JPH0521238A - Oil filled electrical equipment - Google Patents

Oil filled electrical equipment

Info

Publication number
JPH0521238A
JPH0521238A JP19354091A JP19354091A JPH0521238A JP H0521238 A JPH0521238 A JP H0521238A JP 19354091 A JP19354091 A JP 19354091A JP 19354091 A JP19354091 A JP 19354091A JP H0521238 A JPH0521238 A JP H0521238A
Authority
JP
Japan
Prior art keywords
oil
spacer
insulating sheet
coil
soft insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19354091A
Other languages
Japanese (ja)
Inventor
Sadao Furukawa
貞夫 古川
Yuzuru Kamata
譲 鎌田
Kaoru Endo
馨 遠藤
Hiroyuki Fujita
裕幸 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19354091A priority Critical patent/JPH0521238A/en
Publication of JPH0521238A publication Critical patent/JPH0521238A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To acquire stable insulation performance by removing a fine oil gap effectively. CONSTITUTION:Non-fibrous and porous soft insulating sheets 3a to 3h are arranged by pressure contact at least one place of a part which is positioned in insulation oil and where a fine oil gap is formed such as between a disc coil 6b of a high tension winding 12 and a spacer 5 between coils, and between a pressing bolt 14 of an upper winding supporting fitting 13 and an insulating supporting base 4b, the fine oil gap is removed and formation of an oil gap which linearly passes from front to rear is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は油入変圧器やリアクトル
等の油入電気機器に係り、特に絶縁油中にくさび状の油
ギヤツプが形成される部分の絶縁に好適な絶縁構造を有
する油入電気機器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oil-filled electric device such as an oil-filled transformer or a reactor, and particularly to an oil having an insulating structure suitable for insulating a portion where a wedge-shaped oil gear is formed in insulating oil. Regarding electrical appliances.

【0002】[0002]

【従来の技術】油入電気機器として知られる高電圧大容
量油入変圧器の巻線では、絶縁物として鉱油の他に良質
の木材パルプからなる紙が大量に用いられている。例え
ば、巻線やリード線の絶縁被覆としてクラフト紙やクレ
ープ紙が用いられ、また巻線内の冷却油道を確保するた
めの各種スペーサ、主絶縁を構成する絶縁物、巻線を支
持するため巻線の上下に配置された支持絶縁物、リード
線バリヤを構成する絶縁筒やスペーサおよびリード線を
支持するための腕木等の素材として、紙を強圧縮したプ
レスボードが用いられてきている。すなわち、変圧器巻
線の絶縁はこれらの絶縁紙と絶縁油として用いられる鉱
油の複合絶縁になつている。ところで、これらの絶縁紙
を油含浸処理した油浸紙の誘電率と鉱油の誘電率を比較
すると、鉱油の比誘電率が2.2程度であるのに対して
油浸紙の比誘電率は3.5〜4.7程度あり、油浸紙の
方が1.5〜2倍程度大きい。このため、これらが直列
に配置された絶縁構造の電界負担は、油浸紙中では緩和
され、その分が鉱油にしわ寄せされて鉱油に電界が集中
する。そのうえ、鉱油の絶縁強度は油浸紙の絶縁強度よ
りもはるかに小さいので、結局、鉱油の絶縁強度で巻線
の複合絶縁系の絶縁強度が決められてくる。
2. Description of the Related Art In windings of high-voltage, large-capacity oil-filled transformers known as oil-filled electrical equipment, a large amount of paper made of high-quality wood pulp is used as an insulating material in addition to mineral oil. For example, kraft paper or crepe paper is used as an insulating coating for windings and lead wires, and various spacers for securing cooling oil passages in the windings, insulators that make up the main insulation, and to support the windings. BACKGROUND ART Press boards made by strongly compressing paper have been used as materials for supporting insulators arranged above and below windings, insulating cylinders for forming a lead wire barrier, spacers, and arms for supporting lead wires. That is, the insulation of the transformer winding is a composite insulation of these insulating papers and mineral oil used as insulating oil. By the way, comparing the dielectric constant of oil-impregnated paper obtained by impregnating these insulating papers with that of mineral oil, the relative dielectric constant of mineral oil is about 2.2, while the dielectric constant of oil-impregnated paper is There are about 3.5 to 4.7, and the oil-impregnated paper is about 1.5 to 2 times larger. Therefore, the electric field burden of the insulating structure in which these are arranged in series is relaxed in the oil-impregnated paper, and the portion is wrinkled by the mineral oil and the electric field is concentrated on the mineral oil. Moreover, since the insulating strength of mineral oil is much smaller than that of oil-impregnated paper, the insulating strength of mineral oil ultimately determines the insulating strength of the composite insulation system of the winding.

【0003】このような鉱油への電界集中は、絶縁寸法
中における油浸紙の寸法の占める割合が大きい部分ほど
大きく、例えば、円板コイルからなる巻線内では、冷却
ダクトを確保するための直線スペーサやコイル間スペー
サが配置された部分の油ギヤツプで集中が大きい。中で
も円板コイルが直線スペーサやコイル間スペーサに接す
る部分のくさび状の微細な油ギヤツプの電界が、円板コ
イルが角ばつていることによる幾何学的な電界集中も加
わつて集中しやすい。そのため、この微細油ギヤツプが
絶縁上の弱点になつて絶縁破壊が生じる場合が多いこと
が知られている。同様にして、円筒コイルからなる多重
円筒巻線やパンケーキコイルからなる外鉄形変圧器の巻
線でもコイルと冷却ダクト用スペーサ間の微細油ギヤツ
プの電界集中が大きく、ここが絶縁上の弱点になつてい
る。また、巻線外周りでは、巻線から引き出された高圧
リード線と支持腕木間の微細な油ギヤツプやリード線と
リード線バリヤ用スペーサ間の微細な油ギヤツプで電界
の集中が大きくなり、更に巻線支持金具の近傍では、巻
線支持金具の角部と巻線支持絶縁物間の微細な油ギヤツ
プで電界の集中が大きく、絶縁上の弱点になつており、
このように、いずれも絶縁油中にくさび状に形成される
微細な油ギヤツプが絶縁上の弱点になつている。
Such electric field concentration on the mineral oil increases as the proportion of the size of the oil-impregnated paper in the insulating dimension increases. For example, in a winding consisting of a disk coil, a cooling duct is secured. Concentration is large at the oil gear where the linear spacers and inter-coil spacers are arranged. Above all, the electric field of the wedge-shaped fine oil gear at the portion where the disc coil contacts the linear spacer or the inter-coil spacer is likely to be concentrated due to the geometrical electric field concentration due to the angular disc coil. Therefore, it is known that this fine oil gear often becomes a weak point in insulation and causes dielectric breakdown. Similarly, the electric field concentration of the fine oil gear between the coil and the spacer for the cooling duct is large even in the multi-cylindrical winding consisting of the cylindrical coil and the winding of the outer iron transformer consisting of the pancake coil. It has become. In the outer circumference of the winding, the electric field concentration increases due to the fine oil gear between the high-voltage lead wire and the support arm pulled out from the winding and the fine oil gear between the lead wire and the spacer for the lead wire barrier. In the vicinity of the winding support bracket, the electric field is concentrated due to the fine oil gear between the corner of the winding support bracket and the winding support insulator, which is a weak point in insulation.
As described above, the fine oil gears formed in the insulating oil in a wedge shape are weak points in the insulation.

【0004】このような弱点を解消して絶縁耐力の向上
を図るため、例えば巻線内については、特開昭62−1
47710号公報に記載のように、円板コイルの絶縁被
覆やコイル間スペーサおよび直線スペーサの材料に誘電
率が鉱油の1.3倍以下のものを適用することによつ
て、円板コイル近傍の微細な油ギヤツプでの電界の集中
を防止したものや、実開昭59−93116号公報に記
載のように、円板コイルとコイル間スペーサおよび直線
スペーサとの間に木綿繊維を原材料とする軟質ないしは
半硬質の紙を配置し、これを圧縮することによつて弱点
である微細油ギヤツプを排除したものや、更に特開昭5
7−83010号公報に記載されているように、円板コ
イルの角部に多孔質あるいは繊維質の弾性多孔体を当
て、更にその上に絶縁カバーを被せて見掛け上円板コイ
ルの絶縁被覆を厚くすることによつて、円板コイルの角
部近傍の微細な油ギヤツプの電界を緩和したものなどが
ある。また高圧リード線の支持部については、実開昭5
7−78624号公報に記載のように、支持腕木とリー
ド線の間にフエルト状の絶縁紙を配置して、微細油ギヤ
ツプを排除したものがある。同じく高圧リード線のバリ
ヤ部については、特開昭63−60509号公報に記載
されているように、被覆絶縁の最外層、スペーサおよび
絶縁筒に低誘電率プラスチツクとパルプの混抄材を用い
て微細油ギヤツプの電界集中を防止したものがある。ま
た、巻線支持金具の近傍については、特開昭48−54
434号公報に記載のように、金具の縁辺に電界シール
ドを配置して、微細油ギヤツプの電界を緩和したものが
ある。
In order to eliminate such weak points and improve the dielectric strength, for example, in the winding, JP-A-62-1
As described in Japanese Patent Publication No. 47710, by applying a material having a dielectric constant of 1.3 times or less that of mineral oil to the insulating coating of the disk coil, the inter-coil spacer and the linear spacer, What prevents concentration of an electric field in a fine oil gear, and as described in Japanese Utility Model Application Laid-Open No. 59-93116, a soft material made of cotton fiber as a raw material between the disk coil and the inter-coil spacer and the linear spacer. Or, a semi-rigid paper is placed and compressed to eliminate fine oil gears, which is a weak point, and further, it is disclosed in Japanese Patent Laid-Open No.
As described in Japanese Patent Publication No. 7-83010, a porous or fibrous elastic porous body is applied to the corners of the disk coil, and an insulating cover is further covered on the disk coil to apparently cover the disk coil with insulation. For example, the thickening reduces the electric field of the fine oil gear near the corners of the disk coil. For the high voltage lead wire support, see
As described in Japanese Patent Publication No. 7-78624, there is one in which a fine oil gap is eliminated by disposing a felt-like insulating paper between the supporting arm and the lead wire. Similarly, as for the barrier portion of the high-voltage lead wire, as described in Japanese Patent Laid-Open No. 63-60509, the outermost layer of coating insulation, the spacer, and the insulating cylinder are made of a fine mixed material of low dielectric constant plastic and pulp. There is one that prevents the electric field from being concentrated in the oil gear. Further, regarding the vicinity of the winding support metal fitting, Japanese Patent Laid-Open No. 48-54
As described in Japanese Laid-Open Patent Publication No. 434, there is one in which an electric field shield is arranged on the edge of the metal fitting to reduce the electric field of the fine oil gear.

【0005】[0005]

【発明が解決しようとする課題】上述したように油入電
気機器においては、微細油ギヤツプでの電界集中を防止
するために種々の提案が成され、特に特開昭59−93
116号公報および実開昭57−78624号公報およ
び特開昭57−83010号公報に記載のものは見掛け
上、微細油ギヤツプを除去できるが、いずれも繊維質の
材料を用いているため、例えばフエルトや軟紙は繊維の
密集度が小さく繊維の疎らな部分ができ、その部分で繊
維と繊維の間隙をぬつて、直線あるいは直線に近い経路
で表面から裏面へ通じる油ギヤツプが形成されてしま
い、実際、フエルトや軟紙を透かして見ると、肉眼でも
比較的大きな穴が表面から裏面まで形成されているのが
観察される場合がある。このような場合、低い電圧で油
ギヤツプを通して絶縁破壊が生じ易くなり、安定した絶
縁性能が得られない。
As described above, in the oil-filled electrical equipment, various proposals have been made to prevent electric field concentration in the fine oil gear, and particularly, JP-A-59-93.
No. 116, Japanese Utility Model Laid-Open No. 57-78624 and Japanese Patent Laid-Open No. 57-83010 can apparently remove fine oil gears, but all of them use a fibrous material. Felt and soft paper have small fiber density and sparse fiber parts, and the gap between the fibers is wiped out at that part, forming an oil gear tape that runs from the front surface to the back surface in a straight line or a path close to a straight line. Actually, when seeing through felt or soft paper, it may be observed with the naked eye that relatively large holes are formed from the front surface to the back surface. In such a case, insulation breakdown is likely to occur through the oil gear at a low voltage, and stable insulation performance cannot be obtained.

【0006】本発明の目的は、効率的に微細油ギヤツプ
を除去して安定した絶縁性能を有する油入電気機器を提
供するにある。
It is an object of the present invention to provide an oil-filled electric device having a stable insulating performance by efficiently removing fine oil gears.

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するために、微細油ギヤツプが形成される部分に、非繊
維質でかつ多孔体から成る軟質絶縁シートを配置したこ
とを特徴とする。
In order to achieve the above object, the present invention is characterized in that a soft insulating sheet made of a non-fibrous and porous material is arranged at a portion where a fine oil gear is formed. .

【0008】[0008]

【作用】本発明による油入電気機器は微細油ギヤツプが
形成される部分に上述の如き軟質絶縁シートを配置して
いるが、この軟質絶縁シートは、多孔体であるので非常
に柔らかく、例えばコイルとスペーサ間に配置すると巻
線製作時のコイルを巻回する際の圧縮力や巻線製作後の
巻線上部からの締め付け荷重によつてつぶれ、そのとき
圧力の加わらない部分はそのままの形状を維持するの
で、コイルの輪郭に沿つて微細油ギヤツプが埋めつぶさ
れ、しかも、この軟質絶縁シートは、非繊維質の多孔体
でできているので内部が膜状あるいは層状に細かく分割
されており、シートの表から裏まで直線的に通じている
ような油ギヤツプが形成されず、このため安定した絶縁
耐力を得ることができる。また、この軟質絶縁シートは
適当な大きさおよび形状に切つて微細油ギヤツプに挿入
するだけであり、製作工数はほとんど増えない。
In the oil-filled electric device according to the present invention, the soft insulating sheet as described above is arranged in the portion where the fine oil gear is formed. Since the soft insulating sheet is a porous body, it is very soft, for example, a coil. If it is placed between the spacer and the spacer, it will be crushed by the compressive force when winding the coil at the time of manufacturing the winding and the tightening load from the upper part of the winding after manufacturing the winding, and the part where no pressure is applied at that time will keep the shape as it is. To maintain it, the fine oil gap is filled along the contour of the coil, and this soft insulating sheet is made of a non-fibrous porous material, so the inside is finely divided into a film or layer, An oil gear gap that linearly communicates from the front side to the back side of the seat is not formed, and thus stable dielectric strength can be obtained. Further, this soft insulating sheet is simply cut into an appropriate size and shape and inserted into the fine oil gear, and the number of manufacturing steps hardly increases.

【0009】[0009]

【実施例】以下本発明の実施例を図面によつて説明す
る。図1は本発明の一実施例による油入電気機器として
の油入変圧器を示す縦断面図である。鉄心1の下部に取
付けた下部支持金具2上には、非繊維で多孔質の絶縁体
から成る軟質絶縁シート3aを敷き、その上に絶縁支持
台4aを置き、この絶縁支持台4a上にコイル間スペー
サ5aと円板コイル6aを交互に積み重ねて低圧巻線7
を形成している。この低圧巻線7のコイル間スペーサ5
aと円板コイル6aとの間には、上述の軟質絶縁シート
3aと同様な軟質絶縁シート3bを挿入しており、この
軟質絶縁シート3bはコイル間スペーサ5aの幅より多
少はみ出す程度の大きさとしている。低圧巻線7の最上
部には静電シールド8aが置かれるが、この静電シール
ド8aとコイル間スペーサ5a間にも上述の軟質絶縁シ
ート3bを挿入している。さらに低圧巻線7の外側に上
述したものと同じ軟質絶縁シート3cを当て、さらにそ
の外側に直線スペーサ9を当て、その外側に絶縁紙を巻
回して絶縁筒10を形成し、さらに、その外側に同様の
直線スペーサ9と絶縁筒10を交互に配置して主絶縁1
1を構成している。尚、このときの軟質絶縁シート3c
の幅は、直線スペーサ9よりも多少はみだす大きさとし
ている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a vertical sectional view showing an oil-filled transformer as an oil-filled electrical device according to an embodiment of the present invention. A soft insulating sheet 3a made of a non-fiber and porous insulator is laid on the lower support metal fitting 2 attached to the lower part of the iron core 1, and an insulating support base 4a is placed on the soft insulating sheet 3a, and a coil is placed on the insulating support base 4a. The spacers 5a and the disk coils 6a are alternately stacked to form the low voltage winding 7
Is formed. Inter-coil spacer 5 of this low-voltage winding 7
A soft insulating sheet 3b similar to the above-described soft insulating sheet 3a is inserted between a and the disk coil 6a, and this soft insulating sheet 3b has a size slightly protruding from the width of the inter-coil spacer 5a. I am trying. An electrostatic shield 8a is placed on the uppermost part of the low-voltage winding 7, and the soft insulating sheet 3b described above is also inserted between the electrostatic shield 8a and the inter-coil spacer 5a. Further, the same soft insulating sheet 3c as that described above is applied to the outside of the low-voltage winding 7, a linear spacer 9 is applied to the outside thereof, and insulating paper is wound on the outside thereof to form an insulating cylinder 10. The same linear spacers 9 and insulating cylinders 10 are alternately arranged in the main insulation 1
Make up one. The soft insulating sheet 3c at this time
Has a width slightly larger than the linear spacer 9.

【0010】主絶縁11の最も外側に位置する直線スペ
ーサ9の上に軟質絶縁シート3dを当て、その外側に、
電線を締め付けながら巻回して円板コイル6bを形成
し、このような円板コイル6bとコイル間スペーサ5b
を交互に積み重ねて高圧巻線12を構成している。この
円板コイル6bとコイル間スペーサ5bとの間には先の
軟質絶縁シート3bと同様な軟質絶縁シート3eを挿入
しており、この軟質絶縁シート3eの幅はコイル間スペ
ーサ5bよりも少しはみ出す大きさとしている。高圧巻
線12の最上部には静電シールド8bが設けられるが、
静電シールド8bとコイル間スペーサ5bとの間にも軟
質絶縁シート3eを挿入している。
On the outermost linear spacer 9 of the main insulation 11, a soft insulating sheet 3d is placed on the linear spacer 9, and on the outer side thereof,
The electric wire is wound while being tightened to form the disk coil 6b, and the disk coil 6b and the inter-coil spacer 5b are formed.
Are alternately stacked to form the high-voltage winding 12. A soft insulating sheet 3e similar to the above soft insulating sheet 3b is inserted between the disk coil 6b and the inter-coil spacer 5b, and the width of the soft insulating sheet 3e slightly extends beyond the inter-coil spacer 5b. It has a size. An electrostatic shield 8b is provided at the top of the high voltage winding 12,
The soft insulating sheet 3e is also inserted between the electrostatic shield 8b and the inter-coil spacer 5b.

【0011】このようの形成した低圧および高圧巻線
7,12の上部に絶縁支持台4bを乗せ、さらにその上
に押しボルト14を装着した上部支持金具13を乗せて
鉄心1に取り付けるが、その際、押しボルト14と絶縁
支持台4bとの間には軟質絶縁シート3fを挿入する。
そして、押しボルト14で絶縁支持台4bに荷重を加
え、低圧および高圧巻線7,12を締め付けて巻線本体
を構成している。
The insulating support base 4b is placed on top of the low-voltage and high-voltage windings 7 and 12 thus formed, and then the upper support metal fitting 13 having the push bolt 14 mounted thereon is mounted on the iron core 1. At this time, the soft insulating sheet 3f is inserted between the push bolt 14 and the insulating support base 4b.
Then, a load is applied to the insulating support 4b by the push bolt 14 to tighten the low-voltage and high-voltage windings 7 and 12 to form a winding body.

【0012】高圧巻線12の上端から高圧リード線15
を引出して高圧ブツシング16に接続するが、その際、
上部支持金具13から、高圧リード線15が入るような
穴をあけた支持腕木17を出し、この穴に高圧リード線
15を納めてリード線15の途中を支持している。ま
た、高圧リード線15の周囲との絶縁距離が小さい部分
についてはスペーサ18を介して絶縁紙を巻回してリー
ド線バリヤ19を配置している。この支持腕木17と高
圧リード線15の絶縁被覆20の間に軟質絶縁シート3
gを挿入し、また、スペーサ18と高圧リード線15の
絶縁被覆20間にもスペーサ18よりも幅広の軟質絶縁
シート3hを挿入している。これら全ては鉱油22を満
たしたタンク21内に収納して円板巻の変圧器巻線23
が構成されている。
From the upper end of the high voltage winding 12 to the high voltage lead wire 15
And connect it to the high pressure bushing 16. At that time,
A support arm 17 having a hole into which the high voltage lead wire 15 is inserted is taken out from the upper support metal fitting 13, and the high voltage lead wire 15 is housed in this hole to support the middle of the lead wire 15. Further, in a portion where the insulation distance from the periphery of the high voltage lead wire 15 is small, an insulating paper is wound around the spacer 18 to dispose a lead wire barrier 19. Between the support arm 17 and the insulating coating 20 of the high voltage lead wire 15, the soft insulating sheet 3
g, and a soft insulating sheet 3h wider than the spacer 18 is also inserted between the spacer 18 and the insulating coating 20 of the high voltage lead wire 15. All of these are stored in a tank 21 filled with mineral oil 22 and a transformer winding 23 of a disk winding is used.
Is configured.

【0013】図2は、本発明の変圧器巻線23の高圧巻
線12の円板コイル6bと直線スペーサ9およびコイル
間スペーサ5bが対応する部分を拡大して示したもので
ある。円板コイル6bは絶縁被覆24を施した導体25
を巻回して形成され、その巻回時の締め圧と上部からの
締め付け荷重で軟質絶縁シート3e,3dが押しつぶさ
れ、互いに密着して絶縁上の弱点になる微細油ギヤツプ
が除去されている。同様にして低圧巻線7の軟質絶縁シ
ート3b,3cも押しつぶされて互いに密着し、微細油
ギヤツプを排除している。従来の構造と比較すると、軟
質絶縁シートを所定の大きさに切つて挿入するだけであ
り、工数の増加はほとんどない。しかも軟質絶縁シート
が挿入された部分は、もともとスペーサ等が接している
部分であつて油の流れがなく、従つて軟質絶縁シートを
挿入しても冷却性能はほとんど変らない。
FIG. 2 is an enlarged view of a portion of the high voltage winding 12 of the transformer winding 23 according to the present invention, where the disk coil 6b corresponds to the linear spacer 9 and the inter-coil spacer 5b. The disk coil 6b is a conductor 25 with an insulating coating 24.
The soft insulating sheets 3e, 3d are crushed by the tightening pressure and the tightening load from the upper part when the coil is wound, and the fine oil gaps that adhere to each other and become weak points on the insulation are removed. Similarly, the soft insulating sheets 3b and 3c of the low-voltage winding 7 are also crushed and brought into close contact with each other to eliminate the fine oil gap. Compared to the conventional structure, the soft insulating sheet is simply cut into a predetermined size and inserted, and there is almost no increase in the number of steps. In addition, the portion where the soft insulating sheet is inserted is originally the portion where the spacer or the like is in contact, and there is no oil flow. Therefore, even if the soft insulating sheet is inserted, the cooling performance hardly changes.

【0014】図5は、本発明の変圧器巻線23の高圧巻
線12の静電シールド8bと直線スペーサ9およびコイ
ル間スペーサ5bが対応する部分を拡大して示したもの
である。静電シールド8bは、高圧巻線12を巻回後、
上部から挿入され、その後上部から締め付けられる。こ
の挿入による圧力と締め付け荷重で軟質絶縁シート3
e,3dが押しつぶされ、静電シールド8bと直線スペ
ーサ9及びコイル間スペーサ5b間の、絶縁上の弱点に
なる微細油ギヤツプが除去されている。その際新たな作
業としては、絶縁シート3e,3dを切つて挿入するだ
けであり、工数はほとんど増えない。
FIG. 5 is an enlarged view of a portion where the electrostatic shield 8b of the high voltage winding 12 of the transformer winding 23 of the present invention corresponds to the linear spacer 9 and the inter-coil spacer 5b. After the high-voltage winding 12 is wound around the electrostatic shield 8b,
It is inserted from the top and then tightened from the top. Due to the pressure and tightening load due to this insertion, the soft insulating sheet 3
The e and 3d are crushed, and the fine oil gap, which is a weak point in insulation, between the electrostatic shield 8b and the linear spacer 9 and the inter-coil spacer 5b is removed. At that time, as a new work, the insulating sheets 3e and 3d are simply cut and inserted, and the man-hours hardly increase.

【0015】図3は図1に示した上部支持金具13にお
いて最も電界が高い押しボルト14の近傍を拡大して示
したものである。押しボルト14の締め付け荷重によつ
て軟質絶縁シート3fが押しつぶされ、押しボルト14
と絶縁支持台4b間の微細油ギヤツプが除去されてい
る。
FIG. 3 is an enlarged view of the vicinity of the push bolt 14 having the highest electric field in the upper support fitting 13 shown in FIG. The soft insulating sheet 3f is crushed by the tightening load of the push bolt 14,
The fine oil gear gap between the insulating support base 4b and the insulating support base 4b is removed.

【0016】図4は、同じく図1に示した下部支持金具
2の最も電界の高い角部近傍を拡大して示したものであ
る。上部からの荷重によつて軟質絶縁シート3aが押し
つぶされ、下部支持金具2の縁端部と絶縁支持台4a間
の微細油ギヤツプが除去されている。
FIG. 4 is an enlarged view of the vicinity of the corner of the lower support metal fitting 2 shown in FIG. 1 where the electric field is highest. The soft insulating sheet 3a is crushed by the load from the upper part, and the fine oil gear gap between the edge portion of the lower support fitting 2 and the insulating support base 4a is removed.

【0017】図6は図1に示した高圧リード線15の支
持部を拡大して示したものである。高圧リード線15を
半割にした支持腕木17a,17bの対向部に形成した
穴に入れて挾み、絶縁ボルト26で締め付けて固定して
いる。この絶縁ボルト26の締め付け圧力によつて軟質
絶縁シート3gが押しつぶされ、高圧リード線15と支
持腕木17a,17b間の微細油ギヤツプが埋めつぶさ
れて除去されている。
FIG. 6 is an enlarged view of the supporting portion of the high voltage lead wire 15 shown in FIG. The high-voltage lead wire 15 is put in the holes formed in the opposing portions of the support arms 17a and 17b, which are divided in half, and is sandwiched and fixed by the insulating bolt 26. The soft insulating sheet 3g is crushed by the tightening pressure of the insulating bolt 26, and the fine oil gap between the high-voltage lead wire 15 and the supporting arms 17a and 17b is buried and removed.

【0018】図7は図1に示した高圧リード線15のバ
リヤ絶縁部を断面して示したものである。絶縁紙を巻回
してリード線バリヤ19を形成する際の、絶縁紙の締め
圧によつて軟質絶縁シート3hが押しつぶされ、スペー
サ18と高圧リード線15の絶縁被覆20間の微細油ギ
ヤツプが埋めつぶされて除去されている。
FIG. 7 is a cross-sectional view of the barrier insulating portion of the high voltage lead wire 15 shown in FIG. When the insulating paper is wound to form the lead wire barrier 19, the soft insulating sheet 3h is crushed by the clamping pressure of the insulating paper, and the fine oil gear gap between the spacer 18 and the insulating coating 20 of the high voltage lead wire 15 is filled. It has been crushed and removed.

【0019】以上説明した油入変圧器によれば、製作工
数を増やしたり冷却性能を損なつたりすることなく、絶
縁上の弱点である各部の微細油ギヤツプを除去すること
ができる。微細油ギヤツプでの電界集中は絶縁構成によ
つて異なるが、通常の部位の油ギヤツプ電界の大略1.
5〜2倍程度である。したがつて、微細油ギヤツプの排
除により変圧器巻線23の各部の電界は従来よりも1/
1.5〜1/2程度に緩和される。その結果、変圧器巻
線23の絶縁強度は、従来と比較して1.5〜2倍程度
向上することになり、使用電圧が同じなら絶縁距離を従
来の1/1.5〜1/2程度に短縮することができる。
According to the oil-filled transformer described above, it is possible to remove the fine oil gap of each part, which is a weak point in insulation, without increasing the number of manufacturing steps and impairing the cooling performance. The electric field concentration in the fine oil gap differs depending on the insulation structure, but the electric field in the normal part is roughly 1.
It is about 5 to 2 times. Therefore, the electric field in each part of the transformer winding 23 is 1 / th that of the prior art due to the elimination of the fine oil gear.
It is relaxed to about 1.5 to 1/2. As a result, the insulation strength of the transformer winding 23 is improved by about 1.5 to 2 times compared with the conventional one, and if the working voltage is the same, the insulation distance is 1 / 1.5 to 1/2 of the conventional one. It can be shortened to the extent.

【0020】ところで、コイル間スペーサ5a,5b、
直線スペーサ9、上下の絶縁支持台4a,4b、絶縁筒
10、支持腕木17a,17bおよびリード線バリヤ1
9のスペーサ18の材料としては、従来より広く用いら
れているプレスボードが採用され、一方、軟質絶縁シー
ト3a〜3hの材料としては、各種のプラスチツク材料
を延伸あるいは発泡加工した非繊維質の多孔体が挙げら
れる。図8および図9は、これらの非繊維質の多孔体と
繊維質の多孔体を用いた場合の絶縁破壊電圧を実験的に
調べて、その一例を示したものである。
By the way, the inter-coil spacers 5a, 5b,
Linear spacer 9, upper and lower insulating support bases 4a and 4b, insulating cylinder 10, supporting arms 17a and 17b, and lead wire barrier 1
As the material of the spacer 18 of No. 9, a press board which has been widely used from the past is adopted, while as the material of the soft insulating sheets 3a to 3h, a non-fibrous porous material obtained by stretching or foaming various plastic materials. The body. FIG. 8 and FIG. 9 show examples of the dielectric breakdown voltage when these non-fibrous porous body and fibrous porous body were used, which were experimentally investigated.

【0021】図8は、実験に用いたモデル27を示す斜
視図である。絶縁被覆24を施した導体25を2本対向
配置し、その間にそれぞれ軟質絶縁シート3eを介して
コイル間スペーサ5bを挾んだものとし、図1に示す高
圧巻線12の隣合つた円板コイル6b間の絶縁構造を模
擬した。このモデル27を油タンクに油浸し、上部の導
体25に雷インパルス電圧を印加し、下部の導体25を
接地して破壊電圧を調べた。上部の導体25に、雷イン
パルス電圧を低い電圧より1シヨツトずつ上昇しながら
印加すると、軟質絶縁シート3eを挿入していない場合
は、絶縁被覆24とコイル間スペーサ5bの間に形成さ
れる微細油ギヤツプから雷インパルス部分放電が生じ、
そのストリーマが接地側電線の絶縁被覆24の表面に到
達し、最終的にはこの絶縁被覆24を貫通して、図8の
Aに示すような経路でコイル間の絶縁破壊となる。一
方、軟質絶縁シート3eを挿入した場合は、このような
微細油ギヤツプからの絶縁破壊が少なくなり、コイル間
スペーサ5bの端面近傍でBに示すような経路で絶縁破
壊する場合が多くなる。特に、軟質絶縁シート3eに非
繊維質のものを用いた場合は、殆どBに示すような絶縁
破壊になる。
FIG. 8 is a perspective view showing the model 27 used in the experiment. It is assumed that two conductors 25 provided with an insulating coating 24 are arranged to face each other, and an inter-coil spacer 5b is sandwiched between them by a soft insulating sheet 3e, and the high-voltage winding 12 shown in FIG. The insulating structure between the coils 6b was simulated. The model 27 was immersed in an oil tank, a lightning impulse voltage was applied to the upper conductor 25, the lower conductor 25 was grounded, and the breakdown voltage was examined. When a lightning impulse voltage is applied to the upper conductor 25 while increasing the voltage by one shot from a lower voltage, the fine oil formed between the insulating coating 24 and the inter-coil spacer 5b when the soft insulating sheet 3e is not inserted. Partial discharge of lightning impulse occurs from the gear,
The streamer reaches the surface of the insulating coating 24 of the ground-side electric wire, and finally penetrates the insulating coating 24 to cause a dielectric breakdown between the coils along a path as shown in A of FIG. On the other hand, when the soft insulating sheet 3e is inserted, the dielectric breakdown from such fine oil gears decreases, and the dielectric breakdown often occurs along the path indicated by B near the end face of the inter-coil spacer 5b. In particular, when a non-fibrous soft insulating sheet 3e is used, the dielectric breakdown as shown in B almost occurs.

【0022】図9は各種軟質絶縁シートに対する破壊電
圧を示したもので、非繊維質の軟質絶縁シート3eを挿
入した場合の破壊電圧は、軟質絶縁シート3eを挿入し
ていない場合の破壊電圧と比較して平均値で1.65倍
程度向上し、また最低値も同程度向上する。一方、繊維
質の軟質絶縁シート3eを挿入した場合の破壊電圧は、
平均値では、1.2倍程度の向上であり、非繊維質のも
のを挿入した場合に比べて効果が小さく、かつ、最低値
では軟質絶縁シート3eを挿入しない場合の破壊電圧と
大差ない。これは、繊維質の軟質絶縁シート3eを透か
して見ると所々裏側まで穴があいているのが見られるよ
うに繊維の密集度が小さいため繊維の疎らな部分があ
り、その部分で繊維と繊維の間隙を縫つて軟質絶縁シー
ト3eの表から裏までほぼ直線的に通じる比較的大きな
油ギヤツプが生じてしまうことがあり、このような油ギ
ヤツプの絶縁耐力は、繊維がよく密集した部分の絶縁耐
力よりも小さく、そのために破壊電圧が低くなつてしま
う。
FIG. 9 shows breakdown voltages for various soft insulating sheets. The breakdown voltage when the non-fibrous soft insulating sheet 3e is inserted is the breakdown voltage when the soft insulating sheet 3e is not inserted. By comparison, the average value is improved by about 1.65 times, and the minimum value is also improved by the same degree. On the other hand, the breakdown voltage when the fibrous soft insulating sheet 3e is inserted is
The average value is an improvement of about 1.2 times, the effect is smaller than that when a non-fibrous material is inserted, and the lowest value is not much different from the breakdown voltage when the soft insulating sheet 3e is not inserted. This is because there is a sparse part of the fiber because the density of the fibers is small, as you can see that holes are drilled to the back side in some places when you see through the soft fibrous insulating sheet 3e, and there is a sparse part of the fiber, Of the soft insulating sheet 3e may be sewn into the gap between the front and back of the soft insulating sheet 3e in a substantially linear manner, and the dielectric strength of such an oil gear is such that the insulation strength of the portion where fibers are densely packed is high. It is smaller than the proof stress, and therefore the breakdown voltage becomes low.

【0023】一方、非繊維質のものの場合は、発泡や延
伸加工で多孔体にしており、発泡の場合は多数の空孔の
膜が複雑に重なり合つているため、また、延伸の場合
は、延伸で細かく分かれた素材の断片が同じく複雑に重
なり合つているため、繊維質の場合のような表面から裏
面へ直線に近い経路で通じる穴がない。このため、破壊
電圧が高い。したがつて、軟質絶縁シート3eの材料と
しては、非繊維質の多孔体が好適である。非繊維質の多
孔体の誘電率については、電界解析によると鉱油の1.
3倍以下にすると、挿入しても周囲の電界に余り影響し
ないことから鉱油の誘電率の1.3倍以下の低誘電率の
ものが好適である。また非繊維質の多孔体としては、例
えばポリ四フツ化エチレンを延伸加工したゴアテツク
ス、ミクロテツクス、マツシユシール(いずれも商品
名)や、各種のゴム、例えばシリコンゴム、ニトリルゴ
ム、ネオプレンゴムを発泡加工したシリコンスポンジ、
ニトリルスポンジ、ネオプレンスポンジや、一般的な各
種の発泡フオーム材、例えばポリウレタンフオーム、ポ
リエチレンフオーム、ポリスチレンフオームや、まだ一
般的ではないがポリメチルペンテンを発泡させたもの等
が好適で、その中でも、ポリ四フツ化エチレンやポリエ
チレン、ポリウレタン、ポリスチレン、ポリメチルペン
テンの多孔体が、素材としての比誘電率が2.1〜2.
7程度であり、鉱油の比誘電率の1.3倍以下であるた
め好適である。特に、ポリ四フツ化エチレンを延伸加工
したゴアテツクス、ミクロテツクス、マツシユシール
(いずれも商品名)は、誘電率が鉱油と同程度なため挿
入しても周囲の電界にほとんど影響しないこと、空孔の
径や分布が均質で絶縁耐力のばらつきが小さいこと、独
立空孔が全く無く油の含浸性が良いこと、高温での耐油
性がよいことなどから非常に好適である。
On the other hand, in the case of a non-fibrous material, it is made into a porous body by foaming or stretching, and in the case of foaming, a large number of pore membranes overlap intricately. Since the pieces of material that are finely divided by drawing also overlap in a complicated manner, there are no holes that lead from the front surface to the back surface in a path that is close to a straight line as in the case of fibrous material. Therefore, the breakdown voltage is high. Therefore, a non-fibrous porous body is suitable as the material of the soft insulating sheet 3e. Regarding the dielectric constant of the non-fibrous porous material, electric field analysis shows that 1.
When the amount is 3 times or less, even if it is inserted, it does not affect the surrounding electric field so much. Therefore, a low dielectric constant of 1.3 times or less that of mineral oil is preferable. As the non-fibrous porous material, for example, polytetrafluoroethylene stretched Goretex, Microtex, Matsushishiru (all are trade names), and various rubbers such as silicone rubber, nitrile rubber, and neoprene rubber are foamed. Silicone sponge,
Nitrile sponge, neoprene sponge, and various general foam foam materials, such as polyurethane foam, polyethylene foam, polystyrene foam, and polymethylpentene foams, which are not common yet, are preferable. Porous bodies of tetrafluoroethylene, polyethylene, polyurethane, polystyrene and polymethylpentene have a relative dielectric constant of 2.1 to 2.
It is about 7, which is preferable because it is 1.3 times or less the relative dielectric constant of mineral oil. In particular, Goretex, Microtex, and Matsushiyushiru (all trade names) made by stretching polytetrafluoroethylene have almost the same dielectric constant as mineral oil, so even if they are inserted, they have almost no effect on the surrounding electric field and the diameter of the pores. It is very suitable because it has a uniform distribution and a small distribution of dielectric strength, has no independent pores, has a good oil impregnation property, and has a good oil resistance at high temperatures.

【0024】軟質絶縁シート3a〜3h中の空孔の割合
即ち空孔率は、巻線の機械的強度の面から次のように要
求される。軟質絶縁シート3a〜3hは柔らかいので巻
線の機械的強度を保つ上でほとんど助けにならない。し
たがつて、機械的にみれば、軟質絶縁シート3a〜3h
の占める割合が小さい方がよい。その点で、軟質絶縁シ
ート3a〜3hが巻線製作時の押し圧や締め圧で大略元
の厚さの1/2以下につぶれれば、余り厚いものを使わ
ずに効率よく微細油ギヤツプを埋めることができ、しか
も巻線の機械的強度がほとんど低下せずに具合がよい。
ところで、このような比較的小さな力では、軟質絶縁シ
ート3a〜3hの素材自体はほとんど圧縮されず、その
ような形状変化は軟質絶縁シート3a〜3h中の空孔が
押しつぶされる場合にのみ可能である。したがつて、軟
質絶縁シート3a〜3hの空孔率は50%以上であれば
良いが、図8に示したモデル27による絶縁試験結果に
よれば、空孔率が90%を越えると急激に破壊電圧が低
下する。これは素材の占める割合が急激に低下して大半
が油になつてしまうためであり、従つて、最終的な軟質
絶縁シート3a〜3hの空孔率は50%以上90%以下
が好適である。
The proportion of voids in the soft insulating sheets 3a to 3h, that is, the porosity, is required as follows from the viewpoint of the mechanical strength of the winding. Since the soft insulating sheets 3a to 3h are soft, they hardly help in maintaining the mechanical strength of the winding. Therefore, from a mechanical point of view, the soft insulating sheets 3a to 3h
The smaller the percentage, the better. In that respect, if the soft insulating sheets 3a to 3h are crushed to less than 1/2 of the original thickness due to the pressing and tightening pressures during the winding production, a fine oil gear tape can be efficiently used without using a too thick one. It can be buried, and the mechanical strength of the winding is hardly reduced, and it is in good condition.
By the way, with such a relatively small force, the material itself of the soft insulating sheets 3a to 3h is hardly compressed, and such a shape change is possible only when the holes in the soft insulating sheets 3a to 3h are crushed. is there. Therefore, the porosity of the soft insulating sheets 3a to 3h may be 50% or more, but according to the insulation test result by the model 27 shown in FIG. 8, when the porosity exceeds 90%, the porosity rapidly increases. Breakdown voltage decreases. This is because the ratio of the material is drastically reduced and most of the material becomes oil. Therefore, the porosity of the final soft insulating sheets 3a to 3h is preferably 50% or more and 90% or less. .

【0025】軟質絶縁シート3a〜3hの厚さは、適用
部署の電界分布から決められるが、図10は、一例とし
て円板コイル6b間について、軟質絶縁シート3eの厚
さtを変えた場合の円板コイル6bの角部近傍の微細油
ギヤツプの電界を示したものである。軟質絶縁シート3
eの圧縮率は1/2とし、電界は、コイル間スペーサ5
bに接していない油隙部分の油ギヤツプの電界で割つ
て、厚さtは、円板コイル6bの角部の曲率半径Rで割
つて規格化して示した。
The thickness of the soft insulating sheets 3a to 3h is determined by the electric field distribution of the applicable section. In FIG. 10, as an example, the thickness t of the soft insulating sheet 3e is changed between the disk coils 6b. The electric field of the fine oil gap near the corners of the disk coil 6b is shown. Soft insulation sheet 3
The compression ratio of e is 1/2, and the electric field is 5
The thickness t is divided by the electric field of the oil gear portion in the oil gap portion not in contact with b, and the thickness t is divided by the curvature radius R of the corner portion of the disk coil 6b to be normalized.

【0026】同図から分かるように軟質絶縁シート3e
の厚さt/Rが大略1になると、微細油ギヤツプの電界
が通常油ギヤツプの電界に大体等しくなる。すなわち、
円板コイル6b間での軟質絶縁シート3eの最適厚さ
は、円板コイル6bの角部の曲率半径と大体同程度にす
るのが好適であり、実寸法で示すと、円板コイル6bの
角部の曲率半径が1〜3mm程度であるので、軟質絶縁
シート3eの厚さは1〜3mm程度になる。なお、これ
以上厚くしても、通常の部分の油ギヤツプで絶縁破壊が
生じるようになり、破壊電圧が上がらず効果がない。一
方、薄い場合も、ある程度以下になると効果がなくな
る。これは絶縁被覆24の表面に凹凸があるためで、絶
縁被覆24は通常、テープ巻が多く、その場合、テープ
のオーバラツプの凹凸などが加わつて、表面の凹凸は少
なくとも0.2mm程度ある。少しでも効果をだすには
最低限、この絶縁被覆表面の凹凸を埋めつぶす厚さが必
要である。したがつて、軟質絶縁シート3eの圧縮率を
1/2とすると軟質絶縁シート3eの厚さは、最低限
0.4mm程度必要である。
As can be seen from the figure, the soft insulating sheet 3e
When the thickness t / R is approximately 1, the electric field of the fine oil gear cup becomes approximately equal to the electric field of the normal oil gear cup. That is,
The optimum thickness of the soft insulating sheet 3e between the disc coils 6b is preferably about the same as the radius of curvature of the corners of the disc coil 6b. Since the corners have a radius of curvature of about 1 to 3 mm, the thickness of the soft insulating sheet 3e is about 1 to 3 mm. It should be noted that even if the thickness is further increased, dielectric breakdown occurs in the oil gear of a normal portion, the breakdown voltage does not increase, and there is no effect. On the other hand, even when the thickness is thin, the effect is lost when the thickness becomes less than a certain level. This is because the surface of the insulating coating 24 has irregularities, and the insulating coating 24 usually has many tape windings. In that case, the irregularities of the surface of the insulating coating 24 are at least about 0.2 mm due to the irregularities of the tape overlap. At least the thickness that fills the irregularities on the surface of the insulating coating is necessary to bring out the effect even a little. Therefore, if the compression rate of the soft insulating sheet 3e is halved, the thickness of the soft insulating sheet 3e needs to be at least about 0.4 mm.

【0027】他の部位について電界分布から好適な厚さ
を調べた結果、変圧器によつて大分異なるが、下部巻線
支持金具2や上部巻線支持金具13では、1〜10mm
程度、高圧リード線15の支持部では1〜5mm程度、
リード線バリヤ19では、1〜3mm程度になる。
As a result of investigating a suitable thickness from the electric field distribution in other parts, it is largely different depending on the transformer, but in the lower winding support fitting 2 and the upper winding support fitting 13, 1 to 10 mm.
About 1 to 5 mm at the supporting portion of the high voltage lead wire 15,
The lead wire barrier 19 has a thickness of about 1 to 3 mm.

【0028】軟質絶縁シート3a〜3hの空孔径につい
ては、絶縁破壊の観点から次のようにすると好適であ
る。前述したように絶縁破壊の前駆としてストリーマが
進展するが、このストリーマの直径は10μm程度であ
る。そのため、空孔径、つまり直径が10μmを越える
とストリーマが空孔に入り易くなり、絶縁破壊が生じ易
くなる。したがつて、空孔径は基本的には10μm以下
にした方がよい。但し、実験によれば空孔径が10μm
を越えたとたんに画然と破壊電圧が下がるわけでなく、
徐々に下がる傾向を持ち、空孔径が200μm程度まで
は破壊電圧の向上効果がある。これは軟質絶縁シート3
a〜3hが圧縮されて押しつぶされる際、空孔もつぶさ
れて空孔径も小さくなるためである。従つて、使用する
軟質絶縁シートの空孔径は200μm以下であれば良
い。
The pore diameters of the soft insulating sheets 3a to 3h are preferably set as follows from the viewpoint of dielectric breakdown. As described above, the streamer progresses as a precursor of dielectric breakdown, and the diameter of this streamer is about 10 μm. Therefore, if the pore diameter, that is, the diameter exceeds 10 μm, the streamer easily enters the pores, and dielectric breakdown easily occurs. Therefore, the pore diameter should basically be 10 μm or less. However, according to the experiment, the pore diameter is 10 μm
The breakdown voltage does not drop sharply as soon as it exceeds the
It has a tendency to gradually decrease, and has an effect of improving breakdown voltage up to a pore diameter of about 200 μm. This is a soft insulating sheet 3
This is because, when a to 3h are compressed and crushed, the holes are also crushed and the hole diameter becomes smaller. Therefore, the pore diameter of the soft insulating sheet used may be 200 μm or less.

【0029】尚、軟質絶縁シート3a〜3hの材料とし
て上述した多孔体の他に、内部構造が薄葉状になつてい
るもの、例えばコーネツクスやノーメツクス411(い
ずれも商品名)等の名で知られる密度が0.3g/cm
3前後のアラミド製シートは、表面から裏面に直線的に
通じる穴がないので多少効果は落ちるが使用でき、圧縮
率から見てもう少し高密度の0.5g/cm3程度まで
のものも使用できる。
It should be noted that, in addition to the above-mentioned porous body as the material of the soft insulating sheets 3a to 3h, those having a thin leaf internal structure, for example, Cornex and Nomex 411 (all are trade names) are known. Density is 0.3g / cm
About 3 aramid sheets can be used although there is no hole that goes straight from the front side to the back side, so the effect may be somewhat reduced, but it is possible to use a sheet with a higher density up to about 0.5 g / cm 3 from the compression rate. .

【0030】次に本発明の他の実施例、つまり軟質絶縁
シートの具体的な取付け構造を説明する。図11は、円
板コイル6bの表面を軟質絶縁シート3iで覆つた場合
を示しており、軟質絶縁シート3iの巻回方向の端面を
テーパ状とし、円板コイル6bの表面に被せた後、テー
パの部分を重ね合わせて接着して剥がれないようにして
いる。図13は、静電シールド8bの表面を軟質絶縁シ
ート3iで覆つたものであり、軟質絶縁シート3iの巻
回方向の端面を互いにテーパ状とし、静電シールド8b
の表面に被せた後、テーパの部分を重ね合わせて接着し
て剥がれないようにしている。図12は、上部支持金具
13の押しボルト14の表面を軟質絶縁シート3jで覆
つた場合の断面図であり、軟質絶縁シート3jを少し引
き延ばしながら押しボルト14の表面に押し当て、接着
して剥がれないようにしている。図14は、下部支持金
具2の表面を軟質絶縁シート3kで覆つた場合の断面図
であり、前述の押しボルト14の場合と同様に軟質絶縁
シート3kを少し引き延ばしながら下部支持金具2の表
面に押し当て、接着して剥がれないようにしている。図
15は、高圧リード線15の表面を軟質絶縁シート3l
で覆つた場合の斜視図を示しており、軟質絶縁シート3
lの端面をテーパ状とし、高圧リード線15の表面に被
せた後、テーパの部分を重ね合わせて接着して剥がれな
いようにしている。このように高電界部の表面に軟質絶
縁シート3i〜3lを被せると、製作工数はかかるが巻
線製作の際、軟質絶縁シート3i〜3lがずれることが
なく、弱点である微細油ギヤツプを確実に埋めることが
できる。
Next, another embodiment of the present invention, that is, a specific mounting structure of the soft insulating sheet will be described. FIG. 11 shows a case where the surface of the disk coil 6b is covered with the soft insulating sheet 3i. The end surface of the soft insulating sheet 3i in the winding direction is tapered, and after covering the surface of the disk coil 6b, The taper parts are overlapped and bonded so that they do not come off. In FIG. 13, the surface of the electrostatic shield 8b is covered with the soft insulating sheet 3i, and the end faces in the winding direction of the soft insulating sheet 3i are tapered to form the electrostatic shield 8b.
After covering the surface, the taper parts are overlapped and adhered so that they do not come off. FIG. 12 is a cross-sectional view of the surface of the push bolt 14 of the upper support metal fitting 13 covered with the soft insulating sheet 3j. The soft insulating sheet 3j is slightly stretched and pressed against the surface of the push bolt 14 to be peeled off by adhesion. I try not to. FIG. 14 is a cross-sectional view of the case where the surface of the lower support metal fitting 2 is covered with the soft insulating sheet 3k. As in the case of the push bolt 14 described above, the soft support insulating material sheet 3k is slightly stretched while the surface of the lower support metal fitting 2 is extended. They are pressed against each other and bonded so that they do not come off. In FIG. 15, the surface of the high voltage lead wire 15 is covered with a soft insulating sheet 3l.
Shows a perspective view when covered with a soft insulating sheet 3
The end face of 1 is tapered, and after covering the surface of the high-voltage lead wire 15, the tapered portions are overlapped and adhered so as not to be peeled off. When the surface of the high electric field portion is covered with the soft insulating sheets 3i to 3l in this manner, the manufacturing process takes a lot of time, but the soft insulating sheets 3i to 3l do not shift during winding production, and the fine oil gear tape, which is a weak point, is surely secured. Can be buried in.

【0031】図16〜図18は、前述の高電界部に軟質
絶縁シート3i〜3lを被せる代わりに、高電界部に対
接するコイル間スペーサ5b、直線スペーサ9およびリ
ード線バリヤ用スペーサ18の表面を軟質絶縁シート3
m〜3pで覆い、接着して各部材と一体にして剥がれな
いようにした斜視図を示している。この場合も、製作工
数はかかるが巻線製作の際、軟質絶縁シート3m〜3p
がずれることがなく、確実に微細油ギヤツプを埋めるこ
とができる。一方、図19〜図21に示した実施例は、
上述の図16〜図18に示した実施例の変形例であり、
各スペーサ5b,9,18の高電界部に対接する面に、
その面よりも少し幅広の軟質絶縁シート3q〜3sを貼
り合わせて一体にしたものである。これによつて上述の
場合とほぼ同じ効果が得られる。但し、機械的に弱い軟
質絶縁シート3q〜3sの端面が各スペーサ5b,9,
18の端面よりも飛び出しているので、取扱に注意を要
するが、製作が簡単なのでコスト低減の効果がある。な
お、図16および図19に示したコイル間スペーサ5b
については、予め、長尺のスペーサ基材に軟質絶縁シー
ト3mあるいは3qを貼り合わせて一体とし、それを打
抜き機でスペーサ形状に打ち抜いて成形することによ
り、成型工数が低減できる。
16 to 18, instead of covering the high electric field portion with the soft insulating sheets 3i to 3l, the surfaces of the inter-coil spacer 5b, the linear spacer 9 and the lead wire barrier spacer 18 which are in contact with the high electric field portion are shown. The soft insulation sheet 3
The perspective view which covered with m-3p and adhered and integrated with each member so that it might not come off is shown. In this case as well, it takes a lot of manufacturing man-hours, but when the winding is manufactured, the soft insulating sheet 3m to 3p is used.
It is possible to surely fill the fine oil gap without slipping off. On the other hand, the embodiment shown in FIGS.
It is a modification of the embodiment shown in FIGS. 16 to 18 described above,
On the surface of each of the spacers 5b, 9 and 18 facing the high electric field portion,
The soft insulating sheets 3q to 3s, which are a little wider than the surface, are bonded and integrated. As a result, almost the same effect as the above case can be obtained. However, the end faces of the mechanically weak flexible insulating sheets 3q to 3s are formed by the spacers 5b, 9,
Since it protrudes from the end face of 18, care must be taken when handling it, but there is an effect of cost reduction because it is easy to manufacture. The inter-coil spacer 5b shown in FIGS.
With regard to the above, by preliminarily adhering the soft insulating sheet 3m or 3q to a long-sized spacer base material and integrating them, and punching it into a spacer shape with a punching machine, the number of molding steps can be reduced.

【0032】図22は、断面がU字型のコイル間スペー
サ28に軟質絶縁シート3tを適用した場合の取付け構
造を示す斜視図である。コイル間スペーサ28の円板コ
イル6bに接する内側面にコイル間スペーサ28よりも
少し幅広の軟質絶縁シート3tを貼り合わせて支持さ
せ、これによつて、弱点であるU字形のコイル間スペー
サ28と円板コイル6b間の微細油ギヤツプが埋めつぶ
されるようにしている。
FIG. 22 is a perspective view showing a mounting structure when the soft insulating sheet 3t is applied to the inter-coil spacer 28 having a U-shaped cross section. A soft insulating sheet 3t, which is slightly wider than the inter-coil spacer 28, is attached to and supported on the inner surface of the inter-coil spacer 28 that contacts the disc coil 6b, whereby a U-shaped inter-coil spacer 28, which is a weak point, is formed. The fine oil gap between the disc coils 6b is filled.

【0033】図23は、リード線バリヤ用の断面が波形
のスペーサ29に軟質絶縁シート3uを適用した場合の
取付け構造を示す断面図であり、波形のスペーサ29の
高圧リード線15に対向する面に、軟質絶縁シート3u
を貼り合わせたものである。これによつて、弱点である
波形スペーサ29と高圧リード線15間の微細油ギヤツ
プが埋めつぶされる。
FIG. 23 is a sectional view showing a mounting structure in which the soft insulating sheet 3u is applied to the spacer 29 having a corrugated cross section for the lead wire barrier. The surface of the corrugated spacer 29 facing the high voltage lead wire 15 is shown. Soft insulating sheet 3u
Are pasted together. As a result, the fine oil gap between the corrugated spacer 29 and the high voltage lead wire 15, which is a weak point, is filled.

【0034】図24は、高圧巻線12の段絶縁部の段絶
縁スペーサ30に軟質絶縁シート3vを適用した場合の
取付け構造を示す断面図であり、段絶縁スペーサ30の
円板コイル6bに対接する面に軟質絶縁シート3vを貼
り合わせたものである。これによつて、弱点である段絶
縁スペーサ30と円板コイル6b間の微細油ギヤツプが
埋めつぶされる。
FIG. 24 is a sectional view showing a mounting structure when the soft insulating sheet 3v is applied to the step insulating spacer 30 of the step insulating portion of the high-voltage winding 12, and it is shown in FIG. The soft insulating sheet 3v is attached to the contact surface. As a result, the weak oil gap between the step insulating spacer 30 and the disc coil 6b is filled up.

【0035】図25は、主絶縁11の最も外側の絶縁筒
10の表面に直接電線を巻き付けて巻線を形成する場合
に本発明を適用した取付け構造を示す断面図である。絶
縁筒10の円板コイル6bに対向する面に軟質絶縁シー
ト3xを貼り合わせて支持させ、これによつて、弱点で
ある絶縁筒10と円板コイル6b間の微細油ギヤツプが
埋めつぶされるようにしている。
FIG. 25 is a cross-sectional view showing a mounting structure to which the present invention is applied when an electric wire is directly wound around the surface of the outermost insulating cylinder 10 of the main insulation 11 to form a winding. A soft insulating sheet 3x is attached to and supported by the surface of the insulating cylinder 10 facing the disk coil 6b so that the weak oil gap between the insulating cylinder 10 and the disk coil 6b, which is a weak point, is buried. I have to.

【0036】図26は、雇32を用いて高圧巻線12を
組立てている状況を示した斜視図である。電線33を巻
回して円板コイル6bを形成する際、コイル間スペーサ
5bよりも少し厚い直方体の雇32を同一円周上のコイ
ル間スペーサ5bとコイル間スペーサ5bの間に挿入し
ておく。そして、円板コイル6bを形成後これを引き抜
く。これによつて、円板コイル6bを形成する際、コイ
ル間スペーサ5bの両面に配置した軟質絶縁シート3y
に力が加わらないので、軟質絶縁シート3yがずれた
り、よじれたりすることがなくなり、確実に微細油ギヤ
ツプを埋めつぶすことができる。雇32の材料としては
滑りのよいプラスチツク例えば4フツ化エチレンが好適
である。
FIG. 26 is a perspective view showing a situation in which the high voltage winding 12 is assembled using the employment 32. When winding the electric wire 33 to form the disk coil 6b, a rectangular parallelepiped employment 32, which is slightly thicker than the inter-coil spacer 5b, is inserted between the inter-coil spacer 5b and the inter-coil spacer 5b on the same circumference. Then, after forming the disc coil 6b, the disc coil 6b is pulled out. Thereby, when forming the disk coil 6b, the soft insulating sheets 3y arranged on both surfaces of the inter-coil spacer 5b.
Since no force is applied to the soft insulating sheet 3y, the soft insulating sheet 3y will not be displaced or twisted, and the fine oil gap can be surely filled. As a material for the employment 32, a plastic having good sliding property, for example, tetrafluoroethylene is suitable.

【0037】図27は、多重円筒巻の変圧器巻線に軟質
絶縁シートを適用した場合の巻線端部を示す断面図であ
る。層間絶縁紙33の外周に軟質絶縁シート34を巻
き、その上に電線35を巻回して円筒コイル36を形成
し、この円筒コイル36の上部に静電シールド37を配
置するが、このとき軟質絶縁シート34は、静電シール
ド37の上端も覆う大きさとする。その後、円筒コイル
36の外周面にスペーサ38を配置するが、その際、円
筒コイル36とスペーサ38との間に軟質絶縁シート3
9を配置すると共に、その軟質絶縁シート39の幅をス
ペーサ38の幅よりも少し広くとる。スペーサ38の上
に層間絶縁紙40を巻きつける。このように形成したも
のに、次いで軟質絶縁シート41を被せ、さらに、その
上に円筒コイル42を形成すると言つた具合にして多重
円筒巻の変圧器巻線43が構成される。このような構成
の変圧器巻線43によれば、円筒コイル36,42の巻
回時の圧縮力や、巻線組立後の上下からの巻線締め圧に
よつて軟質絶縁シート34,39,41が押しつぶさ
れ、円筒コイル36,42および静電シールド37と層
間絶縁紙33,40およびスペーサ38間の弱点である
微細油ギヤツプが除去される。
FIG. 27 is a sectional view showing a winding end portion when a soft insulating sheet is applied to a transformer winding having multiple cylindrical windings. A soft insulating sheet 34 is wound around the outer circumference of the interlayer insulating paper 33, an electric wire 35 is wound on the soft insulating sheet 34 to form a cylindrical coil 36, and an electrostatic shield 37 is arranged above the cylindrical coil 36. The sheet 34 is sized to cover the upper end of the electrostatic shield 37. Thereafter, the spacer 38 is arranged on the outer peripheral surface of the cylindrical coil 36. At that time, the soft insulating sheet 3 is provided between the cylindrical coil 36 and the spacer 38.
9 is arranged, and the width of the soft insulating sheet 39 is made a little wider than the width of the spacer 38. An interlayer insulating paper 40 is wrapped around the spacer 38. The multi-cylindrical transformer winding 43 is constructed in such a manner that the soft insulating sheet 41 is then covered on the thus formed one, and the cylindrical coil 42 is further formed thereon. According to the transformer winding 43 having such a configuration, the soft insulating sheets 34, 39, 41 is crushed, and fine oil gaps, which are weak points between the cylindrical coils 36 and 42 and the electrostatic shield 37, the interlayer insulating papers 33 and 40, and the spacer 38, are removed.

【0038】図28は、外鉄型変圧器の変圧器巻線に軟
質絶縁シートを適用した場合の巻線の構造を示す断面図
である。先ず電線44を矩形に巻回してパンケーキコイ
ル45を形成すると共に、その端部に軟質絶縁シート4
6を被せ、その上に絶縁キヤツプを被せる。次にその上
に絶縁コマ48を配置し、さらにその上にコイル間絶縁
紙49を配置する。パンケーキコイル45の中央面とコ
イル間絶縁紙49間には、スペーサ50を配置するが、
その際、パンケーキコイル45とスペーサ50間に軟質
絶縁シート51を配置する。この軟質絶縁シート51
は、スペーサ50よりも少し大きくする。このように形
成したものを隣合つたもの同志がV字形になるように複
数個配置し、図示しないが鉄心との間にくさびを打ち込
んで横方向から締めつけ、また、上下に支持絶縁物52
を配置して上下方向からも押さえて、外鉄形変圧器の変
圧器巻線53が構成されている。このような構成の変圧
器巻線53によれば、横方向及び上下方向からの締め圧
によつて軟質絶縁シート46,51が押しつぶされ、パ
ンケーキコイル45と絶縁キヤツプ47およびスペーサ
50間の微細油ギヤツプを除去することができる。
FIG. 28 is a sectional view showing the structure of the winding when the soft insulating sheet is applied to the transformer winding of the outer iron type transformer. First, the electric wire 44 is wound in a rectangular shape to form a pancake coil 45, and the soft insulating sheet 4 is attached to the end of the pancake coil 45.
6 and cover it with an insulating cap. Next, the insulating piece 48 is arranged thereon, and the inter-coil insulating paper 49 is further arranged thereon. A spacer 50 is arranged between the center surface of the pancake coil 45 and the insulating paper 49 between the coils,
At that time, the soft insulating sheet 51 is arranged between the pancake coil 45 and the spacer 50. This soft insulating sheet 51
Is slightly larger than the spacer 50. A plurality of the thus formed ones are arranged so that their comrades form a V shape, and although not shown, a wedge is driven between the iron core and the iron core to tighten them laterally, and the supporting insulator 52 is vertically provided.
Is arranged and pressed down from above and below to form the transformer winding 53 of the outer iron transformer. According to the transformer winding 53 having such a configuration, the soft insulating sheets 46 and 51 are crushed by the tightening pressure from the lateral direction and the vertical direction, and the fine gap between the pancake coil 45, the insulating cap 47 and the spacer 50 is reduced. The oil gap can be removed.

【0039】以上、油入変圧器巻線への適用について述
べてきたが、本発明は他の油入電気機器へも適用可能で
ある。また絶縁油中に形成されるすべての微細油ギヤツ
プに軟質絶縁シートを設けるのが望ましいが、絶縁上最
も弱点となつている部分から優先順位をつけ、優先順位
の高い部分から軟質絶縁シートを配置しても良い。
Although the application to the oil-filled transformer winding has been described above, the present invention can be applied to other oil-filled electrical equipment. In addition, it is desirable to provide a soft insulating sheet for all fine oil gears formed in insulating oil, but prioritize the parts that are the weakest points in insulation and place the soft insulating sheet from the part with the highest priority. You may.

【0040】[0040]

【発明の効果】以上説明したように本発明は、絶縁上の
弱点となる微細油ギヤツプが形成される部分の少なくと
も一箇所に、非繊維質の多孔体から成る軟質絶縁シート
を圧接して設けたため、微細油ギヤツプを除去して絶縁
耐力を向上させることができ、安定した絶縁性能を有す
る油入電気機器が得られる。
As described above, according to the present invention, a soft insulating sheet made of a non-fibrous porous material is provided in pressure contact with at least one portion of a portion where a fine oil gear gap, which is a weak point in insulation, is formed. Therefore, it is possible to improve the dielectric strength by removing the fine oil gear and to obtain an oil-filled electric device having stable insulation performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による油入電気機器として示
す変圧器巻線の断面図である。
FIG. 1 is a cross-sectional view of a transformer winding shown as an oil-filled electric device according to an embodiment of the present invention.

【図2】図1に示す円板コイル近傍の要部拡大断面図で
ある。
FIG. 2 is an enlarged cross-sectional view of an essential part near the disc coil shown in FIG.

【図3】図1に示す上部巻線支持金具近傍の要部拡大断
面図である。
FIG. 3 is an enlarged cross-sectional view of an essential part near the upper winding support fitting shown in FIG.

【図4】図1に示す下部巻線支持金具近傍の要部拡大断
面図である。
FIG. 4 is an enlarged cross-sectional view of an essential part near the lower winding support fitting shown in FIG.

【図5】図1に示す静電シールド近傍の要部拡大断面図
である。
5 is an enlarged cross-sectional view of a main part near the electrostatic shield shown in FIG.

【図6】図1に示す高圧リード線支持部の要部拡大斜視
図である。
FIG. 6 is an enlarged perspective view of a main part of the high voltage lead wire supporting portion shown in FIG. 1.

【図7】図1に示すリード線バリヤ部分の要部拡大断面
図である。
FIG. 7 is an enlarged cross-sectional view of a main part of a lead wire barrier portion shown in FIG.

【図8】図1に示す円板コイル間の絶縁を調べるために
用いた実験モデルの斜視図である。
8 is a perspective view of an experimental model used to examine the insulation between the disc coils shown in FIG. 1. FIG.

【図9】図8に示す実験モデルによる各種軟質絶縁シー
トの破壊電圧特性図である。
9 is a breakdown voltage characteristic diagram of various soft insulating sheets according to the experimental model shown in FIG.

【図10】軟質絶縁シートの厚さと微細油ギヤツプの電
界の関係を示す特性図である。
FIG. 10 is a characteristic diagram showing the relationship between the thickness of the soft insulating sheet and the electric field of the fine oil gap.

【図11】本発明の他の実施例による油入電気機器の要
部である円板コイルの断面図である。
FIG. 11 is a cross-sectional view of a disk coil that is a main part of an oil-filled electrical device according to another embodiment of the present invention.

【図12】本発明の他の実施例による油入電気機器の要
部である押しボルトの断面図である。
FIG. 12 is a sectional view of a push bolt which is a main part of an oil-filled electrical device according to another embodiment of the present invention.

【図13】本発明の他の実施例による油入電気機器の要
部である静電シールドの断面図である。
FIG. 13 is a sectional view of an electrostatic shield that is a main part of an oil-filled electrical device according to another embodiment of the present invention.

【図14】本発明の他の実施例による油入電気機器の要
部である下部支持金具の断面図である。
FIG. 14 is a cross-sectional view of a lower support fitting which is a main part of an oil-filled electrical device according to another embodiment of the present invention.

【図15】本発明の他の実施例による油入電気機器の要
部である高圧リード線の一部断面斜視図である。
FIG. 15 is a partial cross-sectional perspective view of a high voltage lead wire which is a main part of an oil-filled electrical device according to another embodiment of the present invention.

【図16】本発明の他の実施例による油入電気機器の要
部であるコイル間スペーサの斜視図である。
FIG. 16 is a perspective view of an inter-coil spacer that is a main part of an oil-filled electrical device according to another embodiment of the present invention.

【図17】本発明の他の実施例による油入電気機器の要
部である直線スペーサの斜視図である。
FIG. 17 is a perspective view of a linear spacer that is a main part of an oil-filled electrical device according to another embodiment of the present invention.

【図18】本発明の他の実施例による油入電気機器の要
部であるリード線バリヤ用スペーサの斜視図である。
FIG. 18 is a perspective view of a lead wire barrier spacer, which is a main part of an oil-filled electrical device according to another embodiment of the present invention.

【図19】本発明の更に他の実施例による油入電気機器
の要部であるコイル間スペーサの斜視図である。
FIG. 19 is a perspective view of an inter-coil spacer that is a main part of an oil-filled electrical device according to still another embodiment of the present invention.

【図20】本発明の更に他の実施例による油入電気機器
の要部である直線スペーサの斜視図である。
FIG. 20 is a perspective view of a linear spacer which is a main part of an oil-filled electrical device according to still another embodiment of the present invention.

【図21】本発明の更に他の実施例による油入電気機器
の要部であるリード線バリヤ用スペーサの斜視図であ
る。
FIG. 21 is a perspective view of a lead wire barrier spacer, which is a main part of an oil-filled electrical device according to still another embodiment of the present invention.

【図22】本発明の更に異なる実施例による油入電気機
器の要部であるコイル間スペーサの斜視図である。
FIG. 22 is a perspective view of an inter-coil spacer, which is a main part of an oil-filled electrical device according to still another embodiment of the present invention.

【図23】本発明の更に異なる実施例による油入電気機
器の要部であるリード線バリヤ用波形スペーサの断面図
である。
FIG. 23 is a sectional view of a corrugated spacer for a lead wire barrier, which is a main part of an oil-filled electrical device according to still another embodiment of the present invention.

【図24】本発明の更に異なる実施例による油入電気機
器の要部である段絶縁スペーサの断面図である。
FIG. 24 is a cross-sectional view of a stepped insulating spacer that is a main part of an oil-filled electrical device according to still another embodiment of the present invention.

【図25】本発明の更に異なる実施例による油入電気機
器の要部である主絶縁の絶縁筒付近の断面図である。
FIG. 25 is a cross-sectional view of the vicinity of an insulating cylinder of main insulation, which is a main part of an oil-filled electrical device according to still another embodiment of the present invention.

【図26】本発明の更に異なる実施例による油入電気機
器の要部である巻線組立の状況を示す斜視図である。
FIG. 26 is a perspective view showing a situation of winding assembly which is a main part of an oil-filled electrical device according to still another embodiment of the present invention.

【図27】本発明の更に異なる実施例による油入電気機
器の要部である多重円筒巻線の断面図である。
FIG. 27 is a cross-sectional view of a multiple cylindrical winding that is a main part of an oil-filled electrical device according to still another embodiment of the present invention.

【図28】本発明の更に異なる実施例による油入電気機
器の要部である変圧器巻線の断面図である。
FIG. 28 is a cross-sectional view of a transformer winding that is a main part of an oil-filled electrical device according to yet another embodiment of the present invention.

【符号の説明】 1 鉄心 2 下部支持金具 3a〜3y 軟質絶縁シート 4a,4b 絶縁支持台 5a,5b コイル間スペーサ 6a,6b 円板コイル 9 直線スペーサ 10 絶縁筒 12 高圧巻線 13 上部支持金具 14 押しボルト 15 高圧リード線 17a,17b 支持腕木 18 スペーサ 19 リード線バリヤ[Explanation of symbols] 1 iron core 2 Lower support bracket 3a-3y soft insulating sheet 4a, 4b insulating support base 5a, 5b Spacer between coils 6a, 6b disk coil 9 Straight spacer 10 Insulation cylinder 12 high voltage winding 13 Upper support bracket 14 Push bolt 15 High voltage lead wire 17a, 17b Support arm 18 Spacer 19 Lead wire barrier

フロントページの続き (72)発明者 藤田 裕幸 茨城県日立市国分町1丁目1番1号 株式 会社日立製作所国分工場内Continued front page    (72) Inventor Hiroyuki Fujita             1-1-1 Kokubuncho, Hitachi-shi, Ibaraki Stock             Hitachi, Ltd. Kokubu factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 タンク内の絶縁油中に巻線を浸潰して成
る油入電気機器において、上記絶縁油中にて微細油ギヤ
ツプが形成される部分の少なくとも一箇所に、非繊維質
の多孔体から成る軟質絶縁シートを圧接して設けたこと
を特徴とする油入電気機器。
1. In an oil-filled electric device obtained by immersing a winding wire in insulating oil in a tank, a non-fibrous porous material is provided in at least one part of the insulating oil where fine oil gears are formed. An oil-filled electric device, which is provided by pressing a soft insulating sheet composed of a body.
【請求項2】 請求項1記載のものにおいて、上記軟質
絶縁シートの誘電率を、上記絶縁油の誘電率の1.3倍
以下としたことを特徴とする油入電気機器。
2. The oil-filled electric device according to claim 1, wherein the dielectric constant of the soft insulating sheet is 1.3 times or less the dielectric constant of the insulating oil.
【請求項3】 請求項1記載のものにおいて、上記軟質
絶縁シートの空孔率を50%以上で、かつ90%以下と
したことを特徴とする油入電気機器。
3. The oil-filled electrical device according to claim 1, wherein the porosity of the soft insulating sheet is 50% or more and 90% or less.
【請求項4】 請求項1記載のものにおいて、上記軟質
絶縁シートの空孔径を200μm以下としたことを特徴
とする油入電気機器。
4. The oil-filled electrical device according to claim 1, wherein the soft insulating sheet has a pore diameter of 200 μm or less.
JP19354091A 1991-07-09 1991-07-09 Oil filled electrical equipment Pending JPH0521238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19354091A JPH0521238A (en) 1991-07-09 1991-07-09 Oil filled electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19354091A JPH0521238A (en) 1991-07-09 1991-07-09 Oil filled electrical equipment

Publications (1)

Publication Number Publication Date
JPH0521238A true JPH0521238A (en) 1993-01-29

Family

ID=16309776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19354091A Pending JPH0521238A (en) 1991-07-09 1991-07-09 Oil filled electrical equipment

Country Status (1)

Country Link
JP (1) JPH0521238A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004767A (en) * 2011-06-17 2013-01-07 Mitsubishi Electric Corp Stationary induction apparatus and manufacturing method thereof
JP2013055279A (en) * 2011-09-06 2013-03-21 Hitachi Ltd Stationary induction apparatus
JP5307956B1 (en) * 2011-12-20 2013-10-02 三菱電機株式会社 Lead wire insulation structure, transformer having the same, and lead wire insulation method
JP2014127659A (en) * 2012-12-27 2014-07-07 Mitsubishi Electric Corp Stationary induction apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004767A (en) * 2011-06-17 2013-01-07 Mitsubishi Electric Corp Stationary induction apparatus and manufacturing method thereof
JP2013055279A (en) * 2011-09-06 2013-03-21 Hitachi Ltd Stationary induction apparatus
JP5307956B1 (en) * 2011-12-20 2013-10-02 三菱電機株式会社 Lead wire insulation structure, transformer having the same, and lead wire insulation method
JP2014127659A (en) * 2012-12-27 2014-07-07 Mitsubishi Electric Corp Stationary induction apparatus

Similar Documents

Publication Publication Date Title
EP1297540B1 (en) Electrical apparatus with synthetic fiber and binder reinforced cellulose insulation paper
EP0144560B1 (en) Insulating polyolefin laminate paper and method for production same, and electric power supply cable
US6750400B2 (en) Graded electric field insulation system for dynamoelectric machine
US7893357B2 (en) Roebel winding with conductive felt
KR101321206B1 (en) Insulated power cable
JPH0521238A (en) Oil filled electrical equipment
US6559384B1 (en) Conductive filler
US6207261B1 (en) Electrical insulating laminated paper, process for producing the same oil-impregnated power cable containing the same
JP2947844B2 (en) Transformer winding
US4751488A (en) High voltage capability electrical coils insulated with materials containing SF6 gas
US2201005A (en) Spacer for transformer coils
JP4327546B2 (en) Low resistance corona prevention tape or sheet and rotating machine stator coil
CN85106877A (en) High-voltage power capacitor
JPH04206508A (en) Lead wire for oil-filled induction type electric apparatus
JPH039208Y2 (en)
KR100465363B1 (en) Electrically insulated laminates, methods of making them and oil impregnated power cables
JPS62137814A (en) Resin mold type transformer
JPS6015305Y2 (en) dry transformer winding
EP0129755A1 (en) Electric power cable
JPS5917053Y2 (en) Single core oil immersed submarine cable
JPS60213237A (en) Coil of rotary electric machine
SU930404A1 (en) Method of manufacturing transformer windings of non-round cross-section
Fujita et al. A novel type of synthetic paper for use in ehv underground cable insulation
CA2319281A1 (en) Graded electric field insulation system for dynamoelectric machine
JPH07320954A (en) Stationary induction electric equipment