JPH05211357A - Resistance controlling method of resistor element - Google Patents

Resistance controlling method of resistor element

Info

Publication number
JPH05211357A
JPH05211357A JP4289099A JP28909992A JPH05211357A JP H05211357 A JPH05211357 A JP H05211357A JP 4289099 A JP4289099 A JP 4289099A JP 28909992 A JP28909992 A JP 28909992A JP H05211357 A JPH05211357 A JP H05211357A
Authority
JP
Japan
Prior art keywords
thin film
wiring metal
element thin
magnetoresistive element
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4289099A
Other languages
Japanese (ja)
Other versions
JP2903910B2 (en
Inventor
Yasutoshi Suzuki
康利 鈴木
Kenichi Ao
青  建一
Yoshi Yoshino
好 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP4289099A priority Critical patent/JP2903910B2/en
Priority to DE4294151T priority patent/DE4294151T1/en
Priority to PCT/JP1992/001581 priority patent/WO1993011569A1/en
Priority to US08/094,142 priority patent/US5471084A/en
Priority to DE4294151A priority patent/DE4294151C2/en
Publication of JPH05211357A publication Critical patent/JPH05211357A/en
Application granted granted Critical
Publication of JP2903910B2 publication Critical patent/JP2903910B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To provide a method of controlling a resistor element in resistance, which is able to accurately determine a junction resistance between a wiring metal and a resistor element thin film. CONSTITUTION:Aluminum wiring metals 9 are arranged on a P-type semiconductor substrate 1, and the ends of the wiring metal 9 are formed in slant in cross section. A ferromagnetic magnetoresistive element thin film 10 is provided extending from a slant 9a inclined in cross section. Letting the junction resistivity between the aluminum wiring metal 9 and the thin film 10 be rhoc, the angle of inclination of the slope 9a of the aluminum wiring metal 9 be theta, the thickness of a thinner one out of the aluminum wiring metals 9 and the thin film 10 at a contact between the wiring metal 9 and the thin film 10 be t, and the length of the contact be L, the junction resistance Rc between the aluminum wiring metal 9 and the ferromagnetic magnetoresistive element thin film 10 is determined by a formula, Rc=rhoc.sintheta/(t.L).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、抵抗素子の抵抗調整
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance adjusting method for a resistance element.

【0002】[0002]

【従来の技術】従来、磁気検出装置において、特開昭6
4−125882号公報にて示されているように、基板
上に形成した薄膜配線金属と強磁性磁気抵抗素子薄膜を
電気接続する方法として、薄膜配線金属の傾斜角を78
度以下にし、その上に直接、強磁性磁気抵抗素子薄膜を
形成・接続している。そして、このようにすることによ
り、ステップカバレッジを向上させて断線故障の低減を
図っている。
2. Description of the Related Art Conventionally, in a magnetic detection device, Japanese Patent Laid-Open No.
As disclosed in Japanese Patent Laid-Open No. 4-125882, as a method of electrically connecting a thin film wiring metal formed on a substrate and a ferromagnetic magnetoresistive element thin film, a tilt angle of the thin film wiring metal is set to 78.
The ferromagnetic magnetoresistive element thin film is formed and connected directly thereon. By doing so, the step coverage is improved and the disconnection failure is reduced.

【0003】[0003]

【発明が解決しようとする課題】ところが、アルミ系薄
膜配線金属とニッケル系強磁性磁気抵抗素子薄膜の接合
抵抗値の決定方法については不明であった。つまり、金
属膜間(アルミ層配線)の接合抵抗は、接合面積に依存
して変化し、接合抵抗Rcは接合抵抗率をρc 、接合部
の面積をAとすると、Rc=ρc /Aで表されるが、断
面斜状部を有するアルミ系薄膜配線金属とニッケル系強
磁性磁気抵抗素子薄膜を用いる場合には、接合部の面積
Aには依存しない。
However, it has been unclear how to determine the junction resistance value between the aluminum-based thin film wiring metal and the nickel-based ferromagnetic magnetoresistive element thin film. That is, the junction resistance between the metal film (aluminum layer wiring) varies depending on the junction area, the junction resistance Rc is the junction resistivity [rho c, and the area of the joint and A, Rc = ρ c / A In the case of using an aluminum-based thin film wiring metal having a slanted section and a nickel-based ferromagnetic magnetoresistive element thin film, it does not depend on the area A of the junction.

【0004】そこで、この発明の目的は、配線金属と抵
抗素子薄膜との接合抵抗値を正確に決定することができ
る抵抗素子の抵抗調整方法を提供するものである。
Therefore, an object of the present invention is to provide a resistance adjusting method for a resistance element which can accurately determine a junction resistance value between a wiring metal and a resistance element thin film.

【0005】[0005]

【課題を解決するための手段】この発明は、基板上に端
部が断面斜状に形成されたアルミ系配線金属を配置する
とともに、前記断面斜状部上からニッケル系抵抗素子薄
膜を延設した抵抗素子において、前記アルミ系配線金属
とニッケル系抵抗素子薄膜との接合抵抗率をρc 、前記
アルミ系配線金属の断面斜状部の傾斜角をθ、前記アル
ミ系配線金属とニッケル系抵抗素子薄膜の接触部でのア
ルミ系配線金属とニッケル系抵抗素子薄膜のうちの薄い
方の厚みをt、接触部の長さをLとしたとき、アルミ系
配線金属とニッケル系抵抗素子薄膜との接合抵抗Rc
を、 Rc=ρc ・sinθ/(t・L) にて決定するようにした抵抗素子の抵抗調整方法をその
要旨とするものである。
According to the present invention, an aluminum-based wiring metal whose end portion is formed in a slanted cross section is arranged on a substrate, and a nickel series resistive element thin film is extended from the slanted cross section. In the resistance element, the junction resistivity between the aluminum-based wiring metal and the nickel-based resistance element thin film is ρ c , the inclination angle of the oblique section of the aluminum-based wiring metal is θ, the aluminum-based wiring metal and the nickel-based resistance. When the thinner one of the aluminum-based wiring metal and the nickel-based resistance element thin film at the contact portion of the element thin film is t and the length of the contact portion is L, the aluminum-based wiring metal and the nickel-based resistance element thin film are Junction resistance Rc
Is the method of adjusting the resistance of the resistance element, which is determined by Rc = ρ c · sin θ / (t · L).

【0006】又、前記アルミ系配線金属上にニッケル系
抵抗素子薄膜を配置する際に真空蒸着法を用いて成膜す
るとともに、2方向以上でアルミ系配線金属とニッケル
系抵抗素子薄膜とが接合した状態で配置するとよい。
Further, when the nickel-based resistance element thin film is formed on the aluminum-based wiring metal by using a vacuum deposition method, the aluminum-based wiring metal and the nickel-based resistance element thin film are joined in two or more directions. It is good to place it in the closed state.

【0007】[0007]

【作用】抵抗素子の抵抗調整を行う際に、アルミ系配線
金属とニッケル系抵抗素子薄膜との接合抵抗率をρc
アルミ系配線金属の断面斜状部の傾斜角をθ、前記アル
ミ系配線金属とニッケル系抵抗素子薄膜の接触部でのア
ルミ系配線金属とニッケル系抵抗素子薄膜のうちの薄い
方の厚みをt、接触部の長さをLとしたとき、アルミ系
配線金属とニッケル系抵抗素子薄膜との接合抵抗Rc
が、Rc=ρc ・sinθ/(t・L)にて決定され
る。
[Function] When the resistance of the resistance element is adjusted, the junction resistivity of the aluminum-based wiring metal and the nickel-based resistance element thin film is ρ c ,
The inclination angle of the oblique section of the aluminum-based wiring metal is θ, and the thinner one of the aluminum-based wiring metal and the nickel-based resistance element thin film at the contact portion between the aluminum-based wiring metal and the nickel-based resistance element thin film is t. , Where the length of the contact portion is L, the joint resistance Rc between the aluminum-based wiring metal and the nickel-based resistance element thin film Rc
Is determined by Rc = ρ c · sin θ / (t · L).

【0008】又、アルミ系配線金属上にニッケル系抵抗
素子薄膜を配置する際に真空蒸着法を用いて2方向以上
でアルミ系配線金属とニッケル系抵抗素子薄膜とが接合
した状態で配置すると、ニッケル系抵抗素子薄膜の蒸着
時の入射角にバラツキが発生しても、ニッケル系抵抗素
子薄膜のくびれが発生しない方向が少なくとも一方向存
在することとなる。
Further, when the nickel-based resistance element thin film is placed on the aluminum-based wiring metal, if the aluminum-based wiring metal and the nickel-based resistance element thin film are joined in two or more directions using a vacuum deposition method, Even if the incident angle of the nickel-based resistance element thin film varies during vapor deposition, there is at least one direction in which the necking of the nickel-based resistance element thin film does not occur.

【0009】[0009]

【実施例】以下、この発明を磁気センサに具体化した一
実施例を図面に従って説明する。図1は磁気センサの断
面図であり、強磁性磁気抵抗素子薄膜10と信号処理回
路とが同一基板内に集積化されている。又、図2には図
1のD部の拡大図を示し、図3にはD部の平面図を示
す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in a magnetic sensor will be described below with reference to the drawings. FIG. 1 is a sectional view of a magnetic sensor in which a ferromagnetic magnetoresistive element thin film 10 and a signal processing circuit are integrated on the same substrate. Further, FIG. 2 shows an enlarged view of the D portion of FIG. 1, and FIG. 3 shows a plan view of the D portion.

【0010】図4〜図7には、その製造工程を示す。ま
ず、図4に示すように、P型半導体基板(シリコン基
板)1の主表面に、公知の半導体加工技術を用いて縦形
NPNバイポーラトランジスタを形成する。つまり、P
型半導体基板1の主表面上に、N+ 型埋込層2、N-
エピタキシャル層3を形成する。そして、N- 型エピタ
キシャル層3の主表面上にシリコン酸化膜4を熱酸化法
により形成し、シリコン酸化膜4を所望の回路パターン
によりフォトエッチングし、不純物の拡散にてP+ 型素
子分離領域5、P+ 型拡散領域6、N+ 型拡散領域7,
8を形成する。即ち、N+ ならばリンを、P+ ならばボ
ロンをイオン注入法もしくは拡散法により選択的に拡散
して形成する。このようにして、縦形NPNバイポーラ
トランジスタがN+ 型埋込層2、N- 型エピタキシャル
層3、P+ 型拡散領域6、及びN+ 型拡散領域7,8に
て構成され、このトランジスタは後述する強磁性磁気抵
抗素子薄膜10からの信号を増幅する。
4 to 7 show the manufacturing process. First, as shown in FIG. 4, a vertical NPN bipolar transistor is formed on the main surface of a P-type semiconductor substrate (silicon substrate) 1 by using a known semiconductor processing technique. That is, P
The N + type buried layer 2 and the N type epitaxial layer 3 are formed on the main surface of the type semiconductor substrate 1. Then, a silicon oxide film 4 is formed on the main surface of the N type epitaxial layer 3 by a thermal oxidation method, the silicon oxide film 4 is photoetched by a desired circuit pattern, and a P + type element isolation region is formed by diffusion of impurities. 5, P + type diffusion region 6, N + type diffusion region 7,
8 is formed. That is, phosphorus is selectively formed for N + and boron is selectively formed for P + by an ion implantation method or a diffusion method. In this way, the vertical NPN bipolar transistor is constituted by the N + type buried layer 2, the N type epitaxial layer 3, the P + type diffusion region 6, and the N + type diffusion regions 7 and 8, which will be described later. The signal from the ferromagnetic magnetoresistive element thin film 10 is amplified.

【0011】次に、シリコン酸化膜4にフォトリソグラ
フィを用いて選択的に開口部4aを明け、コンタクト部
を形成する。そして、図5に示すように、P型半導体基
板1の主表面上に、蒸着法又はスパッタ法にて薄膜のア
ルミ配線金属9を堆積するとともに、このアルミ配線金
属9をフォトエッチングによりパターニングする。この
際、アルミ配線金属9の端部に対し、その断面を傾斜角
θが80°以下の斜状(テーパ状)に加工する(図にお
いて斜状部を9aで示す)。その後、熱処理工程により
アルミ配線金属9と回路素子(シリコン)とのオーミッ
ク接合を行なう(合金化処理を行う)。このとき、アル
ミ配線金属9の表面上に酸化層が形成される。
Next, the opening 4a is selectively opened in the silicon oxide film 4 by photolithography to form a contact portion. Then, as shown in FIG. 5, thin-film aluminum wiring metal 9 is deposited on the main surface of P-type semiconductor substrate 1 by vapor deposition or sputtering, and this aluminum wiring metal 9 is patterned by photoetching. At this time, the cross section of the end portion of the aluminum wiring metal 9 is processed into an inclined shape (tapered shape) having an inclination angle θ of 80 ° or less (in the figure, the inclined portion is indicated by 9a). After that, an ohmic contact between the aluminum wiring metal 9 and the circuit element (silicon) is performed by a heat treatment process (alloying treatment is performed). At this time, an oxide layer is formed on the surface of the aluminum wiring metal 9.

【0012】引き続き、P型半導体基板1を真空容器内
に配置し、不活性ガス(例えば、Arガス)のプラズマ
エッチングによりアルミ配線金属9の表面上の酸化層を
エッチング除去する。その後、図6に示すように、真空
を保持したまま同一の真空容器内において強磁性磁気抵
抗素子薄膜10を電子ビーム真空蒸着法により堆積す
る。よって、アルミ配線金属9と強磁性磁気抵抗素子薄
膜10との界面には酸化層の存在しない金属接合とな
る。この強磁性磁気抵抗素子薄膜10は、Ni−Co薄
膜が使用されているとともに、強磁性磁気抵抗素子薄膜
10は、アルミ配線金属9より薄くなっている(図2参
照)。
Subsequently, the P-type semiconductor substrate 1 is placed in a vacuum container, and the oxide layer on the surface of the aluminum wiring metal 9 is removed by etching by plasma etching with an inert gas (eg, Ar gas). After that, as shown in FIG. 6, the ferromagnetic magnetoresistive element thin film 10 is deposited by electron beam vacuum evaporation in the same vacuum container while maintaining the vacuum. Therefore, an oxide layer does not exist at the interface between the aluminum wiring metal 9 and the ferromagnetic magnetoresistive element thin film 10, resulting in a metal junction. This ferromagnetic magnetoresistive element thin film 10 uses a Ni—Co thin film, and the ferromagnetic magnetoresistive element thin film 10 is thinner than the aluminum wiring metal 9 (see FIG. 2).

【0013】そして、図7に示すように、この強磁性磁
気抵抗素子薄膜10をフォトエッチング法にて所望のブ
リッジパターンにエッチングする。この際、強磁性磁気
抵抗素子薄膜10とアルミ配線金属9は、図2に示すよ
うに強磁性磁気抵抗素子薄膜10をアルミ配線金属9の
斜状部9aに十分オーバラップさせる。この斜状部9a
により、強磁性磁気抵抗素子薄膜10とアルミ配線金属
9の電気的接合が行われる。
Then, as shown in FIG. 7, the ferromagnetic magnetoresistive element thin film 10 is etched into a desired bridge pattern by photoetching. At this time, the ferromagnetic magnetoresistive element thin film 10 and the aluminum wiring metal 9 sufficiently overlap the ferromagnetic magnetoresistive element thin film 10 with the slanted portion 9a of the aluminum wiring metal 9 as shown in FIG. This slanted portion 9a
Thus, the ferromagnetic magnetoresistive element thin film 10 and the aluminum wiring metal 9 are electrically connected.

【0014】このとき、磁気センサとして機能する強磁
性磁気抵抗素子薄膜10は、シリコン酸化膜4上に形成
するが、強磁性磁気抵抗素子薄膜10は、図3に示すよ
うに、例えばその幅Wを10〜15μmにフォトエッチ
ングし、所望のブリッジ抵抗となるように、強磁性磁気
抵抗素子薄膜10の比抵抗と厚みt(図2参照)と幅W
から長さを決定する。
At this time, the ferromagnetic magnetoresistive element thin film 10 functioning as a magnetic sensor is formed on the silicon oxide film 4, and the ferromagnetic magnetoresistive element thin film 10 has a width W, for example, as shown in FIG. Is photoetched to 10 to 15 μm, and the specific resistance, the thickness t (see FIG. 2) and the width W of the ferromagnetic magnetoresistive element thin film 10 are adjusted so as to obtain a desired bridge resistance.
Determine the length from.

【0015】最後に、図1に示すように、表面保護膜1
1を形成して強磁性磁気抵抗素子薄膜10と、P型半導
体基板1の主表面に作製した回路素子とを外気から保護
する。
Finally, as shown in FIG. 1, the surface protective film 1
1 is formed to protect the ferromagnetic magnetoresistive element thin film 10 and the circuit element formed on the main surface of the P-type semiconductor substrate 1 from the outside air.

【0016】このように製造された磁気センサにおいて
は、P型半導体基板1の主表面に作製したNPNトラン
ジスタ、及び図示しないPNPトランジスタ,拡散抵
抗,コンデンサ等の回路素子をアルミ配線金属9により
電気的に接続して、電気回路として機能させる。
In the magnetic sensor manufactured as described above, the NPN transistor formed on the main surface of the P-type semiconductor substrate 1 and circuit elements such as a PNP transistor, a diffusion resistor and a capacitor (not shown) are electrically connected by the aluminum wiring metal 9. To function as an electric circuit.

【0017】今、実際の強磁性磁気抵抗素子薄膜10の
抵抗Roを考えた場合、それは強磁性磁気抵抗素子薄膜
10の抵抗RNi-Co と、強磁性磁気抵抗素子薄膜10と
アルミ配線金属9の接合抵抗Rcとの和で表わされる
(Ro=RNi-Co +2・Rc)。このことは、強磁性磁
気抵抗素子薄膜10の抵抗Roを設計値通り作り込むに
は強磁性磁気抵抗素子薄膜10のパターン加工精度はも
ちろんのこと、強磁性磁気抵抗素子薄膜10とアルミ配
線金属9の接合抵抗をできるだけ小さくし、強磁性磁気
抵抗素子薄膜10のパターンのみで抵抗値が決定される
ほどにしなければならない。
Considering the actual resistance Ro of the ferromagnetic magnetoresistive element thin film 10, the resistance R Ni-Co of the ferromagnetic magnetoresistive element thin film 10, the ferromagnetic magnetoresistive element thin film 10 and the aluminum wiring metal 9 are considered. Is represented by the sum of the junction resistance Rc of (Ro = R Ni-Co + 2 · Rc). This means that in order to make the resistance Ro of the ferromagnetic magnetoresistive element thin film 10 as designed, not only the pattern processing accuracy of the ferromagnetic magnetoresistive element thin film 10 but also the ferromagnetic magnetoresistive element thin film 10 and the aluminum wiring metal 9 are required. The junction resistance of 1 must be made as small as possible so that the resistance value is determined only by the pattern of the ferromagnetic magnetoresistive element thin film 10.

【0018】本発明者は、Ni−Co/Alの接合抵抗
が何で決定されているかを実験により調べた。従来、金
属膜間(アルミ層配線)の接合抵抗は、接合面積に依存
して変化し、接合抵抗Rcは接合抵抗率をρc 、接合部
の面積をAとすると、Rc=ρc /Aで表される。しか
し、Ni−Co/Al系の本構造においては、接合部の
面積Aには依存せず、強磁性磁気抵抗素子薄膜10とア
ルミ配線金属9の斜状部9aの接触面積にのみ、接合抵
抗が依存することを見出した。本構造における接合抵抗
Rcは、アルミ配線金属9と強磁性磁気抵抗素子薄膜1
0との接合抵抗率をρc 、アルミ配線金属9の斜状部9
aの傾斜角をθ(図2参照)、アルミ配線金属9と強磁
性磁気抵抗素子薄膜10の接触部でのアルミ配線金属9
と強磁性磁気抵抗素子薄膜10のうちの薄い方(即ち、
強磁性磁気抵抗素子薄膜10)の厚みをt、接触部の長
さをLとすると、 Rc=ρc ・sinθ/(t・L)・・・(1) で表わされる。このことから、接合抵抗Rcを所望の設
計値通りの値にすることができる。又、(1)式から接
合抵抗Rcを小さくする工夫が可能となる。即ち、
(1)式でのLを大きくしてRcを小さくすべく、図3
に示すように、アルミ配線金属9の先端部に凹部12を
形成し、この凹部12上に強磁性磁気抵抗素子薄膜10
を配置する。その結果、LはL1+L2+L3となり、
凹部12が無い場合に比べLを長くすることができる。
つまり、従来は、強磁性磁気抵抗素子薄膜10の線幅
(これは磁気抵抗変化率の設計値とブリッジ抵抗の設計
値で決定される)のままで、かつ、アルミ配線金属9も
帯状のまま、アルミ配線金属9と接合させていたため接
合抵抗が大きくなっていたが、図3の形状(凹部12の
形状)とすることにより、一桁以上の接合抵抗の減少が
可能となった。
The present inventor investigated by experiments what determines the junction resistance of Ni-Co / Al. Conventionally, contact resistance between the metal film (aluminum layer wiring) varies depending on the junction area, the junction resistance Rc is the junction resistivity [rho c, and the area of the joint and A, Rc = ρ c / A It is represented by. However, in the Ni—Co / Al system structure, the junction resistance does not depend on the area A of the junction, but only the contact area of the ferromagnetic magnetoresistive element thin film 10 and the slanted portion 9a of the aluminum wiring metal 9 has a junction resistance. Found to depend on. The junction resistance Rc in this structure is the aluminum wiring metal 9 and the ferromagnetic magnetoresistive element thin film 1
The junction resistivity with 0 is ρ c , the slanted portion 9 of the aluminum wiring metal 9
The inclination angle of a is θ (see FIG. 2), and the aluminum wiring metal 9 at the contact portion between the aluminum wiring metal 9 and the ferromagnetic magnetoresistive element thin film 10
Of the ferromagnetic magnetoresistive element thin film 10 and the thinner one (that is,
If the thickness of the ferromagnetic magnetoresistive element thin film 10) is t and the length of the contact portion is L, then Rc = ρ c · sin θ / (t · L) (1) From this, the junction resistance Rc can be set to a value according to a desired design value. Further, it is possible to devise to reduce the junction resistance Rc from the equation (1). That is,
In order to increase L and decrease Rc in the equation (1), as shown in FIG.
As shown in FIG. 3, a concave portion 12 is formed at the tip of the aluminum wiring metal 9, and the ferromagnetic magnetoresistive element thin film 10 is formed on the concave portion 12.
To place. As a result, L becomes L1 + L2 + L3,
L can be made longer than when there is no recess 12.
That is, conventionally, the line width of the ferromagnetic magnetoresistive element thin film 10 (which is determined by the design value of the magnetoresistive change rate and the design value of the bridge resistance) remains, and the aluminum wiring metal 9 also remains in the strip shape. Since the aluminum wiring metal 9 is bonded to the aluminum wiring metal 9, the bonding resistance is increased. However, by adopting the shape of FIG. 3 (shape of the recess 12), the bonding resistance can be reduced by one digit or more.

【0019】又、図3の凹部12の一辺の長さは、アル
ミ配線金属9の厚さの2倍以上になっている。より具体
的には、本実施例ではアルミ配線金属9の厚さが1μm
であるとともに、凹部12の一辺の長さが16μmであ
り、凹部12の一辺の長さはアルミ配線金属9の厚さの
16倍になっている。
Further, the length of one side of the recess 12 in FIG. 3 is more than twice the thickness of the aluminum wiring metal 9. More specifically, in this embodiment, the thickness of the aluminum wiring metal 9 is 1 μm.
In addition, the length of one side of the recess 12 is 16 μm, and the length of one side of the recess 12 is 16 times the thickness of the aluminum wiring metal 9.

【0020】このような凹部12を有する構造とするこ
とにより、図8に示す従来の凹部のない構造ではアルミ
配線金属9と強磁性磁気抵抗素子薄膜10との接合部で
方向が一方向(図8ではA方向)であったが、図3の本
実施例では3方向(A,B,C方向)で両者が接合する
こととなる。換言すると、3方向(A,B,C方向)の
電流突入面が形成されていることとなる。
With such a structure having the concave portion 12, in the conventional structure having no concave portion shown in FIG. 8, the direction at the junction between the aluminum wiring metal 9 and the ferromagnetic magnetoresistive element thin film 10 is one direction (see FIG. 8 is in the A direction), but in the present embodiment of FIG. 3, the two are joined in three directions (A, B, C directions). In other words, the current inrush surface in three directions (A, B, C directions) is formed.

【0021】つまり、従来の一方向でアルミ配線金属9
と強磁性磁気抵抗素子薄膜10が接合する方法では、強
磁性磁気抵抗素子薄膜10を成膜する時のNi−Co粒
子の基板への入射角により、図9に示すように、アルミ
配線金属9との接触部の端部で強磁性磁気抵抗素子薄膜
10がくびれてしまう。その結果、許容電流容量が低下
し、くびれ部で強磁性磁気抵抗素子薄膜10が破壊する
おそれがある。しかしながら、本実施例のように凹部1
2を有する構造とすることにより、3方向でアルミ配線
金属9と強磁性磁気抵抗素子薄膜10が接合した状態と
なるため、強磁性磁気抵抗素子薄膜10の蒸着時の入射
角にバラツキが発生しても、図9に示す強磁性磁気抵抗
素子薄膜10のくびれる方向はあるが、図10に示すよ
うに強磁性磁気抵抗素子薄膜10のくびれが発生しない
方向が少なくとも一方向存在することとなる。
That is, the aluminum wiring metal 9 in the conventional one direction
In the method in which the ferromagnetic magnetoresistive element thin film 10 and the ferromagnetic magnetoresistive element thin film 10 are joined, as shown in FIG. The ferromagnetic magnetoresistive element thin film 10 is constricted at the end of the contact portion with. As a result, the allowable current capacity is reduced, and the ferromagnetic magnetoresistive element thin film 10 may be broken at the constricted portion. However, as in this embodiment, the recess 1
With the structure having 2, the aluminum wiring metal 9 and the ferromagnetic magnetoresistive element thin film 10 are joined in three directions, so that the incident angle of the ferromagnetic magnetoresistive element thin film 10 varies during vapor deposition. Even though the ferromagnetic magnetoresistive element thin film 10 shown in FIG. 9 has a constricted direction, at least one direction in which the ferromagnetic magnetoresistive element thin film 10 does not have a constricted direction exists as shown in FIG.

【0022】ここで、図11に示すように2つの凹部1
2a,12bを形成した場合と、図12に示すように凹
部の無い場合について、強磁性磁気抵抗素子薄膜10の
破壊率を測定した。尚、図11,12においては、強磁
性磁気抵抗素子薄膜10とアルミ配線金属9との接合
は、強磁性磁気抵抗素子薄膜10の先端側に幅広部13
を形成し、接触部長さLを長くしている。
Here, as shown in FIG. 11, two recesses 1 are formed.
The destruction rate of the ferromagnetic magnetoresistive element thin film 10 was measured for the case where 2a and 12b were formed and the case where there was no recess as shown in FIG. In FIGS. 11 and 12, the ferromagnetic magnetoresistive element thin film 10 and the aluminum wiring metal 9 are joined to each other at the wide portion 13 on the tip side of the ferromagnetic magnetoresistive element thin film 10.
And the contact portion length L is lengthened.

【0023】その結果を、図13に示す。図13は、電
流値に対するアルミ配線金属9の端部での強磁性磁気抵
抗素子薄膜10が焼き切れて破壊する割合を示してお
り、電流値は本実施でのものを破壊率「1」に規格化し
たものである。この図13から、アルミ配線金属9の端
部での強磁性磁気抵抗素子薄膜10の破壊電流値を3倍
以上にすることができることが分かった。即ち、凹部の
無い場合には0.26であったものが、2つの凹部12
a,12bを形成した場合には0.95となり、0.9
5/0.26≒3.6倍に破壊電流値を大きくすること
ができた。このように、3方向でアルミ配線金属9と強
磁性磁気抵抗素子薄膜10とを接合させてくびれのない
方向で電流を流すこと、及び、接触部長さLを長くする
ことにより、許容電流容量が増加した。
The results are shown in FIG. FIG. 13 shows the ratio of the ferromagnetic magnetoresistive element thin film 10 at the end of the aluminum wiring metal 9 to the current value, which is burned out and destroyed. It is standardized. From this FIG. 13, it was found that the breakdown current value of the ferromagnetic magnetoresistive element thin film 10 at the end of the aluminum wiring metal 9 can be tripled or more. That is, the value of 0.26 when there is no recess is two recesses 12.
When a and 12b are formed, it becomes 0.95, and 0.9
The breakdown current value could be increased to 5 / 0.26≈3.6 times. As described above, the allowable current capacity is increased by joining the aluminum wiring metal 9 and the ferromagnetic magnetoresistive element thin film 10 in three directions to allow a current to flow in a direction without constriction and by increasing the contact portion length L. Increased.

【0024】尚、この少なくとも3方向でアルミ配線金
属9と強磁性磁気抵抗素子薄膜10とを接合させるため
には、他にも、図14に示すように、正方形又は長方形
のアルミ配線金属9の回りを強磁性磁気抵抗素子薄膜1
0で覆うようにしてもよい。つまり、強磁性磁気抵抗素
子薄膜10の先端側の幅広部14にてアルミ配線金属9
の側面部をも接合させ、それにより、3方向でアルミ配
線金属9と強磁性磁気抵抗素子薄膜10とが接合する状
態で配置するとともに、接触部長さLを長くしてもよ
い。本構造では、3方向でアルミ配線金属9と強磁性磁
気抵抗素子薄膜10とが接合する状態で配置させること
となる。又、図15に示すように、円形のアルミ配線金
属9の回りを強磁性磁気抵抗素子薄膜10で覆うように
してもよい。本構造では、ほぼ全方向からアルミ配線金
属9と強磁性磁気抵抗素子薄膜10とを接合させること
ができる。
In addition, in order to join the aluminum wiring metal 9 and the ferromagnetic magnetoresistive element thin film 10 in at least three directions, as shown in FIG. 14, in addition, as shown in FIG. Around the ferromagnetic magnetoresistive element thin film 1
You may make it cover with 0. That is, the aluminum wiring metal 9 is formed in the wide portion 14 on the tip side of the ferromagnetic magnetoresistive element thin film 10.
It is also possible to join the side surfaces of the aluminum wiring metal 9 so that the aluminum wiring metal 9 and the ferromagnetic magnetoresistive element thin film 10 are joined in three directions, and to lengthen the contact portion length L. In this structure, the aluminum wiring metal 9 and the ferromagnetic magnetoresistive element thin film 10 are arranged so as to be joined in three directions. Further, as shown in FIG. 15, the circumference of the circular aluminum wiring metal 9 may be covered with the ferromagnetic magnetoresistive element thin film 10. In this structure, the aluminum wiring metal 9 and the ferromagnetic magnetoresistive element thin film 10 can be joined from almost all directions.

【0025】一方、強磁性磁気抵抗素子薄膜10とアル
ミ配線金属9を接合する場合に、アルミ配線金属9の先
端部に斜状部9aを形成し、熱処理(フォーミングガス
中)により回路素子とのオーミック接合をとるが、この
工程によりアルミ配線金属9の表面が酸化されてしま
い、強磁性磁気抵抗素子薄膜10とアルミ配線金属9を
オーミック接合とする場合に障壁層となり、前記(1)
式が成立しなくなるとともに、接合抵抗率ρc が10-4
Ωcm2 〜10-5Ωcm2 と大きくなる。しかし、上述した
ように、アルミ配線金属9の表面の酸化層をエッチング
除去することにより、接合抵抗率ρc を10-6Ωcm2
下にできる。この結果として接合抵抗が低減できる。
On the other hand, when the ferromagnetic magnetoresistive element thin film 10 and the aluminum wiring metal 9 are joined, a slanted portion 9a is formed at the tip of the aluminum wiring metal 9 and heat treated (in forming gas) to form a circuit element. Although an ohmic contact is obtained, the surface of the aluminum wiring metal 9 is oxidized by this step, and when the ohmic contact is formed between the ferromagnetic magnetoresistive element thin film 10 and the aluminum wiring metal 9, a barrier layer is formed.
When the equation is not satisfied, the junction resistivity ρ c is 10 −4
It becomes as large as Ωcm 2 to 10 -5 Ωcm 2 . However, as described above, the junction resistivity ρ c can be reduced to 10 −6 Ωcm 2 or less by etching away the oxide layer on the surface of the aluminum wiring metal 9. As a result, the junction resistance can be reduced.

【0026】図16には、アルミ配線金属9の表面の酸
化層をエッチング除去した場合と、酸化層をエッチング
除去しない場合での接合抵抗値の測定結果を示す。同図
のように、酸化層をエッチング除去することにより、接
合抵抗、抵抗値のバラツキがともに1/3以下程度と小
さくなり、又、コンタクト抵抗率(ρc )が10-6Ωcm
2 以下となる。
FIG. 16 shows the measurement results of the junction resistance value when the oxide layer on the surface of the aluminum wiring metal 9 was removed by etching and when the oxide layer was not removed by etching. As shown in the figure, by removing the oxide layer by etching, both the variation in the junction resistance and the resistance value are reduced to about 1/3 or less, and the contact resistivity (ρ c ) is 10 −6 Ωcm.
2 or less.

【0027】このように本実施例では、P型半導体基板
1上に端部が断面斜状に形成されたアルミ配線金属9を
配置するとともに、断面斜状部9a上からニッケル系強
磁性磁気抵抗素子薄膜10を延設した磁気抵抗素子にお
いて、アルミ配線金属9と強磁性磁気抵抗素子薄膜10
との接合抵抗率をρc 、アルミ配線金属9の断面斜状部
9aの傾斜角をθ、アルミ配線金属9とニッケル系強磁
性磁気抵抗素子薄膜10の接触部でのアルミ配線金属9
とニッケル系強磁性磁気抵抗素子薄膜10のうちの薄い
方(ニッケル系強磁性磁気抵抗素子薄膜10)の厚みを
t、接触部の長さをLとしたとき、アルミ配線金属9と
ニッケル系強磁性磁気抵抗素子薄膜10との接合抵抗R
cを、Rc=ρc ・sinθ/(t・L)にて決定する
ようにした。よって、アルミ配線金属9とニッケル系強
磁性磁気抵抗素子薄膜10との接合抵抗Rcを正確に決
定することができる。
As described above, in this embodiment, the aluminum wiring metal 9 whose end portion is formed in a slanted cross section is arranged on the P-type semiconductor substrate 1, and the nickel-based ferromagnetic magnetoresistive element is placed on the slanted cross section 9a. In the magnetoresistive element in which the element thin film 10 is extended, the aluminum wiring metal 9 and the ferromagnetic magnetoresistive element thin film 10 are provided.
, Ρ c , the inclination angle of the oblique section 9a of the aluminum wiring metal 9 is θ, and the aluminum wiring metal 9 at the contact portion between the aluminum wiring metal 9 and the nickel-based ferromagnetic magnetoresistive element thin film 10
If the thickness of the thinner one of the nickel-based ferromagnetic magnetoresistive element thin film 10 (nickel-based ferromagnetic magnetoresistive element thin film 10) is t and the length of the contact portion is L, the aluminum wiring metal 9 and the nickel-based strong alloy thin film 10 are strong. Junction resistance R with the magnetic magnetoresistive element thin film 10
c was determined by Rc = ρ c · sin θ / (t · L). Therefore, the junction resistance Rc between the aluminum wiring metal 9 and the nickel-based ferromagnetic magnetoresistive element thin film 10 can be accurately determined.

【0028】又、アルミ配線金属9上にニッケル系強磁
性磁気抵抗素子薄膜10を配置する際に真空蒸着法を用
いて成膜するとともに、図3での凹部12の形成にて2
方向以上でアルミ配線金属9とニッケル系強磁性磁気抵
抗素子薄膜10とが接合した状態で配置することによ
り、ニッケル系強磁性磁気抵抗素子薄膜10の蒸着時の
入射角にバラツキが発生しても、ニッケル系強磁性磁気
抵抗素子薄膜10のくびれが発生しない方向が少なくと
も一方向存在することとなる。つまり、強磁性磁気抵抗
素子薄膜10のくびれ防止のためにアルミ配線金属9と
強磁性磁気抵抗素子薄膜10との直線的な対向線長を長
くすると接合面積が広くなってしまい、又、Ni−Co
蒸着時に入射角を制御しようとすると真空蒸着装置での
ホルダの最適位置にセットしなければならなかったが、
本実施例ではそのようなことが回避され、より簡単に、
かつ確実にアルミ配線金属9と強磁性磁気抵抗素子薄膜
10とを接合することができる。
Further, when the nickel-based ferromagnetic magnetoresistive element thin film 10 is arranged on the aluminum wiring metal 9, the film is formed by the vacuum evaporation method, and the recess 12 in FIG. 3 is formed.
By disposing the aluminum wiring metal 9 and the nickel-based ferromagnetic magnetoresistive element thin film 10 in a state of being joined to each other in the direction or more, even if the incident angle of the nickel-based ferromagnetic magnetoresistive element thin film 10 varies during vapor deposition. Thus, there is at least one direction in which the necking of the nickel-based ferromagnetic magnetoresistive element thin film 10 does not occur. In other words, if the length of the linear opposing line between the aluminum wiring metal 9 and the ferromagnetic magnetoresistive element thin film 10 is increased in order to prevent the constriction of the ferromagnetic magnetoresistive element thin film 10, the joint area becomes wider and the Ni- Co
When trying to control the incident angle during vapor deposition, it was necessary to set the holder at the optimum position in the vacuum vapor deposition device.
In the present embodiment, such a thing is avoided, and more easily,
In addition, the aluminum wiring metal 9 and the ferromagnetic magnetoresistive element thin film 10 can be reliably joined.

【0029】さらに、磁気センサとしてNi−Co系の
強磁性磁気抵抗素子薄膜10を用いる場合、Lの値を大
きくすることによりRcの値が小さくなりブリッジ間の
抵抗値のバラツキにより発生するオフセット電圧が1/
3〜1/2と大幅に低減できる。さらには、車載用とし
て、この磁気センサを用いる場合、バッテリー電圧が直
接、強磁性磁気抵抗素子薄膜10に印加される場合に、
Ni−Co/Alの接合抵抗が大きいとこの部分が焼損
することがあるが、本実施例では接合抵抗を設計値通り
作製できることにより、このような不具合は回避でき
る。
Further, when the Ni-Co type ferromagnetic magnetoresistive element thin film 10 is used as the magnetic sensor, the value of Rc is decreased by increasing the value of L, and the offset voltage generated due to the variation of the resistance value between the bridges. Is 1 /
It can be greatly reduced to 3 to 1/2. Furthermore, when using this magnetic sensor for vehicle use, when the battery voltage is directly applied to the ferromagnetic magnetoresistive element thin film 10,
If the Ni-Co / Al junction resistance is large, this portion may be burnt out, but in the present embodiment, such a defect can be avoided by making the junction resistance as designed.

【0030】又、Alシンタ工程(熱処理工程)後に電
子ビーム蒸着法によりそのまま強磁性磁気抵抗素子薄膜
10を堆積した場合には、アルミシンター工程で形成さ
れたアルミ配線金属9の表面上の酸化層がそのまま残っ
てしまうが、本実施例のように、同一真空容器内で、は
じめに、不活性ガス(例えば、Arガス)のブラズマエ
ッチングによりアルミ配線金属9の表面上の酸化層をエ
ッチング除去し、その後に強磁性磁気抵抗素子薄膜10
を真空を破らず電子ビーム蒸着させているので、強磁性
磁気抵抗素子薄膜10とアルミ配線金属9の界面には酸
化層の存在しない金属接合となる。
When the ferromagnetic magnetoresistive element thin film 10 is directly deposited by the electron beam evaporation method after the Al sintering step (heat treatment step), an oxide layer on the surface of the aluminum wiring metal 9 formed in the aluminum sintering step. However, as in the present embodiment, the oxide layer on the surface of the aluminum wiring metal 9 is first removed by etching in the same vacuum container by plasma etching with an inert gas (for example, Ar gas). After that, the ferromagnetic magnetoresistive element thin film 10
Since the electron beam evaporation is performed without breaking the vacuum, a metal junction is formed without an oxide layer at the interface between the ferromagnetic magnetoresistive element thin film 10 and the aluminum wiring metal 9.

【0031】尚、この発明は上記実施例に限定されるも
のではなく、例えば、前記実施例ではアルミ配線金属9
よりも強磁性磁気抵抗素子薄膜10の方が薄いので前記
(1)式での「t」を強磁性磁気抵抗素子薄膜10の厚
みとしたが、強磁性磁気抵抗素子薄膜10よりもアルミ
配線金属9の方が薄い場合は、アルミ配線金属9の厚み
を前記(1)式での「t」とすればよい。
The present invention is not limited to the above-mentioned embodiment. For example, in the above-mentioned embodiment, the aluminum wiring metal 9 is used.
Since the ferromagnetic magnetoresistive element thin film 10 is thinner than the ferromagnetic magnetoresistive element thin film 10, "t" in the above formula (1) is defined as the thickness of the ferromagnetic magnetoresistive element thin film 10. When 9 is thinner, the thickness of the aluminum wiring metal 9 may be set to “t” in the above formula (1).

【0032】又、上記実施例では半導体基板1にバイポ
ーラICを形成した場合を示したが、MOS構造により
回路を形成しても、又、集積化せずにガラス基板上やシ
リコン上に絶縁層を形成した基板上にNi−Co/Al
接合を設けた場合に適用してもよい。
In the above embodiment, the case where the bipolar IC is formed on the semiconductor substrate 1 is shown. However, even if the circuit is formed by the MOS structure, the insulating layer is formed on the glass substrate or silicon without being integrated. On the substrate on which Ni-Co / Al was formed
It may be applied when a joint is provided.

【0033】さらには、上記実施例では、強磁性磁気抵
抗素子薄膜としてNi−Co薄膜を用いたが、他にもN
i−Fe、Ni−Fe−Co等の強磁性磁気抵抗素子薄
膜を用いてもよい。
Further, in the above embodiment, the Ni--Co thin film was used as the ferromagnetic magnetoresistive element thin film, but in addition, N
A ferromagnetic magnetoresistive element thin film such as i-Fe or Ni-Fe-Co may be used.

【0034】又、上記実施例では、熱処理工程(シンタ
工程)後のアルミ配線について述べたが、アルミ表面は
空気中に放置しても、水洗によっても簡単に酸化層が形
成されるので、この酸化層を除去してから強磁性磁気抵
抗素子薄膜10を形成してもよい。
In the above embodiment, the aluminum wiring after the heat treatment step (sinter step) has been described. However, an oxide layer is easily formed on the aluminum surface even if left in the air or washed with water. The ferromagnetic magnetoresistive element thin film 10 may be formed after removing the oxide layer.

【0035】さらに、図17に示すように、強磁性磁気
抵抗素子薄膜10(Ni−Co薄膜)を有する磁気セン
サにおいて、この強磁性磁気抵抗素子薄膜10に対する
サージ電圧等の保護のために強磁性磁気抵抗素子薄膜1
0と同じ材料からなる保護抵抗体15を用いた場合に適
用してもよい。つまり、P型半導体基板1上に端部が断
面斜状に形成されたアルミ配線金属9を配置するととも
に、断面斜状部9a上から強磁性磁気抵抗素子薄膜10
と同じ材料からなる保護抵抗体15を延設した磁気セン
サにおいて、接合抵抗Rcを、Rc=ρc ・sinθ/
(t・L)にて決定するようにしてもよい。
Further, as shown in FIG. 17, in a magnetic sensor having a ferromagnetic magnetoresistive element thin film 10 (Ni-Co thin film), the ferromagnetic magnetoresistive element thin film 10 is made of a ferromagnetic material to protect it from surge voltage. Magnetoresistive element thin film 1
The protective resistor 15 made of the same material as 0 may be used. That is, on the P-type semiconductor substrate 1, the aluminum wiring metal 9 whose end portion is formed in a slanted cross section is arranged, and the ferromagnetic magnetoresistive element thin film 10 is formed from the slanted cross section 9a.
In the magnetic sensor in which the protective resistor 15 made of the same material as the above is provided, the junction resistance Rc is Rc = ρ c · sin θ /
It may be determined by (t · L).

【0036】[0036]

【発明の効果】以上詳述したようにこの発明によれば、
配線金属と抵抗素子薄膜との接合抵抗値を正確に決定す
ることができる優れた効果を発揮する。
As described in detail above, according to the present invention,
The excellent effect that the joint resistance value between the wiring metal and the resistive element thin film can be accurately determined is exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の磁気センサの断面図である。FIG. 1 is a cross-sectional view of a magnetic sensor of an example.

【図2】図1のD部の拡大図である。FIG. 2 is an enlarged view of part D in FIG.

【図3】強磁性磁気抵抗素子薄膜とアルミ配線金属との
接合状態を示す平面図である。
FIG. 3 is a plan view showing a bonded state of a ferromagnetic magnetoresistive element thin film and an aluminum wiring metal.

【図4】磁気センサの製造工程を示す断面図である。FIG. 4 is a cross-sectional view showing the manufacturing process of the magnetic sensor.

【図5】磁気センサの製造工程を示す断面図である。FIG. 5 is a cross-sectional view showing the manufacturing process of the magnetic sensor.

【図6】磁気センサの製造工程を示す断面図である。FIG. 6 is a cross-sectional view showing the manufacturing process of the magnetic sensor.

【図7】磁気センサの製造工程を示す断面図である。FIG. 7 is a cross-sectional view showing the manufacturing process of the magnetic sensor.

【図8】比較のための強磁性磁気抵抗素子薄膜とアルミ
配線金属との接合状態を示す平面図である。
FIG. 8 is a plan view showing a bonded state of a ferromagnetic magnetoresistive element thin film and an aluminum wiring metal for comparison.

【図9】強磁性磁気抵抗素子薄膜とアルミ配線金属との
接合部を示す断面図である。
FIG. 9 is a cross-sectional view showing a joint between a ferromagnetic magnetoresistive element thin film and an aluminum wiring metal.

【図10】強磁性磁気抵抗素子薄膜とアルミ配線金属と
の接合部を示す断面図である。
FIG. 10 is a cross-sectional view showing a joint between a ferromagnetic magnetoresistive element thin film and an aluminum wiring metal.

【図11】磁気センサの平面図である。FIG. 11 is a plan view of a magnetic sensor.

【図12】比較のための磁気センサの平面図である。FIG. 12 is a plan view of a magnetic sensor for comparison.

【図13】電流値と膜破壊率との関係を示す図である。FIG. 13 is a diagram showing a relationship between a current value and a film breakage rate.

【図14】応用例の磁気センサの平面図である。FIG. 14 is a plan view of a magnetic sensor of an application example.

【図15】応用例の磁気センサの平面図である。FIG. 15 is a plan view of a magnetic sensor of an application example.

【図16】接合抵抗の測定結果を示す図である。FIG. 16 is a diagram showing measurement results of junction resistance.

【図17】他の別例の磁気センサの断面図である。FIG. 17 is a cross-sectional view of another magnetic sensor of another example.

【符号の説明】[Explanation of symbols]

1 P型半導体基板 9 アルミ配線金属 9a 斜状部 10 強磁性磁気抵抗素子薄膜 1 P-type semiconductor substrate 9 Aluminum wiring metal 9a Diagonal portion 10 Ferromagnetic magnetoresistive element thin film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に端部が断面斜状に形成されたア
ルミ系配線金属を配置するとともに、前記断面斜状部上
からニッケル系抵抗素子薄膜を延設した抵抗素子におい
て、 前記アルミ系配線金属とニッケル系抵抗素子薄膜との接
合抵抗率をρc 、前記アルミ系配線金属の断面斜状部の
傾斜角をθ、前記アルミ系配線金属とニッケル系抵抗素
子薄膜の接触部でのアルミ系配線金属とニッケル系抵抗
素子薄膜のうちの薄い方の厚みをt、接触部の長さをL
としたとき、アルミ系配線金属とニッケル系抵抗素子薄
膜との接合抵抗Rcを、 Rc=ρc ・sinθ/(t・L) にて決定するようにしたことを特徴とする抵抗素子の抵
抗調整方法。
1. A resistance element in which an aluminum-based wiring metal whose end portion is formed in a slanted section is arranged on a substrate, and a nickel-based resistance element thin film is extended from the slanted section in a cross section. The junction resistivity between the wiring metal and the nickel-based resistance element thin film is ρ c , the inclination angle of the oblique section of the aluminum-based wiring metal is θ, and the aluminum at the contact portion between the aluminum-based wiring metal and the nickel-based resistance element thin film is The thickness of the thinner of the system wiring metal and the nickel-based resistance element thin film is t, and the length of the contact portion is L.
Then, the resistance adjustment of the resistance element is characterized in that the junction resistance Rc between the aluminum-based wiring metal and the nickel-based resistance element thin film is determined by Rc = ρ c · sin θ / (t · L). Method.
【請求項2】 アルミ系配線金属上にニッケル系抵抗素
子薄膜を配置する際に真空蒸着法を用いて成膜するとと
もに、2方向以上でアルミ系配線金属とニッケル系抵抗
素子薄膜とが接合した状態で配置してなる請求項1に記
載の抵抗素子の抵抗調整方法。
2. The nickel-based resistance element thin film is formed on the aluminum-based wiring metal by using a vacuum deposition method when the nickel-based resistance element thin film is arranged, and the aluminum-based wiring metal and the nickel-based resistance element thin film are joined in two or more directions. The resistance adjusting method of the resistance element according to claim 1, wherein the resistance adjusting method is arranged in a state.
JP4289099A 1991-12-03 1992-10-27 Adjusting method of resistance of resistance element Expired - Lifetime JP2903910B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4289099A JP2903910B2 (en) 1991-12-03 1992-10-27 Adjusting method of resistance of resistance element
DE4294151T DE4294151T1 (en) 1991-12-03 1992-12-03 Magnetoresistive element and manufacturing method therefor
PCT/JP1992/001581 WO1993011569A1 (en) 1991-12-03 1992-12-03 Magnetoresistant element and manufacturing process thereof
US08/094,142 US5471084A (en) 1991-12-03 1992-12-03 Magnetoresistive element and manufacturing method therefor
DE4294151A DE4294151C2 (en) 1991-12-03 1992-12-03 Magnetoresistive element and manufacturing method therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-319444 1991-12-03
JP31944491 1991-12-03
JP4289099A JP2903910B2 (en) 1991-12-03 1992-10-27 Adjusting method of resistance of resistance element

Publications (2)

Publication Number Publication Date
JPH05211357A true JPH05211357A (en) 1993-08-20
JP2903910B2 JP2903910B2 (en) 1999-06-14

Family

ID=26557458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4289099A Expired - Lifetime JP2903910B2 (en) 1991-12-03 1992-10-27 Adjusting method of resistance of resistance element

Country Status (1)

Country Link
JP (1) JP2903910B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989970A (en) * 1994-06-08 1999-11-23 Nippondenso Co., Ltd. Method for fabricating semiconductor device having thin-film resistor
JP2004014567A (en) * 2002-06-03 2004-01-15 Murata Mfg Co Ltd Magnetoelectric transducer
JP2004103767A (en) * 2002-09-09 2004-04-02 Murata Mfg Co Ltd Magnetic sensor
US6999237B2 (en) 2001-09-12 2006-02-14 Lightmaster Systems, Inc. Method and apparatus for configuration and assembly of a video projection light management system
JP2016054201A (en) * 2014-09-03 2016-04-14 株式会社デンソー Magnetic detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989970A (en) * 1994-06-08 1999-11-23 Nippondenso Co., Ltd. Method for fabricating semiconductor device having thin-film resistor
US6999237B2 (en) 2001-09-12 2006-02-14 Lightmaster Systems, Inc. Method and apparatus for configuration and assembly of a video projection light management system
JP2004014567A (en) * 2002-06-03 2004-01-15 Murata Mfg Co Ltd Magnetoelectric transducer
JP2004103767A (en) * 2002-09-09 2004-04-02 Murata Mfg Co Ltd Magnetic sensor
JP2016054201A (en) * 2014-09-03 2016-04-14 株式会社デンソー Magnetic detector

Also Published As

Publication number Publication date
JP2903910B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
US5471084A (en) Magnetoresistive element and manufacturing method therefor
JPH0144024B2 (en)
JPH05211357A (en) Resistance controlling method of resistor element
US6617191B1 (en) Method for anodizing silicon substrates for surface type acceleration sensors
US6194961B1 (en) Microstructure including a circuit integrated in a substrate on one surface of which is arranged a flat coil
JP2833610B2 (en) Insulated gate bipolar transistor
JP2009123818A (en) Method of manufacturing magnetic sensor device
US5646051A (en) Process for forming a magnetoresistive sensor for a reading head
JPH0755523A (en) Flow rate sensor
JP3799714B2 (en) Semiconductor device
JPH11340541A (en) Semiconductor magnetoresistance element and manufacture thereof
JP2626200B2 (en) Manufacturing method of integrated magnetic sensor
JP3041550B2 (en) Semiconductor device
JP2882442B2 (en) Method for manufacturing semiconductor device
JP3453967B2 (en) Semiconductor thin film magnetoresistive element
JP3341435B2 (en) Method for manufacturing semiconductor device
KR920007784B1 (en) High feequency semiconductor with emitter stabilized resistor and its manufacturing method
JP2906877B2 (en) Semiconductor device and manufacturing method thereof
JPH03154374A (en) Input end protecting structure of integrated circuit
JPH0394401A (en) Thermosensitive sensor
JPH06224489A (en) Resistance device and manufacture thereof
JPS63308394A (en) Manufacture of magnetoresistance effect element
JP2943541B2 (en) Magnetoresistive element and method of manufacturing the same
JPH06196435A (en) Manufacture of semiconductor device
JPH01283851A (en) Semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 14