to a mold is disclosed in JP-A-62-
Japanese Patent No. 45449 describes a method for preventing deformation of the graphite mold by providing a water cooling jacket for extrapolating the graphite mold in a divided manner in the width direction. However, the efficiency of assembling the mold was poor and it was not practical.

【0010】[0010]

【発明が解決しようとする課題】本発明は取扱いが容易
で、なおかつ表面欠陥のない矩形断面の鋳片の鋳造を可
能とする連続鋳造用鋳型を提供することを目的としてい
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a continuous casting mold which is easy to handle and is capable of casting a slab having a rectangular cross section without surface defects.

【0011】[0011]

【課題を解決するための手段】セラミックス鋳型を使用
したタンディッシュ−鋳型直結式連続鋳造法が角型鋳片
の鋳造に適用できない原因の一つに、図7に関連してす
でに述べたように、セラミックス鋳型が熱負荷により変
形することが挙げられる。セラミックス鋳型が変形する
と、1)鋳片の肉厚変動、2)セラミックスと水冷銅の接触
不良による抜熱不足、3)セラミックスの破損という問題
が生じる。
As one of the reasons why the tundish-mold direct connection type continuous casting method using a ceramics mold cannot be applied to the casting of a square slab, as described above with reference to FIG. The ceramic mold may be deformed by heat load. When the ceramic mold is deformed, there arises the following problems: 1) variation in wall thickness of the slab, 2) insufficient heat removal due to poor contact between the ceramic and water-cooled copper, and 3) damage to the ceramic.

【0012】ここに、本発明は、上端においてタンディ
ッシュに直結された鋳型部から成る、矩形断面の鋳片を
製造する連続鋳造装置であって、前記鋳型部が、鋳型部
上端にまで延設された段差部をその上部に備えた水冷銅
鋳型の鋳型本体と、該段差部内に内挿されたセラミック
ス鋳型とから構成され、該セラミックス鋳型の外面と水
冷銅鋳型との接する面が、少なくとも鋳型長辺側におい
て、鋳型の外側に向かって凸なる曲面にて構成されるこ
とを特徴とする連続鋳造装置である。
Here, the present invention is a continuous casting apparatus for producing a slab having a rectangular cross section, which comprises a mold part directly connected to a tundish at the upper end, the mold part extending up to the upper end of the mold part. The mold body of a water-cooled copper mold provided with a stepped portion on the top and a ceramics mold inserted in the stepped portion, the outer surface of the ceramics mold and the surface in contact with the water-cooled copper mold, at least the mold The continuous casting apparatus is characterized in that the long side is formed of a curved surface that is convex toward the outside of the mold.

【0013】このように本発明にかかる連続鋳造装置
は、鋳型部からなり、タンディッシュとの直結の態様と
しては、普通上述のセラミックス鋳型が接続耐火物を介
して、タンディッシュ底部に固定されるというものであ
る。また、セラミックス鋳型の上端が押さえ板等により
直接タンディッシュ底部に固定されてもよい。タンディ
ッシュからの溶鋼が鋳込途中、あるいは最中にタンディ
ッシュと鋳型の接続部から漏れたり大気に触れることが
なければ、特定形式のものに制限されない。また、鋳込
方向としての縦型であっても横型であってもいずれであ
ってもよい。
As described above, the continuous casting apparatus according to the present invention comprises the mold portion, and as a mode of direct connection with the tundish, the above-mentioned ceramic mold is usually fixed to the bottom portion of the tundish through the connecting refractory. That is. Further, the upper end of the ceramic mold may be directly fixed to the tundish bottom by a pressing plate or the like. The molten steel from the tundish is not limited to a specific type as long as it does not leak from the connection between the tundish and the mold or come into contact with the atmosphere during or during casting. The casting direction may be vertical or horizontal.

【0014】なお、銅製鋳型本体にあってセラミックス
製鋳型の長手方向の占める割合であるが、鋳型本体とし
ては少なくとも半分を占めればよく、一方、セラミック
ス鋳型としてもその目的が鋳込み直後の冷却の緩和であ
ることから、それが実現されれば特に制限されない。
The proportion of the copper mold body in the longitudinal direction of the ceramic mold occupies at least half of the length of the ceramic mold body. On the other hand, the ceramic mold body has the purpose of cooling immediately after casting. Since it is mitigation, there is no particular limitation as long as it is realized.

【0015】[0015]

【作用】次に、本発明の作用について添付図面を参照し
て詳述する。なお、添付図面において同一部材は同一符
号をもって示す。図1は、本発明にかかる連続鋳造用装
置の概略説明図であり、従来と同様にタンディッシュ1
内の溶鋼6は鋳型3に注入され、凝固シェル7はガイド
ローラ5を経てピンチロール8によって引き出される。
鋳型3はその上端が接続耐火物9を介してタンディッシ
ュ1の本体と直結されている。
Next, the operation of the present invention will be described in detail with reference to the accompanying drawings. The same members are designated by the same reference numerals in the accompanying drawings. FIG. 1 is a schematic explanatory view of an apparatus for continuous casting according to the present invention.
The molten steel 6 therein is poured into the mold 3, and the solidified shell 7 is pulled out by the pinch roll 8 via the guide roller 5.
The upper end of the mold 3 is directly connected to the main body of the tundish 1 via the connecting refractory material 9.

【0016】ここに、本発明によれば、鋳型3の上部に
はその上端に至るまで段差部11が延設されており、その
部分にセラミックス鋳型4が嵌め込まれている。本発明
によれば、セラミックス鋳型4の使用により、鋳片の初
期凝固部が緩冷却となるために、接続耐火物9とセラミ
ックス鋳型4の接続部 (図1のa点) でシェルが生成せ
ず、鋳型内でシェルが生成するため、表面欠陥のない鋳
片が得られる。さらにセラミックス鋳型4の外面が凸な
る曲面であるために、熱負荷の大きい幅中央部で肉厚が
大きくなりセラミックス鋳型4が剛性を持つことによ
り、セラミックス鋳型4の溶鋼側への張り出しが軽減さ
れる。
Here, according to the present invention, the step portion 11 is extended to the upper end of the mold 3 and the ceramic mold 4 is fitted in the portion. According to the present invention, since the initial solidification portion of the slab is cooled slowly by using the ceramic mold 4, a shell is generated at the connecting portion of the connecting refractory 9 and the ceramic mold 4 (point a in FIG. 1). Instead, a shell is formed in the mold, so that a slab with no surface defects is obtained. Further, since the outer surface of the ceramics mold 4 is a convex curved surface, the thickness increases at the center of the width where the heat load is large, and the ceramics mold 4 has rigidity, so that the protrusion of the ceramics mold 4 to the molten steel side is reduced. It

【0017】図2はこのセラミックス鋳型4を平面図で
示す。図中、回りの水冷銅鋳型3がセラミックス鋳型4
の外面と接する面が凸なる曲面であり、同様にセラミッ
クス鋳型の外面は銅鋳型と同じく凸なる曲面となってい
る。辺中央部の断面2次モーメントを大とすることでセ
ラミックス鋳型の溶鋼側への撓みを小とするためであ
る。鋳型は4枚の板を張り合わせることによって角型に
構成されている。一般には長辺のみにそのような肉太部
を設けるだけでよいが、必要により短辺部にも設けても
よい。
FIG. 2 shows the ceramics mold 4 in a plan view. In the figure, the surrounding water-cooled copper mold 3 is a ceramic mold 4.
The surface in contact with the outer surface of is a convex curved surface, and similarly, the outer surface of the ceramics mold is a convex curved surface like the copper mold. This is because the bending of the ceramics mold toward the molten steel side is reduced by increasing the second moment of area at the center of the side. The mold is formed into a rectangular shape by laminating four plates. Generally, it is sufficient to provide such a thick portion only on the long side, but it may be provided on the short side if necessary.

【0018】すなわち、図2(a) は、鋳片厚み(t) が30
mm超の場合のセラミック鋳型とその周囲の銅製鋳型との
関係を示すが、それに示すように、銅製鋳型3はセラミ
ックス鋳型4を内挿することのできる構造を有しかつ、
鋳型長辺および短辺のいずれにおいてもセラミックス鋳
型4の外面と銅製鋳型3のセラミックス鋳型と接する面
が鋳型の外側に向かって凸なる曲面となっている。梁の
撓みと同様に、中央部でモーメントが最大となるため、
中央部で断面2次モーメントを大として撓みを小とす
る。
That is, FIG. 2 (a) shows that the slab thickness (t) is 30
The relationship between the ceramic mold in the case of exceeding mm and the copper mold around it is shown. As shown therein, the copper mold 3 has a structure in which the ceramic mold 4 can be inserted, and
The outer surface of the ceramic mold 4 and the surface of the copper mold 3 in contact with the ceramic mold are curved surfaces that are convex toward the outside of the mold on both the long and short sides of the mold. Like the bending of the beam, the moment is maximum at the center,
At the center, the second moment of area is large and the bending is small.

【0019】図2(b) は、肉厚10mm超、30mm以下の薄鋳
片の場合のセラミック鋳型と銅製鋳型との関係を示すも
ので、この場合は図2(b) に示すように鋳型短辺側に曲
率をつける必要がない。図2(c) は、鋳片の厚みが10mm
以下というように、薄鋳片の場合を示すものであって、
そのような薄鋳片であれば、図2(c) に示すように鋳型
短辺側にはセラミックス鋳型を内挿しなくともよい。
FIG. 2 (b) shows the relationship between the ceramic mold and the copper mold in the case of a thin cast piece having a wall thickness of more than 10 mm and not more than 30 mm. In this case, as shown in FIG. It is not necessary to add curvature to the short side. Figure 2 (c) shows that the thickness of the slab is 10 mm.
As shown below, showing the case of a thin cast piece,
With such a thin slab, it is not necessary to insert a ceramics mold on the shorter side of the mold as shown in FIG. 2 (c).

【0020】本装置は角型鋳片の中でも特に肉厚30mm以
下の薄鋳片製造時に効果を発揮するが、肉厚30mm以上の
スラブあるいはビレット、ブルームにも充分対応でき
る。
This apparatus is particularly effective for manufacturing thin cast pieces having a wall thickness of 30 mm or less among square cast pieces, but can sufficiently cope with slabs, billets and blooms having a wall thickness of 30 mm or more.

【0021】また、本発明にかかる連続鋳造用装置は70
0 mm幅以上の広幅鋳片にも適用が可能である。なお、前
記外側に向かって凸面をなすセラミックス鋳型は幅400
〜1200mmの矩形断面の鋳片の場合に対して、凸面は円弧
状であっても放物線状であってもよく、凸部の量は最大
20mmもあれば十分である。最終的には、セラミックス鋳
型の外面の円弧の半径は、鋳片の形状 (スラブ、ビレッ
ト、ブルーム) 、幅、セラミックス材質により決められ
る。
The apparatus for continuous casting according to the present invention is 70
It can also be applied to wide slabs with a width of 0 mm or more. In addition, the ceramic mold having a convex surface facing the outside has a width of 400
In the case of a slab with a rectangular cross section of ~ 1200 mm, the convex surface may be arcuate or parabolic, and the maximum amount of convex parts is
20 mm is enough. Finally, the radius of the arc on the outer surface of the ceramic mold is determined by the shape of the slab (slab, billet, bloom), width, and ceramic material.

【0022】[0022]

【実施例】以下、本発明を図1に示す装置を用いて行っ
た実施例に基づいて説明する。鋳造は幅400 、800 mm、
肉厚10、30mm薄鋳片について実施した。セラミックス鋳
型と銅鋳型には長辺側のみ円弧を付与し、その曲率半径
は鋳片800 mm幅のものに対しては6000mm、鋳片400 mm幅
のものに対しては4000mmとした。
EXAMPLES The present invention will be described below based on examples carried out by using the apparatus shown in FIG. Casting is 400, 800 mm wide,
The test was performed on thin cast pieces having a wall thickness of 10 and 30 mm. The ceramic mold and the copper mold were provided with an arc only on the long side, and the radius of curvature was 6000 mm for the slab 800 mm wide and 4000 mm for the slab 400 mm wide.

【0023】鋳造金属はSUS304ステンレス鋼と炭素鋼
(C鋼: C含有量 0.2%) であり、タンディッシュ内の
溶湯温度は液相線温度より40〜50℃高くした。引抜サイ
クルは100cpmで間欠引抜として鋳造速度は鋳片断面形状
鋳型材質に応じて種々変更した。
Cast metal is SUS304 stainless steel and carbon steel
(C steel: C content 0.2%), and the temperature of the molten metal in the tundish was 40 to 50 ° C. higher than the liquidus temperature. The drawing cycle was 100 cpm and intermittent drawing was performed, and the casting speed was variously changed according to the shape of the slab and the mold material.

【0024】実施の鋳込み条件および結果を表1に示
す。また比較例の条件および結果を表2、表3に示す。
なお、表2の結果はセラミックス鋳型外面と銅製鋳型内
面がストレートで円弧が付与されていない従来の鋳型で
鋳造した場合のそれであり、特に、表3はセラミックス
鋳型を使用せず、銅製鋳型のみで鋳造した場合である。
Table 1 shows the casting conditions and results of the implementation. The conditions and results of the comparative examples are shown in Tables 2 and 3.
The results in Table 2 are those obtained when casting was performed using a conventional mold in which the ceramic mold outer surface and the copper mold inner surface were straight and no arc was provided. In particular, Table 3 shows that the ceramic mold was not used and only the copper mold was used. This is the case when cast.

【0025】表2の結果から明らかなように、比較例の
実験No. 19〜36において400mm 幅鋳片の鋳造時はセラミ
ックス鋳型が溶鋼側に変位して鋳片の肉厚が変動し、80
0 mm幅鋳片の鋳造時はセラミックス鋳型の変位が大きく
破損した。また、表3の結果から明らかなように、比較
例の実験No. 37〜42においては鋳片表面に引抜マーク、
ホットティアという欠陥が存在した。これに対し、表1
の本発明例 (実験No.1〜18) ではいずれも引抜マークお
よびホットティアの表面欠陥、肉厚変動のない良好な鋳
片を得ることができた。
As is clear from the results of Table 2, in Experiment Nos. 19 to 36 of Comparative Examples, when casting a 400 mm wide slab, the ceramic mold was displaced to the molten steel side and the wall thickness of the slab fluctuated.
During the casting of 0 mm width slab, the ceramic mold was largely displaced and damaged. Further, as is clear from the results of Table 3, in Experiment Nos. 37 to 42 of Comparative Examples, a drawing mark on the surface of the slab,
There was a flaw called Hot Tier. On the other hand, Table 1
In each of the examples of the present invention (Experiment Nos. 1 to 18), good slabs without surface defects of the drawn marks and hot tears and wall thickness variation could be obtained.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【発明の効果】以上説明したように本発明によれば、表
面欠陥、肉厚変動のない矩形鋳片を連続鋳造することが
でき、省工程、省エネルギーによって製造工程の著しい
低減が可能となった。
As described above, according to the present invention, it is possible to continuously cast a rectangular slab without surface defects and wall thickness fluctuation, and it is possible to significantly reduce the number of manufacturing steps by saving steps and energy. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の連続鋳造装置の一実施例の要部断面図
である。
FIG. 1 is a sectional view of an essential part of an embodiment of a continuous casting apparatus of the present invention.

【図2】図2(a) 、(b) 、(c) は、それぞれ鋳片肉厚に
応じた、本発明の連続鋳造用装置の鋳型部の横断面図で
ある。
2 (a), 2 (b) and 2 (c) are transverse cross-sectional views of a casting mold portion of a continuous casting apparatus according to the present invention, according to the thickness of a cast piece.

【図3】従来の連続鋳造方法の概念図である。FIG. 3 is a conceptual diagram of a conventional continuous casting method.

【図4】タンディッシュ−鋳型直結式連鋳法の概念図で
ある。
FIG. 4 is a conceptual diagram of a tundish-mold direct connection type continuous casting method.

【図5】別のタンディッシュ−鋳型直結式連鋳法の概念
図である。
FIG. 5 is a conceptual diagram of another tundish-mold direct connection type continuous casting method.

【図6】引抜マークとホットティアを説明する鋳片の部
分断面図である。
FIG. 6 is a partial cross-sectional view of a slab for explaining a drawing mark and a hot tear.

【図7】角型鋳片鋳造時の鋳型変形の説明図である。FIG. 7 is an explanatory diagram of mold deformation during casting of a square slab.

【符号の説明】[Explanation of symbols]

1 : タンディッシュ 2 : 浸漬ノズル 2a: 注入孔 3 : 水冷銅鋳型 4 : セラミックス鋳型 5 : ガイドロール 6 : 溶鋼 7 : 凝固シェル 8 : ピンチロール 9 : 接続耐火物 1: Tundish 2: Immersion nozzle 2a: Injection hole 3: Water-cooled copper mold 4: Ceramics mold 5: Guide roll 6: Molten steel 7: Solidified shell 8: Pinch roll 9: Connection refractory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 上端においてタンディッシュに直結され
た鋳型部から成る、矩形断面の鋳片を製造する連続鋳造
用装置であって、 前記鋳型部が、鋳型部上端にまで延設された段差部をそ
の上部に備えた水冷銅鋳型の鋳型本体と、該段差部内に
内挿されたセラミックス鋳型とから構成され、該セラミ
ックス鋳型の外面と水冷銅鋳型との接する面が、少なく
とも鋳型長辺側において、鋳型の外側に向かって凸なる
曲面にて構成されることを特徴とする連続鋳造用装置。
1. A continuous casting apparatus for producing a slab having a rectangular cross section, which comprises a mold part directly connected to a tundish at the upper end, wherein the mold part is a step part extending to the upper end of the mold part. A mold body of a water-cooled copper mold having an upper part thereof, and a ceramics mold inserted in the step portion, and a surface contacting the outer surface of the ceramics mold and the water-cooled copper mold is at least the long side of the mold. An apparatus for continuous casting, characterized in that the curved surface is convex toward the outside of the mold.
【請求項2】 鋳型長辺側にのみセラミックス鋳型が内
挿された請求項1記載の連続鋳造用装置。
2. The continuous casting apparatus according to claim 1, wherein a ceramics mold is inserted only on the long side of the mold.
JP2018892A 1992-02-05 1992-02-05 Device for continuous casting Pending JPH05212500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018892A JPH05212500A (en) 1992-02-05 1992-02-05 Device for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018892A JPH05212500A (en) 1992-02-05 1992-02-05 Device for continuous casting

Publications (1)

Publication Number Publication Date
JPH05212500A true JPH05212500A (en) 1993-08-24

Family

ID=12020203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018892A Pending JPH05212500A (en) 1992-02-05 1992-02-05 Device for continuous casting

Country Status (1)

Country Link
JP (1) JPH05212500A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427743A (en) * 1987-07-24 1989-01-30 Nippon Steel Corp Mold for continuously casting metal
JPH01286967A (en) * 1988-05-13 1989-11-17 Nippon Steel Corp Ceramic mold for continuous casting use and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427743A (en) * 1987-07-24 1989-01-30 Nippon Steel Corp Mold for continuously casting metal
JPH01286967A (en) * 1988-05-13 1989-11-17 Nippon Steel Corp Ceramic mold for continuous casting use and production thereof

Similar Documents

Publication Publication Date Title
JP4164163B2 (en) Metal casting mold
JP4337565B2 (en) Steel slab continuous casting method
JP5477269B2 (en) Continuous casting method for slabs
US4911226A (en) Method and apparatus for continuously casting strip steel
JPH05212500A (en) Device for continuous casting
US6474401B1 (en) Continuous casting mold
JP5896811B2 (en) Mold for continuous casting of ingot made of titanium or titanium alloy and continuous casting apparatus provided with the same
JPH0631400A (en) Device for continuous casting
KR101060114B1 (en) Continuous casting molds for casting molten metal, especially steel materials, into polygonal billet castings, bloom castings, preliminary section castings, etc. at high casting speeds.
JP3122352B2 (en) Mold for continuous casting equipment
JP3289118B2 (en) Shrinkage hole reduction device in continuous casting
JPS632534A (en) Method of bottom pouring steel ingot making
JPH06339754A (en) Method for continuously casting thin sheet
JP2982622B2 (en) Cooling method of slab in continuous casting
JP3082834B2 (en) Continuous casting method for round slabs
JP3283746B2 (en) Continuous casting mold
JP5691949B2 (en) Continuous casting method for large-section slabs
JP3267909B2 (en) Long nozzle for continuous casting
JPH09239496A (en) Mold for continuously casting square billet
JPH06218497A (en) Mold for continuous casting
JP3228463B2 (en) Long nozzle for continuous casting
JP3267908B2 (en) Long nozzle for continuous casting
JP3624856B2 (en) Method for improving yield of continuous cast steel slabs
JPH09271902A (en) Tube mold for continuously casting square billet
JPWO2013175536A1 (en) Continuous casting method for slabs

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980113