JPH05212209A - Two-phase separation of slurry from liquid and device therefor - Google Patents

Two-phase separation of slurry from liquid and device therefor

Info

Publication number
JPH05212209A
JPH05212209A JP4019090A JP1909092A JPH05212209A JP H05212209 A JPH05212209 A JP H05212209A JP 4019090 A JP4019090 A JP 4019090A JP 1909092 A JP1909092 A JP 1909092A JP H05212209 A JPH05212209 A JP H05212209A
Authority
JP
Japan
Prior art keywords
liquid
slurry
settler
spacer
slurry liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4019090A
Other languages
Japanese (ja)
Other versions
JP3076653B2 (en
Inventor
Yutaka Kuwabara
豊 桑原
Kunihiko Yamashita
邦彦 山下
Hideaki Obana
英朗 尾花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11989765&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05212209(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP04019090A priority Critical patent/JP3076653B2/en
Publication of JPH05212209A publication Critical patent/JPH05212209A/en
Application granted granted Critical
Publication of JP3076653B2 publication Critical patent/JP3076653B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To contrive to shorten the residence time of slurry in a settler by attaching an introducing opening for horizontally feeding mixed liquid at low velocity and a spacer for decreasing the passage volume of slurry to the settler. CONSTITUTION:An introducing opening 7 for feeding a mixture of two liquids 2 at low velocity and a spacer 8 for necessarily and sufficiently decreasing the volume of a passage 12 of slurry are installed in a horizontal settler 1 with a cone lower part. The introducing opening 7 has such opening area that the average velocity of the mixture of two liquids flowing to the settler 1 is about 0.1m/sec. The spacer 8 is equipped with an opening 9 and a vent pipe 10 for letting gas escape at the lower and upper parts respectively and the distance between the lower end of the introducing opening 7 and the upper part of the spacer 8 is made small. Thereby the residence time of slurry in the settler 1 is sufficiently decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スラリー液と、これよ
り密度が小さく前記スラリーと混合した後静置した場合
に二液連続相を形成する液との混合物(以下混合液とい
う)を、セトラーを用いて二液連続相に連続分離するに
際し、セトラー内におけるスラリー液の滞留時間をスラ
リー中の固相成分が変質しないように充分に小さく保持
する方法と装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a mixture of a slurry liquid and a liquid having a density lower than that of the slurry and forming a two-liquid continuous phase when left standing after mixing with the slurry (hereinafter referred to as a mixed liquid), The present invention relates to a method and an apparatus for keeping a residence time of a slurry liquid in a settler sufficiently small so that a solid phase component in the slurry is not deteriorated during continuous separation into a two-liquid continuous phase using a settler.

【0002】[0002]

【従来の技術】化学工業においては、微粒子の固体触媒
スラリー液を用いた反応方式、例えば液液固相反応や気
液液固相反応などの反応方式が多く行われている。通常
このための装置は、反応を行う反応装置と、触媒スラリ
ー液と反応液とを分離する分離装置から成っている。
2. Description of the Related Art In the chemical industry, a reaction system using a fine particle solid catalyst slurry liquid, for example, a liquid-liquid solid phase reaction or a gas-liquid liquid solid phase reaction is often used. Usually, an apparatus for this purpose comprises a reactor for carrying out the reaction and a separator for separating the catalyst slurry liquid and the reaction liquid.

【0003】例えば、ベンゼンを部分水素化したシクロ
ヘキセンを製造する方法としては、主に金属ルテニウム
よりなる水素化触媒粒子を水に懸濁させ、溶解してきた
ベンゼンを部分水添する方法(特開昭61−50930
号公報、特開昭62−45544号公報、特開昭62−
81332号公報)が提案されている。その明細書によ
れば、触媒として200×10-8cm以下に微粒化され
た金属ルテニウムに亜鉛化合物を助触媒とし、酸化ジル
コニウムもしくは酸化ハフニウムを添加したものを用い
る実施例が記載されている。
For example, as a method for producing cyclohexene in which benzene is partially hydrogenated, a method of suspending hydrogenation catalyst particles mainly composed of metal ruthenium in water and partially hydrogenating the dissolved benzene is disclosed 61-50930
JP-A-62-45544, JP-A-62-
No. 81332) has been proposed. According to the specification, an example is described in which, as a catalyst, a metal ruthenium atomized to 200 × 10 −8 cm or less is used, and a zinc compound is used as a cocatalyst and zirconium oxide or hafnium oxide is added.

【0004】それによれば、撹拌槽に触媒と硫酸酸性水
溶液を仕込んで触媒スラリー液とし、これにベンゼンと
水素とを連続的に供給し、反応温度100〜200℃
で、反応圧力10〜100kg/cm2 G、滞留時間数
分〜2時間、接触反応したのち、セトラーにて触媒スラ
リー液と反応液との二液連続相に分離し、反応液よりシ
クロヘキセンを取得し、触媒スラリー液は撹拌槽に戻し
て再使用するものである。
According to the method, a catalyst and a sulfuric acid acidic aqueous solution are charged into a stirring tank to form a catalyst slurry liquid, and benzene and hydrogen are continuously supplied to the reaction liquid at a reaction temperature of 100 to 200 ° C.
Then, after a catalytic reaction with a reaction pressure of 10 to 100 kg / cm 2 G and a residence time of several minutes to 2 hours, the catalyst slurry liquid and the reaction liquid are separated into two liquid continuous phases by a settler, and cyclohexene is obtained from the reaction liquid. The catalyst slurry liquid is returned to the stirring tank and reused.

【0005】[0005]

【発明が解決しようとする課題】しかし、この触媒は反
応場の環境から数分間離れただけで変質し、選択性が低
下する性質を持っているため、触媒スラリー液と反応液
との混合液は、できるだけ早く二液連続相に分離して、
触媒スラリー液を反応槽(撹拌槽)に戻す必要がある。
また、この金属触媒はスラリー液の流動が止まるとすぐ
に沈降分離し、再分散に時間を要するため、セトラー下
部は触媒粒子が堆積しないように安息角以上の傾斜をつ
けることが好ましく、例えば下に頂点を持つコーン型に
して流動性を良くする必要がある。ところが、下部の形
状をコーン型にすると、セトラー内におけるスラリー液
の占める容積が大きくなるため、スラリー液の滞留時間
が長くなることになる。また、従来のように、このスラ
リー液と反応液との混合液をセトラー内に単一ノズルで
フィードすると、その速度エネルギーによって系が乱さ
れ、分散帯の厚みが非常に大きくなることも、この傾向
を助長することになる。
However, since this catalyst has the property of deteriorating and deteriorating the selectivity only after being separated from the environment of the reaction field for a few minutes, it is a mixed solution of the catalyst slurry solution and the reaction solution. Separates into a two-liquid continuous phase as soon as possible,
It is necessary to return the catalyst slurry liquid to the reaction tank (stirring tank).
In addition, since this metal catalyst sediments and separates as soon as the flow of the slurry liquid stops, and it takes time to re-disperse it, it is preferable to incline the lower part of the settler at an angle of repose or more to prevent the catalyst particles from accumulating. It is necessary to make it a cone type with an apex to improve fluidity. However, when the lower portion is formed in a cone shape, the volume occupied by the slurry liquid in the settler becomes large, so that the residence time of the slurry liquid becomes long. Further, as in the conventional case, when the mixed liquid of the slurry liquid and the reaction liquid is fed into the settler with a single nozzle, the system is disturbed by its velocity energy and the thickness of the dispersion zone becomes very large. It will promote the tendency.

【0006】[0006]

【課題を解決するための手段】そこで本発明者らは、上
記の問題点を解決するために、セトラー内におけるスラ
リー液の滞留時間を極力少なくする方法、装置について
研究した結果、本発明に到達した。すなわち、本発明は (1) スラリー液(I)と、これより密度が小さくか
つ前記スラリー液と混合した後静置した場合に二液連続
相を形成する液(II)との混合物を、セトラー内の静
置時における二液の分離界面付近に低流速で供給し、次
いで、二液連続相に分離後のスラリー液を、同液中の固
相成分を流動状態に保持する一方、該固相成分が変質し
ない時間内に、セトラーから抜き出すことを特徴とする
スラリー液(I)と液(II)との二相分離方法 (2) 前項(1)に記載のスラリー液(I)と液(I
I)との混合物をセトラー内の静置時における二液の分
離界面付近に低流速で供給する手段と、二液連続相に分
離後のスラリー液を、同液中の固相成分を流動状態に保
持する一方、スペーサーを用いて該固相成分が変質しな
いために充分に小さい流路容積を有する流路を形成し、
この流路を通してセトラーから抜き出す手段から成るス
ラリー液(I)と液(II)との二相分離装置である。
In order to solve the above problems, the present inventors have studied the method and apparatus for minimizing the residence time of the slurry liquid in the settler, and as a result, arrived at the present invention. did. That is, the present invention provides (1) a mixture of a slurry liquid (I) and a liquid (II) which has a lower density and which forms a two-liquid continuous phase when mixed with the slurry liquid and then allowed to stand, It is supplied at a low flow rate in the vicinity of the separation interface of the two liquids when it is allowed to stand still, and then the slurry liquid after separation into the two liquid continuous phase is maintained while the solid phase component in the liquid is kept in a fluidized state. A two-phase separation method of a slurry liquid (I) and a liquid (II), which comprises extracting from a settler within a time in which the phase components do not deteriorate (2) The slurry liquid (I) and the liquid according to the preceding paragraph (1) (I
A means for supplying the mixture with I) at a low flow rate to the vicinity of the separation interface of the two liquids when the mixture is allowed to stand in a settler, and the slurry liquid after separation into the two liquid continuous phase, in which the solid phase component in the liquid is in a fluid state On the other hand, a spacer is used to form a channel having a channel volume sufficiently small so that the solid phase component does not deteriorate.
This is a two-phase separation apparatus for a slurry liquid (I) and a liquid (II), which comprises means for extracting from a settler through this flow path.

【0007】まず、セトラー()内の液の流れについ
て説明する。セトラー()に連続的に供給される二液
の混合液(2)は、図1のように分散帯(3)を形成
し、二液の連続相に分離され、反応液(4)は上部か
ら、スラリー液(5)は下部から連続的に取り出され
る。ここで分散帯(3)とは、二液連続相にはさまれた
液液の混合相であり、スラリー液が反応液より多い場合
は、スラリー液は連続的に下降し、反応液は液滴となっ
て上昇し、反応液の連続相に到達しようとしている状態
を言う。逆に反応液がスラリー液より多い場合は、反応
液は連続的に上昇し、スラリー液は液滴となって下降
し、スラリー液の連続相に到達しようとしている状態を
言う。
First, the flow of the liquid in the settler ( 1 ) will be described. The mixed liquid (2) of the two liquids continuously supplied to the settler ( 1 ) forms a dispersion zone (3) as shown in FIG. 1, is separated into a continuous phase of the two liquids, and the reaction liquid (4) is From the upper part, the slurry liquid (5) is continuously taken out from the lower part. Here, the dispersion zone (3) is a mixed phase of liquid and liquid sandwiched between two liquid continuous phases, and when the slurry liquid is more than the reaction liquid, the slurry liquid continuously descends and the reaction liquid is liquid. It is a state in which it rises as drops and is about to reach the continuous phase of the reaction solution. On the contrary, when the reaction liquid is more than the slurry liquid, the reaction liquid continuously rises, and the slurry liquid drops into droplets and descends to reach the continuous phase of the slurry liquid.

【0008】また分離界面(6)とは、この混合液の供
給及び反応液とスラリー液の排出を停止して静置する
と、図2のように静置時における二液連続相の界面
(6)が現れるが、この界面のことを言う。次に具体的
に説明する。まず、セトラー()の下部の形状は、ス
ラリー液中の固相成分、例えば触媒粒子が堆積しないよ
うに安息角以上の傾斜角度を持った形、例えば下に頂点
をもつコーン型や角錐型のようにすることが好ましい。
これによって前記固相成分、例えば触媒の流動状態を確
保するためである。コーンの数は一つでも多数でもよ
い。また上部の反応液の分離域は円筒型でも角型でも多
角型でもよいが、分離に必要な面積は確保する必要があ
る。ここで、分離に必要な面積とは、セトラー内におい
て反応液の液滴が分散帯の中を上昇し上部の連続相に到
達してその厚みを増大する速度よりも、反応液の抜き出
し速度が小さくなるようにしたときの面積である。即
ち、スラリー液が反応液に実質的に混入しないだけの大
きさの面積をとる必要がある。
The separation interface (6) means the interface (6) of the two-liquid continuous phase when the mixed solution and the discharge of the reaction solution and the slurry solution are stopped and allowed to stand as shown in FIG. ) Appears, but refers to this interface. Next, a specific description will be given. First, the shape of the lower portion of the settler ( 1 ) is a shape having an inclination angle of a repose angle or more so that solid phase components in the slurry liquid, for example, catalyst particles, are not accumulated, for example, a cone shape or a pyramid shape having a lower apex. Is preferable.
This is to secure the fluid state of the solid phase component, for example, the catalyst. The number of corns may be one or many. The separation area of the upper reaction solution may be cylindrical, rectangular or polygonal, but it is necessary to secure an area necessary for separation. Here, the area required for separation means that the rate of withdrawing the reaction solution is higher than the rate at which the droplet of the reaction solution rises in the dispersion zone in the settler and reaches the upper continuous phase to increase its thickness. This is the area when it is made smaller. That is, it is necessary to take an area large enough not to mix the slurry liquid with the reaction liquid.

【0009】次に分散帯の厚みを最小限にするために
は、二液の混合液をセトラー内の静置時における二液の
分離界面付近に低流速で供給する。つまり分離界面をで
きるだけ乱さないようにする。そのためには、セトラー
内に混合液を導入する導入口の開口面積をできるだけ大
きくし、さらに均一に導入するために、例えば図3〜9
のようにセトラーの一方の内部壁面に混合液の供給路
(11)を設け、その供給路に多数の孔(7)またはス
リット(7)を切り、これを混合液の導入口(7)とす
る方法や、図10〜11のようにセトラー内部から放射
状に導入する方法、あるいは図12〜14のようにセト
ラー内の周囲から導入する方法などが考えられる。ただ
し、図10〜11の場合の導入口はセトラーの中心にあ
る必要はなく、あくまでも分散帯の厚みを増やさないた
めに、水平方向に混合液を導入することが望ましい。従
って、この場合の導入口の数はいくつあってもよい。
Next, in order to minimize the thickness of the dispersion zone, the mixed liquid of the two liquids is supplied at a low flow rate near the separation interface of the two liquids when the two liquids are allowed to stand in the settler. In other words, try not to disturb the separation interface as much as possible. For that purpose, in order to make the opening area of the inlet for introducing the mixed solution into the settler as large as possible and to introduce it more uniformly, for example, as shown in FIGS.
As described above, a supply passage (11) for the mixed liquid is provided on one inner wall surface of the settler, and a large number of holes (7) or slits (7) are cut in the supply passage to form an inlet (7) for the mixed liquid. A method of introducing the same, a method of radially introducing it from the inside of the settler as shown in FIGS. 10 to 11, or a method of introducing it from the periphery of the settler as shown in FIGS. However, in the case of FIGS. 10 to 11, the introduction port does not have to be located at the center of the settler, and it is desirable to introduce the mixed solution in the horizontal direction in order not to increase the thickness of the dispersion zone. Therefore, there may be any number of inlets in this case.

【0010】いずれの場合も導入口における混合液の流
速をできるだけ低くすることが重要である。平均流速
は、場合により異るから限定はできないが、例えば前記
触媒の場合は0.001m/秒以上2m/秒以下の範囲
にすることが望ましい。これは、平均流速を0.001
m/秒より小さくしても分散帯の乱れを防止する効果が
上がらず、導入口の開口面積が極端に大きくなりすぎる
からである。また2m/秒より大きくすると速度エネル
ギーによって分離界面が乱され、分散帯の厚みが大きく
なりすぎるからである。
In any case, it is important to make the flow rate of the mixed liquid at the inlet as low as possible. The average flow velocity cannot be limited because it varies depending on the case. For example, in the case of the above catalyst, it is desirable to set it in the range of 0.001 m / sec or more and 2 m / sec or less. This gives an average flow velocity of 0.001
Even if it is smaller than m / sec, the effect of preventing the disturbance of the dispersion band is not improved, and the opening area of the introduction port becomes extremely large. If it is higher than 2 m / sec, the separation interface is disturbed by the velocity energy, and the thickness of the dispersion zone becomes too large.

【0011】一方、二液連続相に分離後のスラリー液中
の固相成分が変質を起さぬうちに、セトラーから抜きと
るため、その流路容積を充分に小さくするためには、セ
トラー内の分散帯より下のスラリー相にスペーサー
(8)を設ける。こで、流路容積とは、分散帯より下の
スラリー相とコーン部において、スラリー液が存在する
全容積を言う。このときスペーサー(8)は中空でも中
実でもよい。中空でもよい理由は、図3〜6に示すよう
にスペーサー下部に開口部(9)を設けておけば固相成
分粒子は沈降し、この開口部から排出されるため、スペ
ーサー内の空間には非常に希薄なスラリー液のみが残存
することになり、固相成分例えば触媒粒子の滞留による
反応への影響は無視し得るからである。また、このスペ
ーサーの上部は固相成分粒子が堆積しないように安息角
以上の傾斜角度をもたせることが好ましく、例えば山型
のような形にするとよい。この山型は先が角ばっていて
も丸くなっていても問題ない。
On the other hand, since the solid phase component in the slurry liquid after being separated into the two liquid continuous phase is removed from the settler before it is altered, in order to make the flow path volume sufficiently small, Spacers (8) are provided in the slurry phase below the dispersion zone. Here, the flow channel volume refers to the total volume in which the slurry liquid exists in the slurry phase and the cone portion below the dispersion zone. At this time, the spacer (8) may be hollow or solid. The reason why it may be hollow is that if an opening (9) is provided in the lower part of the spacer as shown in FIGS. 3 to 6, the solid phase component particles settle and are discharged from this opening, so that there is no space in the spacer. This is because only a very thin slurry liquid remains, and the influence of the retention of solid phase components such as catalyst particles on the reaction can be ignored. In addition, it is preferable that the upper portion of the spacer has an inclination angle equal to or more than the angle of repose so that solid phase component particles are not deposited, and for example, it may be formed in a mountain shape. This chevron has no problem whether the tip is rounded or rounded.

【0012】また、スラリー液の流路容積を少なくする
ためには、スラリー相に設置するスペーサーを分割する
ことが有効である。スペーサーの形状は、図3〜6のよ
うにセトラー長手方向中心線と平行に分割してもよい
し、これとは逆に直角方向に分割してもよい。図10〜
11のように放射状に分割してもよい。そのとき、分割
したスペーサー間やスペーサーとセトラー壁面との間の
スラリー液の流路(12)は、固相成分粒子が堆積しな
いように安息角以上の角度とする。また、その幅は小さ
いほうがよいが、固相成分粒子、例えば触媒粒子の性状
との関係で任意に設定できる。例えば、触媒粒子が0.
001m/秒以上10m/秒以下の速度で通過し得る幅
であればよい。特定の触媒については、例えば0.01
m/秒〜1m/秒である。
Further, in order to reduce the volume of the flow path of the slurry liquid, it is effective to divide the spacer installed in the slurry phase. The shape of the spacer may be divided in parallel with the center line in the settler longitudinal direction as shown in FIGS. 3 to 6, or conversely, may be divided in the perpendicular direction. Figure 10
You may divide radially like 11. At that time, the flow path (12) of the slurry liquid between the divided spacers and between the spacer and the settler wall surface is set to an angle of repose or more so that solid phase component particles are not deposited. Further, the width is preferably small, but can be arbitrarily set in relation to the properties of solid phase component particles, for example, catalyst particles. For example, if the catalyst particles are 0.
The width may be such that it can pass at a speed of 001 m / sec or more and 10 m / sec or less. For specific catalysts, for example 0.01
m / sec to 1 m / sec.

【0013】さらに、先に述べた導入口と、このスペー
サーとの距離を近づければ、セトラー内のスラリー液量
を減らすために一層効果的である。
Furthermore, it is more effective to reduce the amount of slurry liquid in the settler if the distance between the above-mentioned inlet and this spacer is reduced.

【0014】[0014]

【実施例】以下、本発明の実施例を触媒粒子に例をとり
具体的に説明するが、本発明はこれらのみに限定される
ものではない。
EXAMPLES Examples of the present invention will be specifically described below by taking catalyst particles as an example, but the present invention is not limited thereto.

【0015】[0015]

【実施例1】図3〜6は、横型で下部コーン型のセトラ
ー()に二液の混合液(2)を低流速で供給するため
の導入口(7)と、スラリー液の流路(12)の容積を
必要かつ充分に小さくするためのスペーサー(8)を設
置した例である。各図は横式図である。
Embodiment 1 FIGS. 3 to 6 show an inlet (7) for supplying a mixed liquid (2) of two liquids at a low flow rate to a horizontal and lower cone type settler ( 1 ) and a flow path of slurry liquid. This is an example in which a spacer (8) is installed to make the volume of (12) necessary and sufficiently small. Each figure is a horizontal type.

【0016】図3はセトラー内部を示す平面断面図、図
4は同正面断面図、図5は同側面断面図、図6はスペー
サーの斜視図である。導入口は、二液混合液のセトラー
内に流入する平均流速が約0.1m/秒となるような開
口面積とした。スペーサーは、中空とし、下部に開口部
(9)を、上部にガス抜き用のベント管(10)を設
け、セトラー長手方向中心線と平行に分割して設置し
た。さらに、セトラー内のスラリー液量を減らすため
に、導入口の下端とスペーサー上端との距離を近づけ、
約0.15mとした。
FIG. 3 is a plan sectional view showing the inside of the settler, FIG. 4 is a front sectional view of the same, FIG. 5 is a side sectional view of the same, and FIG. 6 is a perspective view of a spacer. The inlet has an opening area such that the average flow velocity of the two-liquid mixed liquid flowing into the settler is about 0.1 m / sec. The spacer was hollow and provided with an opening (9) in the lower part and a vent pipe (10) for degassing in the upper part, which was divided and installed parallel to the center line in the longitudinal direction of the settler. Further, in order to reduce the amount of slurry liquid in the settler, the distance between the lower end of the inlet and the upper end of the spacer is reduced,
It was set to about 0.15 m.

【0017】このセトラーを用いて、シクロヘキセン製
造プロセスにおけるベンゼンの水添触媒スラリーと反応
液との連続分離を行った。スラリー液の密度は約1.0
g/cm3 、反応液の密度は約0.7g/cm3 であ
る。この運転の結果、セトラー内におけるスラリー液の
滞留時間を数分のオーダーとなし得た。すなわち、この
ような導入口とスペーサーのない装置にくらべて約1/
10にすることができたために、反応場から離れること
による触媒の変質はまったくみられなかった。
Using this settler, the benzene hydrogenation catalyst slurry and the reaction liquid in the cyclohexene production process were continuously separated. The density of the slurry liquid is about 1.0
g / cm 3 , and the density of the reaction solution is about 0.7 g / cm 3 . As a result of this operation, the residence time of the slurry liquid in the settler could be on the order of minutes. That is, it is about 1 / th compared to a device without such an inlet and spacer.
Since it could be set to 10, no deterioration of the catalyst due to leaving the reaction field was observed.

【0018】[0018]

【実施例2】また、このセトラーを用いて、スペーサー
の取り付け方向を90度変えたものに入れ換えて、同じ
二液混合液の連続分離を同じ流速条件で行った。その結
果は実施例1と同様で、反応場から離れることによる触
媒の変質はまったくみられなかった。
Example 2 Further, using this settler, the spacers were replaced by those with the attachment direction changed by 90 degrees, and the same two-liquid mixed liquid was continuously separated under the same flow rate condition. The results were the same as in Example 1, and no alteration of the catalyst due to leaving the reaction field was observed.

【0019】[0019]

【実施例3】図7〜9は、横型で下部に角錐状のスペー
サー(8)を四つ設けたセトラーに二液混合液を低流速
で供給するための導入口(7)と前記スペーサー(8)
を設置した例である。それぞれ平面、正面及び側面の断
面図である。各角錐からでたスラリー液は集合管(1
3)で連結し一本にまとめて取り出すようにした。
[Embodiment 3] FIGS. 7 to 9 show an inlet (7) for supplying a two-liquid mixed liquid at a low flow rate and the spacer ( 8)
It is an example of installing. It is a sectional view of a plane, a front, and a side, respectively. The slurry liquid from each pyramid is collected by the collecting pipe (1
It was connected in 3) and taken out in one piece.

【0020】導入口は、二液混合液のセトラー内に流入
する平均流速が約0.3m/秒となるような開口面積と
した。スペーサーは、これらの図のように設置し、スペ
ーサー上端と導入口下端との距離は約0.3mとした。
このセトラーを用いて、実施例1と同じ二液混合液の連
続分離を同じ流速条件で行った。
The inlet has an opening area such that the average flow velocity of the two-liquid mixed liquid flowing into the settler is about 0.3 m / sec. The spacer was installed as shown in these figures, and the distance between the upper end of the spacer and the lower end of the inlet was about 0.3 m.
Using this settler, continuous separation of the same two-liquid mixture as in Example 1 was performed under the same flow rate condition.

【0021】その結果は、実施例1と同様で、反応場か
ら離れることによる触媒の変質はまったくみられなかっ
た。
The results are the same as in Example 1, and no alteration of the catalyst due to leaving the reaction field was observed.

【0022】[0022]

【実施例4】図10,11は、竪型で下部コーン型のセ
トラーに二液混合液を低流速で供給するための導入口
(7)とスペーサーを設置した例である。図10,11
はそれぞれ、平面及び正面の断面図である。二液混合液
は、装置中心からセトラー内に実質的に水平方向に、か
つ、放射状に流入するが、このときの平均流速が約0.
2m/秒となるような導入口の開口面積とした。
[Embodiment 4] FIGS. 10 and 11 show an example in which an inlet (7) for supplying a two-liquid mixed liquid at a low flow rate and a spacer are installed in a vertical and lower cone type settler. 10 and 11
[Fig. 3] is a plan view and a front view, respectively. The two-liquid mixed solution flows radially from the center of the apparatus into the settler in a substantially horizontal direction, and the average flow velocity at this time is about 0.
The opening area of the inlet was set to 2 m / sec.

【0023】スペーサーは、この図のように設置し、ス
ペーサー上端と導入口下端との距離は約0.2mとし
た。このセトラーを用いて、実施例1と同じ二液混合液
の連続分離を同じ流速条件で行った。その結果は、実施
例1と同様で、反応場から離れることによる触媒の変質
はまったくみられなかった。
The spacer was installed as shown in this figure, and the distance between the upper end of the spacer and the lower end of the inlet was about 0.2 m. Using this settler, continuous separation of the same two-liquid mixture as in Example 1 was performed under the same flow rate condition. The results are the same as in Example 1, and no alteration of the catalyst due to leaving the reaction field was observed.

【0024】[0024]

【実施例5】図12〜14は、竪型で下部コーン型のセ
トラーに二液混合液を周囲から実質的に水平方向に低流
速で供給するための導入口(7)とスペーサー(8)を
設置した例である。図12,13,14は、それぞれ平
面、正面及び側面の断面図である。
[Embodiment 5] FIGS. 12 to 14 show an inlet (7) and a spacer (8) for supplying a two-liquid mixed liquid from the surroundings to a vertical lower cone type settler at a substantially horizontal direction at a low flow rate. It is an example of installing. 12, 13, and 14 are plan views, front views, and side views, respectively.

【0025】二液混合液は、装置の外周部からセトラー
の中心に向かって流入するが、このときの平均流速が約
0.2m/秒となるような導入口の開口面積とした。ス
ペーサーは、この図のように分割設置し、スペーサー上
端と導入口下端との距離は約0.2mとした。このセト
ラーを用いて実施例1の二液混合液の連続分離を同じ流
速条件で行った。
The two-liquid mixed solution flows from the outer peripheral portion of the apparatus toward the center of the settler, and the opening area of the inlet is set so that the average flow velocity at this time is about 0.2 m / sec. The spacers were separately installed as shown in this figure, and the distance between the upper end of the spacer and the lower end of the inlet was about 0.2 m. Using this settler, continuous separation of the two-liquid mixed solution of Example 1 was performed under the same flow rate conditions.

【0026】その結果は実施例1と同様で、反応場から
離れることによる触媒の変質はまったくみられなかっ
た。
The results were the same as in Example 1 and no alteration of the catalyst due to leaving the reaction field was observed.

【0027】[0027]

【発明の効果】本発明は、セトラーに、低流速で混合液
を実質的に水平方向に供給する導入口と、スラリー液の
流路容積を小さくするスペーサーを取り組むことによ
り、セトラー内におけるスラリー液の滞留時間を必要充
分に小さくできる。このときにより、スラリー液に含ま
れる固相成分、例えば触媒の変質を防ぐことができる。
また反応に寄与しない固相成分を充分に少ない量、例え
ば最小限の量、におさえることができた。
EFFECTS OF THE INVENTION In the present invention, the settler is provided with an inlet for supplying the mixed solution in a substantially horizontal direction at a low flow rate, and a spacer for reducing the flow path volume of the slurry solution. The residence time can be made sufficiently small. At this time, it is possible to prevent alteration of the solid phase component contained in the slurry liquid, for example, the catalyst.
Further, the solid phase component which does not contribute to the reaction could be suppressed in a sufficiently small amount, for example, the minimum amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のセトラーを用いて、スラリー液と液と
を二液連続相に連続分離するときの、液の流れの状態を
示す図である。
FIG. 1 is a diagram showing a liquid flow state when a slurry liquid and a liquid are continuously separated into a two-liquid continuous phase using the settler of the present invention.

【図2】本発明のセトラーへの二液混合液の供給及び反
応液とスラリー液の排出を停止したときの、セトラー内
の液の状態を示す図である。
FIG. 2 is a diagram showing a state of the liquid in the settler when the supply of the two-liquid mixed liquid to the settler of the present invention and the discharge of the reaction liquid and the slurry liquid are stopped.

【図3】本発明の実施態様の第一の例であり、横型下部
コーン型セトラーに二液混合液の導入口と、コーン部に
スペーサーを取り付けたときの平面断面図である。
FIG. 3 is a first example of the embodiment of the present invention, and is a plan cross-sectional view of a horizontal lower cone type settler with an inlet for introducing a two-liquid mixture and a spacer attached to the cone portion.

【図4】本発明の実施態様の第一の例であり、正面断面
図である。
FIG. 4 is a front sectional view showing a first example of an embodiment of the present invention.

【図5】本発明の実施態様の第一の例であり、側面断面
図である。
FIG. 5 is a side sectional view of a first example of an embodiment of the present invention.

【図6】本発明の実施態様の第一の例であり、スペーサ
ーの斜視図である。
FIG. 6 is a perspective view of a spacer, which is a first example of an embodiment of the present invention.

【図7】本発明の実施態様の第二の例であり、横型で下
部に角錐を四つ設けたセトラーに二液混合液の導入口
と、角錐部にスペーサーを取り付けたときの平面断面図
である。
FIG. 7 is a second example of the embodiment of the present invention, and is a cross-sectional plan view of a horizontal type settler having four pyramids at the bottom and a two-liquid mixed liquid inlet and spacers attached to the pyramids. Is.

【図8】本発明の前記第二の例の平面断面図である。FIG. 8 is a plan sectional view of the second example of the present invention.

【図9】本発明の前記第二の例の側面断面図である。FIG. 9 is a side sectional view of the second example of the present invention.

【図10】本発明の実施態様の第三の例であり、竪型下
部コーン型セトラーの中心部に二液混合液の導入口を、
コーン部にスペーサーを取り付けたときの平面断面図で
ある。
FIG. 10 is a third example of an embodiment of the present invention, in which an inlet for a two-liquid mixed solution is provided at the center of a vertical lower cone type settler,
It is a plane sectional view when a spacer is attached to a cone part.

【図11】本発明の前記第三の例の正面断面図である。FIG. 11 is a front sectional view of the third example of the present invention.

【図12】本発明の実施態様の第四の例であり、竪型下
部コーン型セトラーの外周部に二液混合液の導入口を、
コーン部にスペーサーを取り付けたときの平面断面図で
ある。
FIG. 12 is a fourth example of an embodiment of the present invention, in which an inlet for a two-liquid mixed solution is provided on the outer peripheral portion of a vertical lower cone type settler,
It is a plane sectional view when a spacer is attached to a cone part.

【図13】本発明の前記第四の例の正面断面図である。FIG. 13 is a front sectional view of the fourth example of the present invention.

【図14】本発明の前記第四の例の側面断面図である。FIG. 14 is a side sectional view of the fourth example of the present invention.

【符号の説明】 セトラー 2 混合液 3 分散帯 4 反
応液 5 スラリー液 6 二液連続相の界面
7 導入口 8 スペーサー 11 混合液供給路
12 スラリー液の流路
[Explanation of symbols] 1 settler 2 mixed liquid 3 dispersion zone 4 reaction liquid 5 slurry liquid 6 two liquid interface between continuous phases
7 Inlet 8 Spacer 11 Mixed liquid supply path 12 Slurry liquid flow path

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スラリー液(I)と、これより密度が小
さくかつ前記スラリー液と混合した後静置した場合に二
液連続相を形成する液(II)との混合物を、セトラー
内の静置時における二液の分離界面付近に低流速で供給
し、次いで、二液連続相に分離後のスラリー液を、同液
中の固相成分を流動状態に保持する一方、該固相成分が
変質しない時間内に、セトラーから抜き出すことを特徴
とするスラリー液(I)と液(II)との二相分離方
法。
1. A mixture of a slurry liquid (I) and a liquid (II) which has a lower density than that of the slurry liquid and forms a two-liquid continuous phase when left standing after mixing with the slurry liquid, It is supplied at a low flow rate near the separation interface of the two liquids at the time of placement, and then the slurry liquid after separation into the two liquid continuous phase is maintained while the solid phase components in the same liquid are kept in a fluid state. A two-phase separation method of a slurry liquid (I) and a liquid (II), which is characterized in that the slurry liquid (I) and the liquid (II) are withdrawn from the settler within a time that does not deteriorate.
【請求項2】 請求項1に記載のスラリー液(I)と液
(II)との混合物をセトラー内の静置時における二液
の分離界面付近に低流速で供給する手段と、二液連続相
に分離後のスラリー液を、同液中の固相成分を流動状態
に保持する一方、スペーサーを用いて該固相成分が変質
しないために充分に小さい流路容積を有する流路を形成
し、この流路を通してセトラーから抜き出す手段から成
るスラリー液(I)と液(II)との二相分離装置。
2. A means for supplying a mixture of the slurry liquid (I) and the liquid (II) according to claim 1 at a low flow rate near the separation interface between the two liquids when the slurry is allowed to stand in a settler, and two liquids continuous. While holding the solid phase component in the slurry liquid after separation into phases in a fluid state, a spacer is used to form a flow path having a sufficiently small flow path volume so that the solid phase component does not deteriorate. A two-phase separation apparatus for a slurry liquid (I) and a liquid (II), which comprises means for drawing out from the settler through this flow path.
JP04019090A 1992-02-04 1992-02-04 Method and apparatus for two-phase separation of slurry liquid and liquid Expired - Lifetime JP3076653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04019090A JP3076653B2 (en) 1992-02-04 1992-02-04 Method and apparatus for two-phase separation of slurry liquid and liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04019090A JP3076653B2 (en) 1992-02-04 1992-02-04 Method and apparatus for two-phase separation of slurry liquid and liquid

Publications (2)

Publication Number Publication Date
JPH05212209A true JPH05212209A (en) 1993-08-24
JP3076653B2 JP3076653B2 (en) 2000-08-14

Family

ID=11989765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04019090A Expired - Lifetime JP3076653B2 (en) 1992-02-04 1992-02-04 Method and apparatus for two-phase separation of slurry liquid and liquid

Country Status (1)

Country Link
JP (1) JP3076653B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205242A (en) * 1999-07-14 2005-08-04 Greenearth Cleaning Llc System and method for dry-cleaning article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205242A (en) * 1999-07-14 2005-08-04 Greenearth Cleaning Llc System and method for dry-cleaning article
JP4718884B2 (en) * 1999-07-14 2011-07-06 グリーンアース クリーニング リミテッド ライアビリテイ カンパニー System and method for dry cleaning articles

Also Published As

Publication number Publication date
JP3076653B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
US3759669A (en) Apparatus for contacting liquid and solid particles
US10376855B2 (en) Internal loop airlift reactor for process intensification integrating reaction and separation
JPS61223089A (en) Bag mixing hydrogenation treatment reactor
US4221658A (en) Effecting liquid-liquid contact
US20020179506A1 (en) Dynamic settler
US3698876A (en) Vapor liquid separation apparatus
KR102532376B1 (en) A novel device for dispensing a multiphase mixture in a chamber containing a fluidizing medium
US8431097B2 (en) Solute precipitation method and device
KR20010012232A (en) Multizone downcomer for slurry hydrocarbon syntheses process
CN112107886A (en) Separation and purification device for oil phase in oil, water and solid three-phase mixture
CN101605597A (en) Screenless moving bed reactor
EP2050732B1 (en) Method of replacing dispersion medium
JPH05212209A (en) Two-phase separation of slurry from liquid and device therefor
JPH0597736A (en) Hydration of cyclic olefin
JP4329313B2 (en) Apparatus for internal separation of a mixture comprising at least one gas phase and liquid phase
CN102225251A (en) Continuous settling tank
EP0101907B1 (en) Countercurrent washing tower and countercurrent washing method using same
US8247604B2 (en) Method of replacing dispersion medium
JPH1094705A (en) Reactor
JP3088875B2 (en) Hydration of cyclic olefins
US7060228B2 (en) Internal device for separating a mixture that comprises at least one gaseous phase and one liquid phase
CN204746286U (en) Thick liquid attitude bed reactor's ft synthesis result piece -rate system
US3661260A (en) Continuous slurry separation
EP0131912B1 (en) A method for the hydrogenation treatment of heavy oils
CN104888667A (en) Fischer-Tropsch synthesis product separation system and method of slurry bed reactor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080609

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 12