JPH0521128B2 - - Google Patents

Info

Publication number
JPH0521128B2
JPH0521128B2 JP21331283A JP21331283A JPH0521128B2 JP H0521128 B2 JPH0521128 B2 JP H0521128B2 JP 21331283 A JP21331283 A JP 21331283A JP 21331283 A JP21331283 A JP 21331283A JP H0521128 B2 JPH0521128 B2 JP H0521128B2
Authority
JP
Japan
Prior art keywords
weight
resin
parts
styrene
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21331283A
Other languages
Japanese (ja)
Other versions
JPS60106818A (en
Inventor
Takeshi Morita
Yoshikyo Miura
Takehisa Mizuno
Atsushi Hosoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP21331283A priority Critical patent/JPS60106818A/en
Priority to DE8484113848T priority patent/DE3481310D1/en
Priority to EP84113848A priority patent/EP0142174B1/en
Publication of JPS60106818A publication Critical patent/JPS60106818A/en
Priority to US06/774,872 priority patent/US4631307A/en
Publication of JPH0521128B2 publication Critical patent/JPH0521128B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規にして有用なるスチレン系共重合
樹脂の製造方法に関し、さらに詳細には、ゴム質
重合体の存在下に、スチレンおよびメタクリル酸
を必須とする単量体をそれぞれ特定の割合で重合
させてグラフト化せしめることからなる、とくに
耐熱性および表面光沢に優れた耐衝撃性スチレ
ン・メタクリル酸共重合樹脂の製造方法に関す
る。 一般に、ポリスチレン樹脂は、その透明性、寸
法安定性および成形加工性などに優れている処か
ら、成形材料として広く利用されているが、各種
の熱可塑性樹脂の中でも、耐熱性に欠けること、
加えて耐薬品性にも劣ることなどが、このポリス
チレン樹脂の欠点として指摘されている。 そこで、かかる欠点を改良すべく、スチレン・
無水マレイン酸共重合樹脂(以下、SMA樹脂と
もいう。)、スチレン・アクリロニトリル共重合樹
脂(以下、AS樹脂ともいう。)などが提案されて
はいるけれども、前者は少量の無水マレイン酸を
ランダムに共重合せしめて成形材料に適した樹脂
となすためには、両単量体の交互共重合性が高い
処から、特別な装置および技術を要するし、しか
も懸濁重合法などといつた、水質媒体を用いるよ
うな重合法は採用できないなどの製造技術上の制
約もあり、他方、後者は耐熱性が不十分である上
に、樹脂が着色され易いなどの欠点を有するもの
である。こうした従来型樹脂の諸欠点を解消し、
併せて耐熱性と耐油性との両特性を兼ね備えた透
明樹脂として、本出願人はスチレン・メタクリル
酸共重合樹脂(以下、SMAA樹脂ともいう。)を
提供すべく、かかるSMAA樹脂をベースとする
樹脂組成物について先に特許出願を行つている
(特開昭58−96641号公報)。 特に、この特許出願に係るSMAA樹脂はその
耐熱性が前記ポリスチレン樹脂に比して20〜30℃
も高く、しかも透明性が優れる処から、耐熱性成
形材料として商品価値が高く評価さているもので
はあるが、反面において、耐衝撃性の劣ることが
欠点として挙げられ、適用分野もそれだけ制約さ
れる。 つまり、このSMAA樹脂にあつて、その本来
の諸特性が保持されたまま、さらに耐衝撃性が付
与され得るならば、耐熱性と耐衝撃性との双方が
要求される分野、すなわちインストルメントパネ
ル、ヒーターダクトおよびテールランプ・ハウジ
ングなどの自動車関連部品;エアコンデイシヨナ
ーダクト、ブレーカーカバー、TVキヤビネツ
ト、ヘアーカラーおよびアイロン把手などの家電
関連部品;VTRテープ用カセツト、オーデイオ
テープ用カセツト、フロツピーデイスク用ケース
およびOA機器ハウジングなどのOA関連部品;
カメラ、映写機用ハウジングおよびスライドマガ
ジンなどの光学関連部品;電子レンジ用食器など
の食品容器部品;ならびに建設用断熱材、こたつ
用断熱材およびコンテナー類用断熱材などの各種
断熱材の如き各種分野へと一層の用途拡大につな
がることは明らかである。 ところが、こうした各種の用途に適した特性を
有する耐衝撃性スチレン・メタクリル酸共重合樹
脂は、目下の処、開発されるに至つていないとい
うのが実状である。 しかるに、本発明者らは、以上に記述された如
き各種の従来型樹脂の諸欠点を改善すべく鋭意検
討を重ねた結果、ゴム質重合体の存在下に、スチ
レンおよびメタクリル酸を必須とするビニル単量
体をそれぞれ特定の割合で用いてグラフト重合せ
しめて得られる共重合樹脂が、本来的に備えてい
る耐熱性を保持したまま、さらに衝撃強度が飛躍
的に向上することを見い出して、本発明を完成さ
せるに至つた。 即ち、本発明は、ゴム質重合体の3〜70重量部
と、97〜70重量%のスチレンおよび3〜30重量%
のメタクリル酸とからなる単量体の総量、さらに
必要ならば該スチレンの1〜20重量%の範囲内で
該スチレンと共重合可能な他のビニル単量体をも
含めた単量体の総量97〜30重量部とを重合させて
グラフト化せしめることを特徴とする新規なスチ
レン系耐熱耐衝撃性樹脂の製造方法を提供するも
のである。 ここで、耐衝撃性の向上化に関して特に重要な
ことは、上記ゴム質重合体がスチレンおよびメタ
クリル酸を必須とするビニル単量体でグラフト化
されていることである。 この事実を明らかにするために、たとえば「リ
ユーレツクスA−15」〔大日本インキ化学工業(株)
製のSMAA樹脂〕と各種のジエン系ゴム質重合
体との溶融混練を試みた処では、凡そ耐衝撃性の
向上は認められなかつた。すなわち、ポリブタジ
エン(BR)、スチレン・ブタジエンゴム(SBR)
およびアクリロニトリル・ブタジエンゴム
(NBR)などを添加してみても、いたずらに耐熱
性の低下などの欠点を伴うのみで、耐衝撃性の向
上は微々たるものであることは、SBRを30重量
%添加した場合には、アイゾツト衝撃強度
(ASTM D−256、ノツチ付、厚み1/4インチ)
は僅かに3Kg・cm/cmであつて、実用性に乏しい
ものであることからも知れる。さらに、各種の耐
衝撃性樹脂、たとえばハイインパクト・ポリスチ
レン樹脂(HIPS樹脂)、アクリロニトリル−ブ
タジエン系ゴム−スチレン共重合樹脂(ABS樹
脂)またはメタクリル酸メチル−ブタジエン系ゴ
ム−スチレン共重合樹脂(MBS樹脂)とSMAA
樹脂との溶融混練によつた場合でも、成形品には
層状剥離の現象が認められたし、しかも機械的強
度の優れたものは到底得られなかつたことからも
知れる。 而して、本発明のスチレン系共重合樹脂の製造
方法は、ゴム質重合体の3〜70重量部と、スチレ
ンおよびメタクリル酸を必須とするビニル単量体
97〜30重量部とを用いてグラフト重合する方法で
あり、そのうち、スチレンとメタクリル酸なるビ
ニル単量体は、それぞれ97〜70重量%のスチレン
と3〜30重量%のメタクリル酸の割合で用い、さ
らに必要ならば、該スチレンの1〜20重量%なる
範囲を、該スチレンと共重合可能な他のビニル単
量体で置換してもよい。 上記本発明の製造方法では、グラフト率、つま
りゴム質重合体にグラフト化されている単量体の
百分率が、スチレン系共重合樹脂の耐衝撃性に関
して重要な因子であり、グラフト率は3〜300%、
なかでも3〜150%なる範囲が好ましい。 ここで、グラフト率とは次式により算出された
ものである。 グラフト率(%)=
溶剤不溶分(g)−ゴム質重合体量(g)/ゴム質重合体量(g
)×100 但し、溶媒としてはトルエン/メタノール=
9/1(容量比)なる混合物を用いた。 前記したゴム質重合体として代表的なものを例
示すれば、BR、SBR、NBRおよびエチレン・
プロピレン・ポリエンゴム(EPDM)などであ
り、これらの使用量としては、全グラフト共重合
成分を100重量部とした場合に、3〜70重量部、
好ましくは3〜50重量部なる範囲内が適当であ
る。3重量部未満では耐衝撃性の向上が事実上、
認められなく、逆に70重量部を超えると、極めて
成形が困難となるなど、成形加工性に難点が現れ
る。 また、ビニル単量体中のメタクリル酸の使用量
としては3〜30重量%なる範囲内が適当である。
3重量%未満では耐熱性の向上が期し得難く、逆
に30重量%を超えると、溶融粘度が高くなつて成
形が困難となるなど、成形加工性に難点が現れ
る。 さらに、ビニル単量体中のスチレンの使用量と
しては97〜70重量%なる範囲内が適当であるが、
そのうち、このスチレンの1〜20重量%を他の共
重合可能なビニル単量体で置き換えてもよい。 かかる共重合可能なビニル単量体として代表的
なものを挙例すれば、〓−メチルスチレン、t−
ブチルスチレン、ハロゲン置換スチレン、ビニル
トルエン、(メタ)アクリロニトリル、〓−クロ
ロアクリロニトリル、(メタ)アクリル酸エステ
ルなどである。 次いで、本発明方法により目的樹脂を調製する
に当つては、一般に、耐衝撃性樹脂を得るための
グラフト重合法として知られている方法、つまり (1) ゴム質重合体をビニル単量体に溶解させ、開
始剤の存在下または不存在下に、60〜150℃で
重合せしめる、いわゆる塊状重合法、 (2) 上記(1)なる方法で、粘度を低下させて撹拌ま
たは液状重合物の移送を容易ならしめる目的で
溶媒を用い、希釈された状態で行うという、い
わゆる溶液重合法、 (3) 上記(1)なる方法に従つて部分的に重合を進め
たのち、水中で懸濁状態にして重合を完結せし
めるという、いわゆる塊状−懸濁重合法、およ
び (4) ゴム質重合体としてラテツクス状ゴムを用
い、開始剤として過酸化物を用いて乳化状態
で、40〜100℃でグラフト重合を行うという、
いわゆる乳化重合法 などの方法が適用できるものの耐衝撃性が高く、
優れた品質の樹脂を得るためには、とくに上掲さ
れた(4)なる乳化重合法のうちでも特別の方法を用
いる必要がある。 つまり、本発明の目的樹脂を製造する方法とし
ては、(1)なる塊状重合法にしても、(2)なる溶液重
合法にしても量産タイプであつて、規模が大き
く、したがつて設備費が高くなるし、またゴム含
有率が高くなると撹拌ないしは移送も困難となる
処から、規制を受け易いものであり、また(3)なる
塊状−懸濁重合法にしても、ゴム濃度(ゴム分)
が上昇するにつれて粘度も増大して懸濁工程まで
の分散粒子の凝集などのトラブルにつながり易く
なる処から、通常、このゴム含有率は8〜10重量
%が限度であり、したがつて物性および外観の向
上を期すべくもなく、無論ながら高耐衝撃性を期
待することさえ難しくなるものであり、さらに(4)
にあつては、メタクリル酸によりラテツクスの肥
大化ないしは破壊がもたらされる処から、重合時
に系が不安定なものとなり、屡塊状化に至ること
があるが、これらはラテツクス中の界面活性剤
(乳化剤)が失活するためであり、かかる酸基含
有単量体が使用される乳化系では、しばしば見受
けられる現象である。 しかるに、本発明者らはこうした従来技術にお
ける困難さを克服するために鋭意研究した結果、
乳化重合法において、このメタクリル酸の添加方
法が乳化系の安定性、および得られる共重合樹脂
の物性に著しく影響を及ぼすことを見出して、本
発明方法に到達したものであるが、本発明方法は
使用するメタクリル酸の一部を、重合の進行に伴
つて連続添加せしめることによつて、重合中にお
けるラテツクスの凝集を抑制し、加えて、物性面
においては共重合組成の均一化が図られる処か
ら、一括添加法に比して、衝撃強度の優れたもの
が得られるというものである。 こうした特定の乳化重合法に従えば、ゴム含有
率も70重量%という高領域に及ぶ共重合樹脂の製
法さえ可能であるために、他の重合法に比して、
衝撃強度が飛躍的に向上し、しかも表面光択も優
れる樹脂を得ることができる。さらにまた、本発
明方法のような特定された乳化重合法に従つて製
造される耐衝撃性樹脂を既製のSMAA樹脂と混
練するときは、耐衝撃性、耐熱性および流動性な
どの調節も容易であるために、用途に応じた各種
製品の製造設計ができるというメリツトも付随し
て出てくる。 以上の説明でも既に明らかなように、本発明の
共重合樹脂は前掲された如き(1)〜(4)なる方法に従
つても無論、製造され得るが、特に品質の優れた
樹脂を得るためには、上述した如き特定の乳化重
合法が適しており、こうした本発明方法のような
特定された方法に従うことによつて耐衝撃性、耐
熱性および表面光沢に極めて優れた成形品を与る
共重合樹脂が得られ、弱電、精密機器ならびに自
動車工業分野で、従来のエンジニアリング・プラ
スチツクに匹敵する高級成形材料としても提供す
ることができる。 次いで、本発明方法とも言うべき乳化重合法に
ついて詳述するが、以下の説明では、ゴム質重合
体ラテツクスを用いてスチレンとメタクリル酸と
をグラフト乳化重合せしめて得られるものを共重
合樹脂Aと呼称し、他方、かかる樹脂Aに溶融混
練させて衝撃強度を適度に調節するために用いら
れるスチレン−メタクリル酸共重合樹脂を共重合
樹脂Bと呼称することにする。 まず、この共重合樹脂Aはゴム質重合体ラテツ
クス(固形分換算値)の3〜70重量部と、スチレ
ンおよびメタクリル酸の重量比が97〜70(前者)
対3〜30(後者)なるビニル単量体混合物の総量
97〜30重量部との割合で用いて、これらの各原料
を混合させた処へ、乳化剤および開始剤の存在下
に、40〜100℃の温度で3〜12時間に亘つて撹拌
しつつグラフト乳化重合せしめたのち、塩化カル
シウム、塩化マグネシウム、塩化ナトリウムもし
くは硫酸ナトリウムの如き各種無機塩類および/
または塩酸、硫酸もしくは酢酸の如き各種酸性物
質を添加して凝固沈殿させ、次いで濾過し、洗浄
(水洗)を行つたのち、乾燥せしめることによつ
て得られるものである。ここにおいて使用される
開始剤、連鎖移動剤または酸化防止剤などは特に
制限されなく、公知慣用のものがそのまま適用で
きることは勿論である。ただし、界面活性剤(乳
化剤)の種類は乳化系の安定性にとつて重要なも
のであり、このさいに用いるものとしては各種サ
ルフエート型およびスルホネート型陰イオン活性
剤が適しているが、乳化重合で通常使用されてい
る高級脂肪酸の金属塩類の使用は、重合中に乳化
破壊を起すことになるので、好ましくない。 また、ここで用いられるゴム質重合体ラテツク
スとして代表的なものにはポリブタジエンラテツ
クス、SBRラテツクス、NBRラテツクスおよび
EPDMラテツクスなどがあるが、とくに最終生
成物の物性の面からすれば、かかるゴムラテツク
スとしてはゲル含有率(ゲル分)の高いものを使
用するのが好ましい。 ビニル単量体中のメタクリル酸の使用量は、最
終生成物の耐熱性に大きく影響を及ぼす処から極
めて重要な因子であるが、3重量%未満ではその
効果が十分に発現され得なく、逆に30重量%を超
えると、乳化系が不安定になつてラテツクスの破
壊による粗大粒子を生じ易くなる。 さらに、この共重合樹脂(A)を得るにさいして
の、メタクリル酸の添加方法としては、まず反応
開始時に全メタクリル酸量の1〜70重量%、好ま
しくは1〜50重量%を仕込んで、残りの量、つま
り全メタクリル酸量の99〜30重量%、好ましくは
99〜50重量%を重合の進行に伴つて、つまり重合
の進行の度合に合せて、重合率が90%に至るまで
の間に連続添加せしめるという特別の方法が推奨
される。このさい、初期に仕込まれるメタクリル
酸の量が1重量%未満であると、重合の初期にス
チレンの単独重合体が生成し易くなるために物性
が低下することになるし、逆に70重量%を超える
と、乳化系が不安定になるので好ましくない。 加えて、こうした特定の方法においては、メタ
クリル酸の添加時期が重合率90%までの間に設定
されるのが好ましく、それ以上に及ぶときは、も
はや実質上、メタクリル酸が生成共重合樹脂中に
取り込まれ得なくなる。 このようにして得られるグラフト共重合樹脂A
は、粉末状ないしはペレツト状の形で供給され、
成形用材料となる。 他方、前記した共重合樹脂Bは、たとえば前掲
された特開昭58−96641号公報に記載されている
ように、スチレンとメタクリル酸とを重合開始剤
の存在下または不存在下に加熱重合させて得られ
るものである。 次いで、かくして得られるそれぞれ樹脂Aと樹
脂Bとを混練させて各種品質(グレード)の耐熱
耐衝撃性樹脂が得られるが、このさい、溶融混合
されるべき(A)、(B)両樹脂は任意の割合で混合でき
るが、好ましくは(A)/(B)=20−70/80〜30(重量
比)なる範囲内である。 この場合、最終生成物中のゴム含有率(ゴム
分)としては3〜70重量%なる範囲、とくに好ま
しくは20〜40重量%なる範囲が適当である。 ゴム含有率が3重量%未満では、耐衝撃性が低
くなるために実用的価値がなくなるし、逆に70重
量%を超えると、流動性および加工性が悪化する
ようになるので好ましくない。 そして、これら(A)、(B)両樹脂の混練は二本ロー
ル、バンバリーミキサーおよび押出機などの公知
慣用の装置を用いた公知方法が、すべて適用でき
る。 さらに必要に応じて、これら(A)、(B)両樹脂の混
練にさいしては、可塑剤、滑剤、安定剤、紫外線
吸収剤、難燃剤または発泡剤などの公知慣用の各
種添加剤を併用してもよいことは勿論である。 以上のようにして得られる本発明のスチレン系
耐熱耐衝撃性樹脂は、通常の成形機により射出成
形、押出成形またはプレス成形などが容易に行う
ことができる。 次に、本発明の参考例、実施例および比較例に
より具体的に説明するが、以下において部および
%は特に断りのない限り、すべて重量基準である
ものとする。 参考例 1(SMAA樹脂の調製例) 5lの撹拌装置付きオートクレーブに200部の蒸
留水を仕込み、さらに懸濁安定剤としての部分け
ん化ポリビニルアルコール1部およびドデシルベ
ンゼンスルホン酸ナトリウム0.005部を加えて溶
解させ、次いで85部のスチレン、15部のメタクリ
ル酸、0.2部のペルオキシヘキサヒドロテレフタ
ル酸ジ第三級ブチルおよび0.1部の過安息香酸第
三級ブチルを順次仕込んで、回転数400rpmで撹
拌しながら90℃に昇温して10時間に亘つて懸濁重
合させ、さらに120℃で3時間反応を続行せしめ
た。 かくして得られた粒状のSMAA樹脂を洗浄し、
脱水させ、乾燥せしめた。 実施例 1 参考例1と同様の反応器内に次のような物質を
仕込んだ。 ポリブタジエンラテツクス(固形ゴム分=57.4
%) 52部 スチレン 60〃 メタクリル酸 3〃 過硫酸カリウム 0.3〃 第三級ドデシルメルカプタン 0.1〃 ドデシルベンゼンスルホン酸ナトリウム 2〃 蒸留水 200〃 この反応器内に窒素ガスを導入し、撹拌下に70
℃まで昇温し、同温度に達した時点から7部のメ
タクリル酸を3時間に亘つて連続添加し、さらに
同温度で2時間乳化重合させて反応を完結せしめ
た。 かくして得られたラテツクスの固形分に対して
5%となるように調整された塩化カルシウムの10
%水溶液を加えて撹拌下に90〜110℃なる範囲で
凝固させ、次いで濾過し、水洗し、脱水せしめた
のち、乾燥せしめて粉末状のグラフト共重合樹脂
を得た。 次いで、この共重合樹脂に「イルガノツクス
1076」(西ドイツ国チバ・ガイギー社製の酸化防
止剤)を0.2部加え、シリンダー温度230℃の押出
機でペレツト化せしめた。 しかるのち、このペレツトを用いて射出成形せ
しめ、その成形品についての物性を測定した。そ
れらの結果はまとめて第1表に示す。 実施例 2 仕込み原料を次のように変更した以外は、実施
例1と同様にして目的とするグラフト重合樹脂を
製造した。以後も実施例1と同様の操作を繰り返
して樹脂の物性を測定したが、それらの結果はま
とめて第1表に示す。 ポリブタジエンラテツクス(前出) 52部 スチレン 50〃 メタクリル酸* 10〃 メタクリル酸メチル 10〃 過硫酸カリウム 0.3〃 第三級ドデシルメルカプタン 0.1〃 ドデシルベンゼンスルホン酸ナトリウム 2〃 蒸留水 200部 *但し、メタクリル酸は10部のうち、3部を仕込
んで残り7部を連続添加せしめるようにした。 実施例 3 参考例1と同様の反応器に、次の物質を仕込ん
で、 スチレン 82部 メタクリル酸 10〃 ポリブタジエンゴム 8〃 第三級ドデシルメルカプタン 0.08〃 60℃で十分溶解させてから、窒素ガスで反応器内
を置換し、次いで器内温度を110℃に保つて、撹
拌しながら4時間塊状重合させたのち、反応液を
70℃に冷却し、ペルオキシヘキサヒドロテレフタ
ル酸ジ第三級ブチル0.2部および過安息香酸第三
級ブチル0.05部を添加して溶解せしめた。 次いで、この重合系に 部分けん化ポリビニルアルコール 0.5部 ドデシルベンゼンスルホン酸ナトリウム
0.005〃 蒸留水 100〃 から調製された水溶液を撹拌下に添加して先の塊
状重合物を懸濁せしめたのち、90℃に昇温して8
時間懸濁重合させ、さらに120℃で3時間反応せ
しめた。 以後は、かくして得られた共重合樹脂ビーズに
ついて実施例1と同様にして洗浄し、脱水させ、
乾燥せしめ、次いでペレツト化させ、射出成形せ
しめたのち、物性の評価を行つた。 実施例 4 この例はグラフト共重合樹脂とSMAA樹脂と
のブレンドを示すものであるが、ポリブタジエン
ラテツクスおよびスチレンの量をそれぞれ87部お
よび40部に変更した以外は、実施例1と同様にし
てグラフト共重合樹脂を得た。 次いで、このグラフト共重合樹脂の20部と、参
考例1で得られたSMAA樹脂の80部と、「イルガ
ノツクス1076」の0.2部とを混合し、シリンダー
温度230℃の押出機でペレツト化せしめた。 しかるのち、このペレツトを用いて射出成形せ
しめ、その成形品についての物性を測定した処
を、第2表にまとめて示す。 応用例 1 実施例4で得られたグラフト共重合樹脂を40部
とし、SMAA樹脂を60部とした以外は、実施例
4と同様にしてペレツト化させ、射出成形せし
め、物性の評価を行つた。それらの結果はまとめ
て第2表に示す。 応用例 2 グラフト共重合樹脂およびSMAA樹脂の使用
量をそれぞれ60部および40部に変更した以外は、
実施例4と同様にしてペレツト化させ、射出成形
せしめ、物性を測定した処は、まとめて第2表に
示す。 比較例 1 グラフト共重合樹脂の代りに、参考例1で得ら
れたSMAA樹脂を用いるように変更した以外は、
実施例1と同様にしてペレツト化させ、射出成形
せしめ、物性の評価を行つた。それらの結果はま
とめて第1表に示す。 比較例 2 参考例1で得られたSMAA樹脂の70部、「アサ
フレツクス810」〔旭化成工業(株)製のSBR〕30部、
および「イルガノツクス1706」の0.2部を混合し、
シリンダー温度230℃の押出機でペレツト化せし
めた。 次いで、このペレツトを用いて射出成形を行
い、その成形品について物性を測定した結果は第
2表にまとめて示すが、とくにこのもののアイゾ
ツト衝撃強度は3.0Kg・cm/cmであつた。 以上の各実施例、比較例および応用例で得られ
た各樹脂についての物性は第1表と第2表とに分
けて示す。
The present invention relates to a new and useful method for producing a styrenic copolymer resin, and more specifically, to a method for producing a new and useful styrene-based copolymer resin, and more specifically, in the presence of a rubbery polymer, monomers containing styrene and methacrylic acid as essential components are polymerized in specific proportions. The present invention relates to a method for producing an impact-resistant styrene/methacrylic acid copolymer resin, which is particularly excellent in heat resistance and surface gloss, by grafting the resin. In general, polystyrene resin is widely used as a molding material due to its excellent transparency, dimensional stability, and moldability. However, among various thermoplastic resins, it lacks heat resistance.
In addition, poor chemical resistance has been pointed out as a drawback of this polystyrene resin. Therefore, in order to improve this drawback, styrene
Although maleic anhydride copolymer resin (hereinafter also referred to as SMA resin) and styrene-acrylonitrile copolymer resin (hereinafter also referred to as AS resin) have been proposed, the former is made by randomly adding a small amount of maleic anhydride. In order to copolymerize and make a resin suitable for molding materials, special equipment and techniques are required due to the high degree of alternating copolymerization of both monomers, and water quality problems such as suspension polymerization are required. There are also manufacturing technology limitations such as the inability to employ polymerization methods that use a medium, and on the other hand, the latter has drawbacks such as insufficient heat resistance and the resin being easily colored. By eliminating these drawbacks of conventional resins,
In addition, in order to provide a styrene-methacrylic acid copolymer resin (hereinafter also referred to as SMAA resin) as a transparent resin that has both heat resistance and oil resistance properties, the applicant has created a transparent resin based on such SMAA resin. We have previously filed a patent application for the resin composition (Japanese Patent Application Laid-Open No. 58-96641). In particular, the SMAA resin according to this patent application has a heat resistance of 20 to 30°C compared to the polystyrene resin.
It has high commercial value as a heat-resistant molding material due to its high heat resistance and excellent transparency, but on the other hand, its poor impact resistance is cited as a drawback, which limits its field of application. . In other words, if impact resistance could be added to this SMAA resin while retaining its original properties, it would be useful in fields where both heat resistance and impact resistance are required, namely instrument panels. , automotive parts such as heater ducts and tail lamp housings; home appliance parts such as air conditioner ducts, breaker covers, TV cabinets, hair dyes and iron handles; VTR tape cassettes, audio tape cassettes, and floppy discs. OA related parts such as cases and OA equipment housings;
For various fields such as optical related parts such as camera and projector housings and slide magazines; food container parts such as microwave tableware; and various insulation materials such as construction insulation materials, kotatsu insulation materials, and container insulation materials. It is clear that this will lead to further expansion of applications. However, the reality is that impact-resistant styrene/methacrylic acid copolymer resins having properties suitable for these various uses have not yet been developed. However, as a result of intensive studies to improve the various drawbacks of the various conventional resins described above, the present inventors have determined that styrene and methacrylic acid are essential in the presence of a rubbery polymer. They discovered that a copolymer resin obtained by graft polymerizing vinyl monomers in specific proportions can dramatically improve impact strength while retaining its inherent heat resistance. The present invention has now been completed. That is, the present invention comprises 3 to 70 parts by weight of a rubbery polymer, 97 to 70% by weight of styrene, and 3 to 30% by weight of a rubbery polymer.
The total amount of monomers consisting of methacrylic acid and, if necessary, other vinyl monomers copolymerizable with the styrene within the range of 1 to 20% by weight of the styrene. The present invention provides a method for producing a novel styrenic heat-resistant and impact-resistant resin, which is characterized by polymerizing and grafting 97 to 30 parts by weight of styrene-based heat-resistant and impact-resistant resin. What is particularly important for improving impact resistance is that the rubbery polymer is grafted with a vinyl monomer that essentially includes styrene and methacrylic acid. In order to clarify this fact, for example, "Reurex A-15" [Dainippon Ink & Chemicals Co., Ltd.]
When attempts were made to melt-knead SMAA resin produced by the company and various diene-based rubbery polymers, no improvement in impact resistance was observed. i.e. polybutadiene (BR), styrene-butadiene rubber (SBR)
Even if we try adding other materials such as acrylonitrile-butadiene rubber (NBR), it only results in disadvantages such as a decrease in heat resistance, and the improvement in impact resistance is negligible. Izot impact strength (ASTM D-256, notched, 1/4 inch thick)
It is also known from the fact that it is only 3 kg cm/cm, which is poor in practical use. In addition, various impact-resistant resins such as high-impact polystyrene resin (HIPS resin), acrylonitrile-butadiene rubber-styrene copolymer resin (ABS resin) or methyl methacrylate-butadiene rubber-styrene copolymer resin (MBS resin) are used. ) and SMAA
Even when melt-kneaded with a resin, the phenomenon of delamination was observed in the molded products, and it is also known that no products with excellent mechanical strength could be obtained. Therefore, the method for producing a styrenic copolymer resin of the present invention includes 3 to 70 parts by weight of a rubbery polymer and a vinyl monomer that essentially includes styrene and methacrylic acid.
In this method, the vinyl monomers styrene and methacrylic acid are used in a ratio of 97 to 70 weight percent styrene and 3 to 30 weight percent methacrylic acid, respectively. If necessary, 1 to 20% by weight of the styrene may be substituted with other vinyl monomers copolymerizable with the styrene. In the above manufacturing method of the present invention, the grafting rate, that is, the percentage of monomer grafted to the rubbery polymer, is an important factor regarding the impact resistance of the styrenic copolymer resin, and the grafting rate is 3 to 3. 300%,
Among these, a range of 3 to 150% is preferable. Here, the graft rate is calculated by the following formula. Grafting rate (%) =
Solvent insoluble content (g) - Rubber polymer amount (g) / Rubber polymer amount (g)
)×100 However, as a solvent, toluene/methanol =
A mixture of 9/1 (volume ratio) was used. Representative examples of the above-mentioned rubbery polymers include BR, SBR, NBR, and ethylene.
Propylene polyene rubber (EPDM), etc., and the amount used is 3 to 70 parts by weight, when the total graft copolymerization component is 100 parts by weight.
A suitable range is preferably 3 to 50 parts by weight. If it is less than 3 parts by weight, the impact resistance will actually be improved.
On the other hand, if it exceeds 70 parts by weight, molding becomes extremely difficult, resulting in difficulties in molding processability. Further, the amount of methacrylic acid used in the vinyl monomer is suitably within the range of 3 to 30% by weight.
If it is less than 3% by weight, it is difficult to expect an improvement in heat resistance, and if it exceeds 30% by weight, the melt viscosity becomes high and molding becomes difficult, resulting in problems in moldability. Furthermore, the appropriate amount of styrene in the vinyl monomer is within the range of 97 to 70% by weight,
Of this, 1 to 20% by weight of this styrene may be replaced with other copolymerizable vinyl monomers. Representative examples of such copolymerizable vinyl monomers include 〓-methylstyrene, t-
These include butylstyrene, halogen-substituted styrene, vinyltoluene, (meth)acrylonitrile, -chloroacrylonitrile, (meth)acrylic acid ester, and the like. Next, in preparing the target resin by the method of the present invention, a method generally known as a graft polymerization method for obtaining an impact-resistant resin, that is, (1) converting a rubbery polymer to a vinyl monomer. (2) The so-called bulk polymerization method, in which the polymer is dissolved and polymerized at 60 to 150°C in the presence or absence of an initiator. The so-called solution polymerization method is carried out in a diluted state using a solvent for the purpose of facilitating polymerization. (4) Graft polymerization using latex-like rubber as the rubbery polymer and peroxide as an initiator in an emulsified state at 40 to 100°C. to do
Although methods such as the so-called emulsion polymerization method can be applied, it has high impact resistance.
In order to obtain a resin of excellent quality, it is necessary to use a special method among the emulsion polymerization methods listed above (4). In other words, both the bulk polymerization method (1) and the solution polymerization method (2) are mass-produced methods that require large scale and equipment costs. In addition, as the rubber content increases, stirring or transportation becomes difficult, so it is easy to be subject to regulations.Also, even if the bulk-suspension polymerization method (3) is used, the rubber concentration (rubber content) becomes difficult. )
As the rubber content increases, the viscosity also increases, which tends to lead to troubles such as agglomeration of dispersed particles up to the suspension process.Usually, the rubber content is limited to 8 to 10% by weight, and therefore the physical properties and It is impossible to expect any improvement in appearance, and of course it becomes difficult to expect high impact resistance, and (4)
In this case, methacrylic acid enlarges or destroys the latex, making the system unstable during polymerization and often leading to clumping. ) is deactivated, and this phenomenon is often observed in emulsion systems in which such acid group-containing monomers are used. However, as a result of intensive research by the present inventors in order to overcome the difficulties in the conventional technology,
In the emulsion polymerization method, we discovered that the method of adding methacrylic acid significantly affects the stability of the emulsion system and the physical properties of the resulting copolymer resin, and arrived at the method of the present invention. By continuously adding a portion of the methacrylic acid used as the polymerization progresses, agglomeration of the latex during polymerization is suppressed, and in addition, the copolymer composition is made uniform in terms of physical properties. As a result, a product with superior impact strength can be obtained compared to the batch addition method. By following this specific emulsion polymerization method, it is possible to produce copolymer resins with rubber content as high as 70% by weight, so compared to other polymerization methods,
It is possible to obtain a resin with dramatically improved impact strength and excellent surface photo-selectivity. Furthermore, when the impact-resistant resin produced according to the specified emulsion polymerization method, such as the method of the present invention, is kneaded with ready-made SMAA resin, it is easy to adjust the impact resistance, heat resistance, fluidity, etc. Because of this, there is also the added benefit of being able to design and manufacture various products according to their intended use. As is already clear from the above explanation, the copolymer resin of the present invention can of course be produced according to the methods (1) to (4) listed above, but in particular, in order to obtain a resin of excellent quality, The specific emulsion polymerization method described above is suitable for this purpose, and by following the specified method such as the method of the present invention, a molded article with extremely excellent impact resistance, heat resistance, and surface gloss can be obtained. A copolymer resin is obtained, which can be used as a high-grade molding material comparable to conventional engineering plastics in the light electrical, precision equipment, and automobile industries. Next, the emulsion polymerization method, which can also be called the method of the present invention, will be explained in detail.In the following explanation, copolymer resin A is obtained by graft emulsion polymerization of styrene and methacrylic acid using a rubbery polymer latex. On the other hand, the styrene-methacrylic acid copolymer resin used to appropriately adjust the impact strength by melt-kneading resin A will be referred to as copolymer resin B. First, this copolymer resin A has a weight ratio of 3 to 70 parts by weight of rubbery polymer latex (solid content equivalent) and 97 to 70 parts by weight of styrene and methacrylic acid (the former).
Total amount of vinyl monomer mixture 3 to 30 (latter)
These raw materials were mixed and grafted in the presence of an emulsifier and an initiator at a temperature of 40 to 100°C with stirring for 3 to 12 hours. After emulsion polymerization, various inorganic salts such as calcium chloride, magnesium chloride, sodium chloride or sodium sulfate and/or
Alternatively, it can be obtained by adding various acidic substances such as hydrochloric acid, sulfuric acid, or acetic acid to coagulate and precipitate the product, followed by filtration, washing (washing with water), and drying. The initiator, chain transfer agent, antioxidant, etc. used here are not particularly limited, and it goes without saying that known and commonly used ones can be used as they are. However, the type of surfactant (emulsifier) is important for the stability of the emulsion system, and various sulfate-type and sulfonate-type anionic surfactants are suitable for use in this case; The use of metal salts of higher fatty acids, which are commonly used in polymerization, is not preferred because it causes demulsification during polymerization. Typical rubbery polymer latexes used here include polybutadiene latex, SBR latex, NBR latex, and
EPDM latex and the like are available, but especially from the viewpoint of the physical properties of the final product, it is preferable to use a rubber latex with a high gel content (gel content). The amount of methacrylic acid used in the vinyl monomer is an extremely important factor as it greatly affects the heat resistance of the final product, but if it is less than 3% by weight, the effect cannot be fully expressed, and vice versa. If the amount exceeds 30% by weight, the emulsion system becomes unstable and coarse particles are likely to be produced due to destruction of the latex. Furthermore, in order to obtain this copolymer resin (A), the method of adding methacrylic acid is to first charge 1 to 70% by weight, preferably 1 to 50% by weight of the total amount of methacrylic acid at the start of the reaction, The remaining amount, i.e. 99-30% by weight of the total amount of methacrylic acid, preferably
A special method is recommended in which 99 to 50% by weight is added continuously as the polymerization progresses, that is, depending on the degree of progress of the polymerization until the polymerization rate reaches 90%. At this time, if the amount of methacrylic acid initially charged is less than 1% by weight, styrene homopolymer is likely to be formed in the initial stage of polymerization, resulting in a decrease in physical properties; Exceeding this is not preferable because the emulsion system becomes unstable. In addition, in such a specific method, it is preferable that the timing of adding methacrylic acid is set at a time up to a polymerization rate of 90%; if the polymerization rate exceeds 90%, methacrylic acid is no longer substantially present in the copolymerized resin. It will no longer be possible to be taken into account. Graft copolymer resin A obtained in this way
is supplied in powder or pellet form,
It becomes a molding material. On the other hand, the above-mentioned copolymer resin B can be obtained by heat-polymerizing styrene and methacrylic acid in the presence or absence of a polymerization initiator, as described in, for example, the above-mentioned Japanese Patent Application Laid-open No. 58-96641. This can be obtained by Next, Resin A and Resin B thus obtained are kneaded to obtain heat-resistant and impact-resistant resins of various qualities (grades), but at this time, both resins (A) and (B) to be melt-mixed are They can be mixed in any ratio, but preferably within the range of (A)/(B) = 20-70/80-30 (weight ratio). In this case, the rubber content (rubber content) in the final product is suitably in the range of 3 to 70% by weight, particularly preferably in the range of 20 to 40% by weight. If the rubber content is less than 3% by weight, the impact resistance will be low and there will be no practical value; if it exceeds 70% by weight, fluidity and processability will deteriorate, which is not preferable. For kneading both resins (A) and (B), any known method using known and commonly used equipment such as two rolls, a Banbury mixer, and an extruder can be applied. Furthermore, when necessary, when kneading both resins (A) and (B), various known and commonly used additives such as plasticizers, lubricants, stabilizers, ultraviolet absorbers, flame retardants, or blowing agents may be used. Of course, you can do so. The styrenic heat-resistant and impact-resistant resin of the present invention obtained as described above can be easily subjected to injection molding, extrusion molding, press molding, etc. using an ordinary molding machine. Next, the present invention will be specifically explained using Reference Examples, Examples, and Comparative Examples. In the following, all parts and percentages are based on weight unless otherwise specified. Reference Example 1 (Preparation example of SMAA resin) 200 parts of distilled water was placed in a 5L autoclave equipped with a stirring device, and 1 part of partially saponified polyvinyl alcohol as a suspension stabilizer and 0.005 part of sodium dodecylbenzenesulfonate were added and dissolved. Next, 85 parts of styrene, 15 parts of methacrylic acid, 0.2 parts of ditertiary butyl peroxyhexahydroterephthalate, and 0.1 part of tertiary butyl perbenzoate were charged in sequence, and the mixture was stirred at a rotational speed of 400 rpm. The temperature was raised to 90°C and suspension polymerization was carried out for 10 hours, and the reaction was further continued at 120°C for 3 hours. The thus obtained granular SMAA resin was washed,
Dehydrated and dried. Example 1 The following substances were charged into a reactor similar to Reference Example 1. Polybutadiene latex (solid rubber content = 57.4
%) 52 parts Styrene 60〃 Methacrylic acid 3〃 Potassium persulfate 0.3〃 Tertiary dodecyl mercaptan 0.1〃 Sodium dodecylbenzenesulfonate 2〃 Distilled water 200〃 Nitrogen gas was introduced into this reactor and 70% was added under stirring.
The temperature was raised to .degree. C., and after reaching the same temperature, 7 parts of methacrylic acid was continuously added over 3 hours, and emulsion polymerization was further carried out at the same temperature for 2 hours to complete the reaction. 10 of calcium chloride adjusted to 5% based on the solid content of the latex thus obtained.
% aqueous solution was added thereto and coagulated at a temperature of 90 to 110° C. under stirring, followed by filtration, washing with water, dehydration, and drying to obtain a powdery graft copolymer resin. Next, this copolymer resin is coated with ``Irganox''.
1076" (an antioxidant manufactured by Ciba Geigy, West Germany) was added and pelletized using an extruder at a cylinder temperature of 230°C. Thereafter, injection molding was performed using this pellet, and the physical properties of the molded product were measured. The results are summarized in Table 1. Example 2 A target graft polymer resin was produced in the same manner as in Example 1, except that the raw materials to be charged were changed as follows. Thereafter, the same operations as in Example 1 were repeated to measure the physical properties of the resin, and the results are summarized in Table 1. Polybutadiene latex (as above) 52 parts Styrene 50〃 Methacrylic acid* 10〃 Methyl methacrylate 10〃 Potassium persulfate 0.3〃 Tertiary dodecyl mercaptan 0.1〃 Sodium dodecylbenzenesulfonate 2〃 Distilled water 200 parts *However, methacrylic acid Of the 10 parts, 3 parts were added and the remaining 7 parts were added continuously. Example 3 Into a reactor similar to Reference Example 1, the following substances were charged: 82 parts of styrene, 10 parts of methacrylic acid, 8 parts of polybutadiene rubber, 0.08 parts of tertiary dodecyl mercaptan, and 0.08 parts of tertiary dodecyl mercaptan.After sufficiently dissolving at 60°C, they were heated with nitrogen gas. After replacing the inside of the reactor, the temperature inside the reactor was maintained at 110℃ and bulk polymerization was carried out for 4 hours with stirring, and then the reaction solution was
The mixture was cooled to 70°C, and 0.2 part of ditertiary butyl peroxyhexahydroterephthalate and 0.05 part of tertiary butyl perbenzoate were added and dissolved. Next, 0.5 parts of partially saponified polyvinyl alcohol and sodium dodecylbenzenesulfonate were added to this polymerization system.
An aqueous solution prepared from 0.005〃 distilled water and 100〃 was added under stirring to suspend the bulk polymer, and then the temperature was raised to 90℃ and the mixture was heated to 80℃.
Suspension polymerization was carried out for a period of time, and the reaction was further carried out at 120°C for 3 hours. Thereafter, the thus obtained copolymer resin beads were washed and dehydrated in the same manner as in Example 1.
After drying, pelletizing and injection molding, physical properties were evaluated. Example 4 This example shows a blend of graft copolymer resin and SMAA resin, but the same procedure as in Example 1 was carried out except that the amounts of polybutadiene latex and styrene were changed to 87 parts and 40 parts, respectively. A graft copolymer resin was obtained. Next, 20 parts of this graft copolymer resin, 80 parts of the SMAA resin obtained in Reference Example 1, and 0.2 parts of "Irganox 1076" were mixed and pelletized using an extruder with a cylinder temperature of 230°C. . The pellets were then injection molded, and the physical properties of the molded products were measured and are summarized in Table 2. Application Example 1 Pelletization was performed in the same manner as in Example 4, except that the graft copolymer resin obtained in Example 4 was changed to 40 parts, and the SMAA resin was changed to 60 parts.The pellets were then injection molded and the physical properties were evaluated. . The results are summarized in Table 2. Application example 2 Except that the amounts of graft copolymer resin and SMAA resin used were changed to 60 parts and 40 parts, respectively.
The pellets were pelletized and injection molded in the same manner as in Example 4, and the physical properties were measured, as shown in Table 2. Comparative Example 1 Except for using the SMAA resin obtained in Reference Example 1 instead of the graft copolymer resin,
The pellets were pelletized and injection molded in the same manner as in Example 1, and the physical properties were evaluated. The results are summarized in Table 1. Comparative Example 2 70 parts of the SMAA resin obtained in Reference Example 1, 30 parts of "Asaflex 810" [SBR manufactured by Asahi Kasei Corporation],
and 0.2 parts of "Irganotux 1706",
It was pelletized using an extruder with a cylinder temperature of 230°C. Next, injection molding was performed using this pellet, and the physical properties of the molded product were measured. The results are summarized in Table 2, and in particular, the Izot impact strength of this product was 3.0 Kg·cm/cm. The physical properties of each resin obtained in the above Examples, Comparative Examples, and Applied Examples are shown separately in Tables 1 and 2.

【表】 * 表中のポリマー組成はすべて部数を以て示さ
れている。
[Table] * All polymer compositions in the table are shown in parts.

【表】 * 表中のブレンド比率およびブレンド
体の組成は、すべて部数で以
て示されている。
[Table] *All blend ratios and blend compositions in the table are as follows in parts.
is shown.

Claims (1)

【特許請求の範囲】 1 ゴム質重合体の3〜70重量部と、97〜70重量
%のスチレンおよび3〜30重量%のメタクリル酸
とからなる単量体の総量、さらに必要ならば該ス
チレンの1〜20重量%の範囲内で該スチレンと共
重合可能な他のビニル単量体をも含めた単量体の
総量97〜30重量部とを重合させてグラフト化せし
めることを特徴とする新規なスチレン系共重合樹
脂の製造方法。 2 ゴム質重合体と単量体とを乳化重合させてグ
ラフト化せしめる特許請求の範囲第1項記載の製
造方法。 3 ゴム質重合体と単量体とを乳化重合させてグ
ラフト化せしめ、次いで凝固剤を加えて樹脂分を
分離し、該樹脂分を洗浄し、脱水させ、しかるの
ち乾燥せしめる特許請求の範囲第1項記載の製造
方法。 4 乳化重合が、該重合反応の開始時においてメ
タクリル酸の1〜70重量%を使用して行われ、次
いで重合率が90%に至るまでに残り99〜30重量%
を重合の進行に伴つて添加して行われ、しかるの
ち該重合反応を完結せしめる特許請求の範囲第2
または3項記載の製造方法。
[Scope of Claims] 1. Total amount of monomers consisting of 3 to 70 parts by weight of a rubbery polymer, 97 to 70% by weight of styrene and 3 to 30% by weight of methacrylic acid, and if necessary, the styrene. A total amount of 97 to 30 parts by weight of monomers including other vinyl monomers that can be copolymerized with the styrene within a range of 1 to 20% by weight is polymerized to form a graft. A method for producing a new styrenic copolymer resin. 2. The manufacturing method according to claim 1, wherein the rubbery polymer and the monomer are grafted by emulsion polymerization. 3. A rubbery polymer and a monomer are emulsion-polymerized to form a graft, then a coagulant is added to separate the resin component, and the resin component is washed, dehydrated, and then dried. The manufacturing method according to item 1. 4 Emulsion polymerization is carried out using 1 to 70% by weight of methacrylic acid at the beginning of the polymerization reaction, and then the remaining 99 to 30% by weight until the polymerization rate reaches 90%.
Claim 2 is carried out by adding as the polymerization progresses, and then the polymerization reaction is completed.
Or the manufacturing method described in item 3.
JP21331283A 1983-11-15 1983-11-15 Novel heat-and impact-resistant styrene resin and its production Granted JPS60106818A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP21331283A JPS60106818A (en) 1983-11-15 1983-11-15 Novel heat-and impact-resistant styrene resin and its production
DE8484113848T DE3481310D1 (en) 1983-11-15 1984-11-15 HEAT-RESISTANT IMPACT-RESISTANT STYRENE RESIN, THE PRODUCTION METHOD THEREOF AND THE COMPOSITION CONTAINING THIS STYRENE RESIN.
EP84113848A EP0142174B1 (en) 1983-11-15 1984-11-15 Heat-resistant high impact styrene resin, process for production thereof, and resin composition comprising said styrene resin
US06/774,872 US4631307A (en) 1983-11-15 1985-09-12 Heat-resistant high impact styrene resin, process for production thereof, and resin composition comprising said styrene resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21331283A JPS60106818A (en) 1983-11-15 1983-11-15 Novel heat-and impact-resistant styrene resin and its production

Publications (2)

Publication Number Publication Date
JPS60106818A JPS60106818A (en) 1985-06-12
JPH0521128B2 true JPH0521128B2 (en) 1993-03-23

Family

ID=16637050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21331283A Granted JPS60106818A (en) 1983-11-15 1983-11-15 Novel heat-and impact-resistant styrene resin and its production

Country Status (1)

Country Link
JP (1) JPS60106818A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163950A (en) * 1985-01-16 1986-07-24 Dainippon Ink & Chem Inc Thermoplastic resin composition

Also Published As

Publication number Publication date
JPS60106818A (en) 1985-06-12

Similar Documents

Publication Publication Date Title
JP2021521311A (en) Thermoplastic resin composition
US4631307A (en) Heat-resistant high impact styrene resin, process for production thereof, and resin composition comprising said styrene resin
JPS60192754A (en) Thermoplastic resin composition
EP0293490B1 (en) Heat and impact resistant resin composition
JPH0554500B2 (en)
EP0284428B1 (en) Graft copolymer and styrene based resin composition
US10875995B2 (en) Acrylic ester-styrene-acrylonitrile copolymer molding masses having optimized residual monomer fraction
KR20020086735A (en) Thermoplastic molding composition having improved dimensional stability and low gloss
JPH0521128B2 (en)
JPH09217006A (en) Heat-resistant thermoplastic resin composition
JPS63243156A (en) Thermoplastic resin composition
JPS6334897B2 (en)
JPS61163949A (en) Thermoplastic resin composition
JP3025333B2 (en) Thermoplastic resin composition
JPH03203946A (en) Thermoplastic resin composition and production thereof
JPH1030047A (en) Rubber-modified styrene resin composition
JPH026781B2 (en)
JPH08157502A (en) Enlarged rubber latex, graft copolymer and thermoplastic resin composition
JP2000191867A (en) Rubber-modified resin composition
JPH11140268A (en) Vibration-damping thermoplastic resin composition
JPH04198255A (en) Thermoplastic resin composition resistant to low-temperature impact
JPH0377824B2 (en)
WO2011027855A1 (en) Acrylic rubber reinforced thermoplastic resin and preparation method therefor
JPS63297449A (en) Matte thermoplastic resin composition
JPH0436171B2 (en)