JPH0521126B2 - - Google Patents

Info

Publication number
JPH0521126B2
JPH0521126B2 JP16027084A JP16027084A JPH0521126B2 JP H0521126 B2 JPH0521126 B2 JP H0521126B2 JP 16027084 A JP16027084 A JP 16027084A JP 16027084 A JP16027084 A JP 16027084A JP H0521126 B2 JPH0521126 B2 JP H0521126B2
Authority
JP
Japan
Prior art keywords
polymerization
ethers
inert
catalyst
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16027084A
Other languages
Japanese (ja)
Other versions
JPS6140307A (en
Inventor
Tadashi Asanuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP16027084A priority Critical patent/JPS6140307A/en
Publication of JPS6140307A publication Critical patent/JPS6140307A/en
Publication of JPH0521126B2 publication Critical patent/JPH0521126B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳现な説明】 産業䞊の利甚分野 本発明は重合媒䜓ずしおプロピレン自身を甚い
る塊状重合法、或は気盞重合法でプロピレンを重
合しおポリプロピレンを埗るに際しお少くずも觊
媒垌釈剀ずしお甚いた䞍掻性炭化氎玠化合物の回
収方法に関する。 埓来の技術 近来の觊媒性胜の改良により優れた觊媒が埗ら
れ、䞀方重合法の進歩により重合媒䜓ずしお䞍掻
性炭化氎玠化合物を甚いない方法、䟋えば塊状重
合法、或は気盞重合法で重合するこずにより䞍掻
性炭化氎玠化合物はほずんど䜿甚しないプロセス
ができ぀぀ある。 発明が解決しようずする問題点 しかしながら䞊蚘の方法でも埗られるポリプロ
ピレンに比范しお䜿甚する䞍掻性炭化氎玠化合物
の䜿甚量は極めお少ないずは蚀え、觊媒は重合槜
に装入するに際し䞍掻性炭化氎玠化合物に垌釈し
お行うのが䞀般的であり、さらにバルブなど特定
の郚䜍には閉塞防止のため䞍掻性炭化氎玠化合物
が装入されるため、かなりの量の䞍掻性炭化氎玠
化合物が䜿甚されるこずになるため省資源のため
にも簡単な方法で回収し再利甚するこずが望たれ
る。 問題を解決するための手段 本発明者は䞊蚘問題を解決する方法に぀いお鋭
意怜蚎した結果、特定の方法で蒞留するこずで再
利甚するこずが可胜な䞍掻性炭化氎玠化合物を回
収するこずができるこずを芋出し本発明を完成し
た。 即ち本発明はハロゲン化チタンを含有する固䜓
遷移金属觊媒ず有機アルミニりム化合物及び垞圧
で枬定した沞点が150℃以䞊の゚ステル、゚ヌテ
ル、オル゜゚ステル、アルコキシケむ玠及びグリ
コヌル゚ヌテル類から遞ばれる少なくずも皮の
化合物からなる觊媒系を甚いおプロピレン自身を
媒䜓ずする重合法で少くずも觊媒垌釈剀ずしお垞
圧で枬定した沞点が60〜140℃の䞍掻性炭化氎玠
化合物を甚いお䞊蚘重合を行ない、該䞍掻性炭化
氎玠化合物を回収再䜿甚する方法においお、蒞留
塔䞊郚の凝瞮郚の䞋方に䞍掻性ガスの導入口を有
する蒞留塔を甚いお䞍掻性ガスを導入しながら䞍
掻性炭化氎玠化合物を、垞圧で枬定した沞点が
150℃以䞊の゚ステル、゚ヌテル、オル゜゚ステ
ル、アルコキシケむ玠又はグリコヌル゚ヌテル類
を含有しない、140℃以䞋の留分ずしお蒞留分離
しお回収するこずを特城ずする垌釈剀の回収方法
に関する。 本発明においお、ハロゲン化チタンを含有する
固䜓遷移金属觊媒ずしおはハロゲン化チタンを掻
性遷移金属成分ずしお含有するものであり、他に
ハロゲン化アルミニりムを含有するもの、或はハ
ロゲン化マグネシりム、シリカ、アルミナなどの
担䜓にハロゲン化チタンを担持したいわゆる担䜓
型觊媒、さらに、垞圧で枬定した沞点が150℃以
䞊の゚ステル、゚ヌテル、オル゜゚ステル、アミ
ン、アミドなどの化合物を存圚させたものであ぀
おも良い。 本発明においお有機アルミニりム化合物に぀い
おは栌別限定はないが、奜たしくは、トリ゚チル
アルミニりム、トリプロピルアルミニりム、トリ
む゜ブチルアルミニりムなどのトリアルキルアル
ミニりム、ゞ゚チルアルミニりムクロラむド、ゞ
プロピルアルミニりムクロラむドなどのゞアルキ
ルアルミニりムモノハラむド、゚チルアルミニり
ムセスキクロラむドなどのアルキルアルミニりム
セスキハラむド、゚チルアルミニりムゞクロラむ
ドなどのアルキルアルキニりムゞハラむド或はア
ルキルアルミニりムスルプヌトなどが䜿甚でき
る。 本発明においおは重合の際に垞圧で枬定した沞
点が150℃以䞊の゚ステル、゚ヌテル、オル゜゚
ステル、アルコキシケむ玠あるいはグリコヌル゚
ヌテルが立䜓芏則性向䞊剀或は觊媒掻性向䞊剀ず
しお䜿甚される。垞圧で枬定した沞点が150℃よ
り䜎いず䞍掻性炭化氎玠化合物ずの分離が容易で
なく奜たしくない。具䜓的な化合物ずしおは、芳
銙族カルボン酞のモノアルキル゚ステル、ゞアル
キル゚ステル、芳銙族゚ヌテル或はゞたたはトリ
゚チレングリコヌル、プロピレングリコヌルのゞ
゚ヌテル又はモノアルキル゚ヌテル、芳銙族オル
゜゚ステル、ゞ−、トリヌテトラ−アルコキシシ
ランが挙げられる。より具䜓的には安息銙酞、ト
ルむル酞、アニス酞、ナフチル酞のメチル、゚チ
ル、プロピル、ブチルなどの゚ステル、ゞプニ
ル゚ヌテル、ゞベンゞル゚ヌテル、アミル゚ヌテ
ルなどの゚ヌテル、オル゜安息銙酞メチル、オル
゜安息銙酞゚チル、オル゜トルむル酞メチル、オ
ル゜トルむル酞゚チル、オル゜アニス酞メチル、
オル゜アニス酞゚チルなどのオル゜゚ステル、ゞ
゚チレングリコヌルゞプロピル゚ヌテル、ゞ゚チ
レングリコヌルゞ゚チル゚ヌテル、トリ゚チレン
グリコヌルゞメチル゚ヌテル、トリ゚チレングリ
コヌルゞ゚チル゚ヌテル、トリ゚チレングリコヌ
ルゞプロピル゚ヌテル、ゞプロピレングリコヌル
ゞメチル゚ヌテル、ゞプロピレングリコヌルゞ゚
チル゚ヌテル、ゞプロピレングリコヌルゞプロピ
ル゚ヌテル、ゞ゚チレングリコヌルモノむ゜プロ
ピル゚ヌテル、トリ゚チレングリコヌルモノメチ
ル゚ヌテル、トリ゚チレングリコヌルモノプロピ
ル゚ヌテル、テトラ゚トキシシラン、トリ゚トキ
シメチルシラン、プニルトリメトキシシラン、
プニルトリ゚トキシシラン、ゞプニルゞメト
キシシラン、ゞプニルゞ゚トキシシランなどが
挙げられる。 本発明においお䞍掻性炭化氎玠化合物の垞圧に
おける沞点は60〜140℃であるこずが必芁でり、
60℃より䜎いずプロピレンずの分離が容易でな
く、又140℃より高いず䞊述の゚ステル、゚ヌテ
ル、オル゜゚ステル、グリコヌル゚ヌテル又はア
ルコキシケむ玠ずの分離が容易でない。 䞍掻性炭化氎玠化合物の具䜓䟋ずしおはヘキサ
ン、ヘプタン、オクタン、ベンれン、トル゚ン、
キシレン、゚チルベンれン及びそれらの混合物が
挙げられる。 本発明における回収される䞍掻性炭化氎玠化合
物は重合反応域に固䜓遷移金属觊媒をスラリヌ状
で装入するために垌釈剀ずしお甚いられたもの、
或は有機アルミニりム化合物の安党のために垌釈
剀ずしお有機アルミニりム化合物ずずもに装入さ
れたもの、或はバルブ等がポリマヌにより閉塞す
るのを防止するために装入されたものなどが挙げ
られるが、特に固䜓遷移金属觊媒を重合域に装入
するための垌釈剀ずしお甚いる䞍掻性炭化氎玠化
合物は䞍可欠のものである。 重合反応は、プロピレン自身を液状媒䜓ずしお
甚いる塊状重合法、実質的に液状媒䜓の存圚しな
い気盞重合法で行われ、䞍掻性炭化氎玠化合物の
䜿甚量が䜿甚されるモノマヌ、或は埗られるポリ
マヌに比范しお極めお少ない堎合に本発明の効果
がある。 即ち倚量の䞍掻性炭化氎玠化合物を䜿甚するの
であればおそらく重合の際に生ずるず思われる重
合阻害成分は盞察的に少ない量であり実質的に觊
媒性胜に悪圱響を䞎えない量に蒞留操䜜で分離す
るこずが比范的容易であるからである。 䞀般的には、䞍掻性炭化氎玠化合物ずしおは、
゚チレン、プロピレン等の未反応モノマヌの回収
分から高沞分ずしお回収されるもの或はポリプロ
ピレンパりダヌの也燥の際に回収される高沞分な
どが挙げられる。これらの回収された䞍掻性炭化
氎玠化合物を固䜓遷移金属觊媒の補造或は垌釈剀
ずしお甚いるためには極めお粟密に粟留し、䞍掻
性炭化氎玠化合物を分離するこずが芁求される
が、それには段数の倚い蒞留塔を甚いお䜎沞分及
び高沞分を倚量に陀去する必芁があり回収される
粟補䞍掻性炭化氎玠化合物の収率が䜎く、粟補コ
ストも高くなる。 䞀方、本発明の方法では150℃以䞊の゚ステル、
゚ヌテル、オル゜゚ステル又はグリコヌル゚ヌテ
ル類などを高沞点物ずしお陀去する皋床の段数の
蒞留塔で塔䞊郚の凝瞮郚の䞋方に䞍掻性ガスの導
入口を有する蒞留塔を甚いお䞍掻性ガスを導入し
ながら蒞留するこずにより再利甚可胜な皋床の䞍
掻性炭化氎玠化合物が回収利甚できる。蒞留は連
続匏或は回分匏のいずれであ぀おもよく必芁段数
ずしおは通垞数段である。 又䞍掻性ガスの導入口は、凝瞮郚の䞋方でしか
も前述の沞点が150℃以䞊の゚ステル、゚ヌテル、
オル゜゚ステル又はグリコヌル゚ヌテル類以䞋
150℃以䞊の留分ずするなどが陀去されるに充
分な段数より䞊方であれば良い。150℃以䞊の留
分を陀去するに充分な段数より䞋方であれば䞍掻
性ガスず同䌎しお留出分䞭に150℃以䞊の留分が
留出するからである。本発明で䜿甚される䞍掻性
ガスずしおは䟋えば窒玠ガス、ヘリりムガスなど
が挙げられる。䞍掻性ガスの流量ずしおは凝瞮郚
に到達する䞊昇蒞気流をガスずしお考えた䜓積の
〜1/10量が奜適であり1/100以䞋では効果が
䞍充分であり1/10以䞊では䞍掻性ガスに回収すべ
き䞍掻性炭化氎玠が同䌎し収率の䜎䞋をたねき奜
たしくない。 䜜 甹 本発明の方法によ぀お比范的沞点の䜎い重合阻
害成分が有効に陀去されるため簡単な操䜜で垌釈
剀が回収できるものず掚定される。 実斜䟋 以䞋に実斜䟋を挙げ本発明をさらに説明する。 実斜䟋  (A) 固䜓遷移金属觊媒の補造 盎埄12mmの鋌球80個の入぀た内容積900mlの粉
砕甚ポツト個を装備した振動ミルを甚意する。
このポツト䞭に窒玠雰囲気䞋で粉砕甚ポツト個
圓り塩化マグネシりム30、オル゜酢酞゚チル
ml、−ゞクロロ゚タンmlを加え40時間粉
砕した。この操䜜を回繰り返すこずによ぀お埗
た粉砕物から80を甚いお2lの䞞底フラスコで四
塩化チタン500mlずずもに80℃で時間撹拌接觊
した埌静眮し䞊柄液を陀去した。次いで−ヘプ
タン1lを加え宀枩で15分間撹拌した埌静眮し䞊柄
液を陀去する掗浄操䜜を回繰り返し次いでさら
に−ヘプタン500mlを远加しお固䜓遷移金属觊
媒スラリヌずした。 (B) (i) 觊媒スラリヌの調補−ヘプタン50l
に䞊蚘固䜓遷移金属觊媒スラリヌを固䜓分ず
しお50、ゞ゚チルアルミニりムクロラむド
を214ml、トルむル酞メチルを100ml加えお觊
媒スラリヌずした。又別途、トリ゚チルアル
ミニりム133mlを−ヘプタン20lに垌釈し
た。 (ii) 重合第図に瀺す装眮においおは重合
反応機であり内容積500lでありで重合しお
埗たスラリヌはラむン及びポンプを経
おオヌトクレヌブ内容積200lに送られ、
スラリヌの郚はに埪環する。では觊媒
の倱掻剀ゞ゚チレングリコヌルモノむ゜プ
ロピル゚ヌテルが加えられ、スラリヌは
より排出され加熱管により倧郚分の媒䜓
プロピレン及び−ヘプタンはサむクロ
ンで分離されパりダヌはに送られさらに
也燥される。也燥は90℃に加熱したプロピレ
ンをより導入するこずで行われ、プロピ
レン及び−ヘプタン等はラむンより熱
亀換噚に送られ、0.1Kgcm2-ゲヌゞ、30℃
で冷华され液化した回収物はラむンより
タンクに送られる。䞀方ラむンより取
り出されたプロピレンを䞻ずする蒞気は熱亀
換噚で0.1Kgcm2−ゲヌゞ30℃に冷华さ
れ液化した回収物はラむンよりタンク
に送られる。液化しないガスはそれぞれラむ
ン及びを経おプロピレンの回
収系に送られる。 この装眮を甚いお以䞋の重合及び−ヘプ
タン回収操䜜が行なわれる。 重合反応機に觊媒スラリヌ固䜓觊媒ず
しお時間及びトリ゚チルアルミニり
ムml時間及びプロピレン80Kg時
間を装入し70℃で重合した。この時ポンプ
及びバルブのフラツシング甚に−ヘプタン
を5l時間で装入した。䞀方重合スラリヌは
よりに80Kg時間で送られ、ではさら
にトリ゚チレングリコヌルモノメチル゚ヌテ
ルを100ml時間で送り觊媒を倱掻した。
からは倱掻したスラリヌが80Kg時間で排出
され、也燥噚よりパりダヌが玄30Kg時間
で取り出され、䞀方タンクには、9.6l時
間で液が回収された。この回収された倧郚分
が−ヘプタンからなる液は、第図に瀺す
ように䞊郚に䞍掻性ガス導入ラむンをも
ち、䞍掻性ガス導入口より䞋方に棚段が蚭け
おある理論段数段の蒞留塔を甚い、還流比
1.0、䞊昇蒞気量15mlminで䞍掻性ガスず
しお窒玠を甚いその導入量を、50mlminず
しお蒞留し䜎沞郚分を陀去するこずなく釜枩
が170℃、蒞留塔䞊郚が100℃になるたで留出
物を取り出した。留出した−ヘプタン䞭に
は、トルむル酞メチル、ゞ゚チレングリコヌ
ルモノむ゜プロピル゚ヌテルは怜出されなか
぀た。留出分はタンクより取り出された液
に察し90の収率であ぀た。この回収ヘプタ
ンを回収液ずする。又䞍掻性ガス導入口に
窒玠を導入するこずなく蒞留されたヘプタン
を回収液ずした。 (C) 䞊蚘回収液及びを甚いお、(A)項ず同様の
操䜜ただし粉砕物10スケヌルで固䜓遷移金
属觊媒を補造した。 (D) 重合反応 (C)で埗られた固䜓遷移金属觊媒及び察比ずしお
(A)で埗られたものを䜿甚しお重合した。重合反応
は内容積5lのオヌトクレヌブに固䜓遷移金属觊媒
30mg、トルむル酞メチル0.06ml、ゞ゚チルアルミ
ニりムクロラむド0.128ml、トリ゚チルアルミニ
りム0.08ml、垌釈甚−ヘプタンすべお(A)で甚
いた−ヘプタンを䜿甚50mlを混合しお装入
し、次いでプロピレン1.5Kg、氎玠1.5Nlを加え75
℃で時間重合した埌未反応のプロピレンをパヌ
ゞし60℃で枛圧也燥しおパりダヌを埗た20mm
Hgで時間。 実斜䟋  固䜓遷移金属觊媒ずしお䞞玅゜ルノ゚ヌ瀟補高
掻性䞉塩化チタンTGY−24TiCl3ずしお92、
他に高沞点゚ヌテルを含有しおいるを甚い
実斜䟋(B)ず同様の装眮で重合した。 觊媒スラリヌずしおは䞊蚘䞉塩化チタン100、
トル゚ン100l、ゞ゚チルアルミニりムクロラむド
800mlを混合し、プロピレンを500装入しお40℃
で時間撹拌し䞉塩化チタン圓りのプロ
ピレンを重合した。次いでゞ゚チレングリコヌル
モノむ゜プロピル゚ヌテルを0.5ml加えこれを觊
媒スラリヌずした。この觊媒スラリヌを固䜓遷移
金属觊媒ずしお時間で甚い、トリ゚チルア
ルミニりムを装入しない他は実斜䟋(B)(ii)ず同様
にしお重合し、ポンプ及びバルブのフラツシング
甚トル゚ンを甚いお重合した。タンクは
12.8l時間で液が回収された。 回収された倧郚分がトル゚ンからなる液を実斜
䟋(B)(ii)ず同様にしおトル゚ンを回収し䞍掻性ガ
スヘリりムを導入しお蒞留したもの回収液
及び導入せずに蒞留したもの回収液を
埗た。収率はそれぞれ8687であ぀た。 それぞれの回収トル゚ンに察し䞉塩化チタン觊
媒を100加え撹拌し20時間保぀た埌、その
觊媒スラリヌを甚いお重合した、。䞉塩化チタン
100mg、ゞ゚チルアルミニりムクロラむド0.8ml、
垌釈甚トル゚ン100mlただしすべお先の重合に
甚いたトル゚ンを䜿甚からなる觊媒スラリヌを
装入し、プロピレン1.5Kg、氎玠3Nl、70℃で時
間重合し実斜䟋−(D)ず同様にパりダヌを埗た。
結果は衚に瀺す。 効 果 実斜䟋にも瀺すように本発明の方法を実斜する
こずにより觊媒性胜に悪圱響を䞎えない䞍掻性炭
化氎玠化合物を収率よく回収するこずができ工業
的に䟡倀のあるものである。 【衚】
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a bulk polymerization method using propylene itself as a polymerization medium, or a gas phase polymerization method to obtain polypropylene by polymerizing propylene at least as a catalyst diluent. This invention relates to a method for recovering inert hydrocarbon compounds. BACKGROUND TECHNOLOGY Recent improvements in catalyst performance have provided excellent catalysts, while advances in polymerization methods have led to polymerization methods that do not use inert hydrocarbon compounds as polymerization media, such as bulk polymerization or gas phase polymerization. As a result, processes that use almost no inert hydrocarbon compounds are being developed. Problems to be Solved by the Invention However, although the amount of inert hydrocarbon compound used is extremely small compared to the polypropylene obtained by the above method, the catalyst is Generally, it is diluted with a chemical compound, and inert hydrocarbon compounds are charged to certain parts such as valves to prevent blockages, so a considerable amount of inert hydrocarbon compounds are used. Therefore, in order to save resources, it is desirable to collect and reuse them in a simple manner. Means for Solving the Problems As a result of intensive study on methods for solving the above problems, the present inventor discovered that it is possible to recover inert hydrocarbon compounds that can be reused by distilling them using a specific method. Heading The invention has been completed. That is, the present invention comprises a solid transition metal catalyst containing a titanium halide, an organoaluminum compound, and at least one member selected from esters, ethers, orthoesters, alkoxy silicones, and glycol ethers having a boiling point of 150°C or higher measured at normal pressure. The above polymerization is carried out using a catalyst system consisting of a compound in which propylene itself is used as a medium. In a method of recovering and reusing activated hydrocarbon compounds, inert hydrocarbon compounds are heated at normal pressure while introducing an inert gas using a distillation column that has an inert gas inlet below the condensation section at the top of the distillation column. The boiling point measured at
The present invention relates to a method for recovering a diluent, which is characterized in that it is recovered by distillation as a fraction at 140°C or lower, which does not contain esters, ethers, orthoesters, alkoxy silicones, or glycol ethers at 150°C or higher. In the present invention, the solid transition metal catalyst containing titanium halide is one that contains titanium halide as an active transition metal component, and one that also contains aluminum halide, or magnesium halide, silica, alumina. So-called carrier-type catalysts in which titanium halide is supported on a carrier such as esters, esters, ethers, orthoesters, amines, amides, etc., whose boiling point is 150°C or higher when measured at normal pressure are present. good. In the present invention, the organic aluminum compound is not particularly limited, but preferably trialkylaluminum such as triethylaluminum, tripropylaluminum, triisobutylaluminum, dialkylaluminum monohalide such as diethylaluminum chloride, dipropylaluminum chloride, ethylaluminum Alkylaluminium sesquihalides such as sesquichloride, alkylalkynium dihalides such as ethylaluminum dichloride, or alkylaluminum sulfates can be used. In the present invention, esters, ethers, orthoesters, alkoxy silicones, or glycol ethers having a boiling point of 150°C or higher measured at normal pressure during polymerization are used as stereoregularity improvers or catalyst activity improvers. If the boiling point measured at normal pressure is lower than 150°C, separation from inert hydrocarbon compounds will not be easy, which is undesirable. Specific compounds include monoalkyl esters, dialkyl esters, aromatic ethers or di- or triethylene glycols of aromatic carboxylic acids, diethers or monoalkyl ethers of propylene glycol, aromatic orthoesters, di-, tritetra- Examples include alkoxysilanes. More specifically, esters such as methyl, ethyl, propyl, and butyl of benzoic acid, toluic acid, anisic acid, and naphthylic acid, ethers such as diphenyl ether, dibenzyl ether, and amyl ether, methyl orthobenzoate, and orthobenzoic acid. Ethyl, methyl orthotoluate, ethyl orthotoluate, methyl orthoanisate,
Orthoesters such as ethyl orthoanisate, diethylene glycol dipropyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol dipropyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol dimethyl ether Propyl ether, diethylene glycol monoisopropyl ether, triethylene glycol monomethyl ether, triethylene glycol monopropyl ether, tetraethoxysilane, triethoxymethylsilane, phenyltrimethoxysilane,
Examples include phenyltriethoxysilane, diphenyldimethoxysilane, and diphenyldiethoxysilane. In the present invention, the boiling point of the inert hydrocarbon compound at normal pressure is required to be 60 to 140°C,
If it is lower than 60°C, it is not easy to separate it from propylene, and if it is higher than 140°C, it is not easy to separate it from the above-mentioned ester, ether, orthoester, glycol ether or alkoxy silicon. Specific examples of inert hydrocarbon compounds include hexane, heptane, octane, benzene, toluene,
Mention may be made of xylene, ethylbenzene and mixtures thereof. The inert hydrocarbon compounds recovered in the present invention are those used as a diluent for charging the solid transition metal catalyst in the form of a slurry into the polymerization reaction zone;
Examples include those charged with the organoaluminum compound as a diluent for the safety of the organoaluminum compound, or those charged to prevent valves etc. from being blocked by the polymer. The inert hydrocarbon compound used as a diluent for charging the solid transition metal catalyst to the polymerization zone is essential. The polymerization reaction is carried out by a bulk polymerization method using propylene itself as a liquid medium or a gas phase polymerization method in which substantially no liquid medium is present, and the amount of inert hydrocarbon compound used is the monomer or the resulting polymer. The present invention is effective when the amount is extremely small compared to . In other words, if a large amount of inert hydrocarbon compound is used, the polymerization-inhibiting components that are probably generated during polymerization are relatively small and must be separated by distillation into an amount that does not substantially affect catalyst performance. This is because it is relatively easy to do so. In general, inert hydrocarbon compounds include:
Examples include those recovered as high-boiling components from recovered unreacted monomers such as ethylene and propylene, and high-boiling components recovered during drying of polypropylene powder. In order to use these recovered inert hydrocarbon compounds in the production of solid transition metal catalysts or as diluents, it is necessary to rectify them very precisely and separate the inert hydrocarbon compounds. It is necessary to remove a large amount of low-boiling components and high-boiling components using a distillation column with a large number of stages, resulting in a low yield of purified inert hydrocarbon compounds and high purification costs. On the other hand, in the method of the present invention, esters at 150°C or higher,
An inert gas is introduced using a distillation column with a number of stages sufficient to remove ethers, orthoesters, glycol ethers, etc. as high-boiling substances, and an inert gas inlet below the condensation section at the top of the column. By distilling the inert hydrocarbon compound while reusing it, a reusable amount of inert hydrocarbon compound can be recovered and used. Distillation may be carried out either continuously or batchwise, and the number of stages required is usually several. In addition, the inert gas inlet is located below the condensing section, and the above-mentioned esters, ethers, etc.
Orthoesters or glycol ethers (hereinafter referred to as
It is sufficient if the number of stages is above a sufficient number of stages to remove the fraction (150°C or higher). This is because if the number of stages is below a sufficient number to remove the fraction at 150° C. or higher, the fraction at 150° C. or higher will be distilled out along with the inert gas. Examples of the inert gas used in the present invention include nitrogen gas and helium gas. The appropriate flow rate of the inert gas is 1/100 to 1/10 of the volume of the rising vapor flow reaching the condensing section, considering the volume as a gas.If it is less than 1/100, the effect will be insufficient, and if it is more than 1/10, it will not be effective. Inert hydrocarbons to be recovered are entrained in the inert gas, resulting in a decrease in yield, which is undesirable. Effect It is presumed that the method of the present invention effectively removes polymerization-inhibiting components with a relatively low boiling point, so that the diluent can be recovered with simple operations. Examples The present invention will be further explained with reference to Examples below. Example 1 (A) Production of solid transition metal catalyst A vibratory mill equipped with two grinding pots each having an internal volume of 900 ml and containing 80 steel balls with a diameter of 12 mm was prepared.
In this pot, under nitrogen atmosphere, 30 g of magnesium chloride and 3 g of ethyl orthoacetate were added per grinding pot.
ml, 6 ml of 1,2-dichloroethane was added, and the mixture was ground for 40 hours. By repeating this operation twice, 80 g of the pulverized product was brought into contact with 500 ml of titanium tetrachloride in a 2 liter round bottom flask with stirring at 80° C. for 2 hours, and then allowed to stand, and the supernatant liquid was removed. Next, 1 liter of n-heptane was added, stirred at room temperature for 15 minutes, allowed to stand, and the washing operation of removing the supernatant liquid was repeated seven times, followed by an additional 500 ml of n-heptane to obtain a solid transition metal catalyst slurry. (B) (i) Preparation of catalyst slurry: 50 l of n-heptane
A catalyst slurry was prepared by adding 50 g of the above solid transition metal catalyst slurry, 214 ml of diethylaluminum chloride, and 100 ml of methyl toluate. Separately, 133 ml of triethylaluminum was diluted with 20 liters of n-heptane. (ii) Polymerization: In the apparatus shown in Figure 2, A is a polymerization reactor with an internal volume of 500 liters, and the slurry obtained by polymerization in A is sent to autoclave C (inner volume 200 liters) via line 15 and pump B. ,
A portion of the slurry is recycled to A. At C, a catalyst deactivator (diethylene glycol monoisopropyl ether) is added and the slurry is
Most of the medium (propylene and n-heptane) discharged from 6 is separated by cyclone G by heating tube D, and the powder is sent to H for further drying. Drying is carried out by introducing propylene heated to 90°C from 24, and propylene, n-heptane, etc. are sent to heat exchanger F from line 18, 0.1Kg/cm 2- gauge, 30°C.
The recovered material cooled and liquefied is sent to tank I via line 20. On the other hand, the vapor mainly containing propylene taken out from line 17 is cooled to 0.1 kg/cm 2 -gauge in heat exchanger E and 30°C, and the recovered material is liquefied from line 19 to tank I.
sent to. The unliquefied gases are sent to the propylene recovery system via lines 21, 22 and 23, respectively. The following polymerization and n-heptane recovery operations are performed using this apparatus. A catalyst slurry (3 g/hour as a solid catalyst), triethylaluminum (8 ml/hour), and propylene (80 kg/hour) were charged into polymerization reactor A, and polymerization was carried out at 70°C. At this time, n-heptane was charged at a rate of 5 liters/hour for flushing the pump and valves. On the other hand, the polymerization slurry was sent from A to C at a rate of 80 kg/hour, and at C, triethylene glycol monomethyl ether was further sent at a rate of 100 ml/hour to deactivate the catalyst. C
Deactivated slurry was discharged from the dryer H at a rate of 80 kg/hour, powder was removed from the dryer H at a rate of about 30 kg/hour, while liquid was collected into tank I at a rate of 9.6 l/hour. This recovered liquid, mostly consisting of n-heptane, has an inert gas introduction line 1 at the top and a shelf below the inert gas inlet, as shown in Figure 1, and has a number of theoretical plates of 5. Using a stage distillation column, the reflux ratio
1.0, using nitrogen as an inert gas with a rising steam rate of 15 ml/min, and distilling the introduced amount at 50 ml/min until the pot temperature reaches 170°C and the upper part of the distillation column reaches 100°C without removing the low boiling part. The distillate was taken out. No methyl toluate or diethylene glycol monoisopropyl ether was detected in the distilled n-heptane. The yield of the distillate was 90% based on the liquid taken out from Tank I. This recovered heptane is referred to as recovery liquid 1. Further, heptane distilled without introducing nitrogen into the inert gas inlet was used as recovered liquid 2. (C) Using the above recovered liquids 1 and 2, a solid transition metal catalyst was produced in the same manner as in section (A) (however, on a scale of 10 g of pulverized material). (D) Polymerization reaction: Solid transition metal catalyst obtained in (C) and as a comparison
Polymerization was carried out using the material obtained in (A). The polymerization reaction is carried out using a solid transition metal catalyst in an autoclave with an internal volume of 5 liters.
30mg, 0.06ml of methyl toluate, 0.128ml of diethylaluminum chloride, 0.08ml of triethylaluminum, and 50ml of n-heptane for dilution (all using the same n-heptane used in (A)) were mixed and charged, and then 1.5ml of propylene was added. Kg, add 1.5Nl of hydrogen and 75
After polymerizing at ℃ for 2 hours, unreacted propylene was purged and dried under reduced pressure at 60℃ to obtain a powder (20mm
Hg for 6 hours). Example 2 Highly active titanium trichloride TGY- 24 (92% as TiCl3, manufactured by Marubeni Solve A) was used as a solid transition metal catalyst.
Polymerization was carried out using the same apparatus as in Example 1(B) using 8% of high boiling point ether. As the catalyst slurry, 100g of the above titanium trichloride,
Toluene 100l, diethyl aluminum chloride
Mix 800ml, charge 500g of propylene and heat to 40℃.
The mixture was stirred for 1 hour to polymerize 5 g of propylene per 1 g of titanium trichloride. Next, 0.5 ml of diethylene glycol monoisopropyl ether was added to form a catalyst slurry. Polymerization was carried out in the same manner as in Example 1 (B) (ii) except that this catalyst slurry was used as a solid transition metal catalyst at a rate of 7 g/hour and triethylaluminum was not charged, and polymerization was carried out using toluene for flushing the pump and valve. did. Tank I is
Liquid was withdrawn at 12.8 l/hour. The recovered liquid, mostly consisting of toluene, was recovered in the same manner as in Example 1 (B) (ii) and distilled by introducing an inert gas (helium) (recovered liquid 1) and without introducing toluene. (Recovered liquid 2) was obtained. The yields were 86% and 87%, respectively. 100 g/l of titanium trichloride catalyst was added to each recovered toluene, stirred and kept for 20 hours, and the catalyst slurry was used for polymerization. titanium trichloride
100mg, diethyl aluminum chloride 0.8ml,
A catalyst slurry consisting of 100 ml of toluene for dilution (however, all the toluene used in the previous polymerization was used) was charged, and polymerization was carried out in the same manner as in Example 1-(D) using 1.5 kg of propylene, 3 Nl of hydrogen, and 70°C for 3 hours. Got the powder.
The results are shown in the table. Effects As shown in the Examples, by carrying out the method of the present invention, inert hydrocarbon compounds that do not adversely affect catalyst performance can be recovered in good yield, which is industrially valuable. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第図は蒞留塔䞊郚の䞍掻性ガス導入口の䜍眮
の䟋を瀺す図面であり、は䞍掻性ガス導入
口、は䞊昇蒞気をコンデンサヌに導くラむン
であり、は䞍掻性ガスのパヌゞラむン、は凝
瞮液だめ、は凝瞮液の還流ラむン、は蒞留物
の留出ラむンである。 第図は重合のフロヌシヌトであり、  重
合槜、  ポンプ、  脱掻槜、
  熱亀換噚、  サむクロン、  也燥
噚、  タンク、J′  バルブ、  
脱掻剀装入ラむン、  プロピレン装入ラむ
ン、  觊媒装入ラむン、  ス
ラリヌ埪環ラむン、  スラリヌ排出ラむ
ン、  回収蒞気ラむン、
  回収液ラむン、  未凝瞮
ガスラむン、  也燥ガス装入ラむン、
  也燥パりダヌ排出ラむン。
Figure 1 is a diagram showing an example of the position of the inert gas inlet at the top of the distillation column, where 1 is the inert gas inlet, 2 is the line that leads the rising steam to the condenser 3, and 4 is the inert gas inlet. 5 is a condensate reservoir, 6 is a condensate reflux line, and 7 is a distillate distillation line. Figure 2 is a polymerization flow sheet, A...Polymerization tank, B...Pump, C...Deactivation tank, D, E, F
... Heat exchanger, G ... cyclone, H ... dryer, I ... tank, J, J' ... valve, 11 ...
Deactivator charging line, 12... Propylene charging line, 13, 14... Catalyst charging line, 15... Slurry circulation line, 16... Slurry discharge line, 17, 18... Recovery steam line, 19, 20
... Recovery liquid line, 21, 22, 23 ... Uncondensed gas line, 24 ... Dry gas charging line, 25
...Dry powder discharge line.

Claims (1)

【特蚱請求の範囲】[Claims]  ハロゲン化チタンを含有する固䜓遷移金属觊
媒ず有機アルミニりム化合物及び垞圧で枬定した
沞点が150℃以䞊の゚ステル、゚ヌテル、オル゜
゚ステル、アルコキシケむ玠及びグリコヌル゚ヌ
テル類から遞ばれる少なくずも皮の化合物から
なる觊媒系を甚いおプロピレン自身を媒䜓ずする
重合法で少くずも觊媒垌釈剀ずしお垞圧で枬定し
た沞点が60〜140℃の䞍掻性炭化氎玠化合物を甚
いお䞊蚘重合を行ない、該䞍掻性炭化化氎玠化物
を回収再䜿甚する方法においお、蒞留塔䞊郚の凝
瞮郚の䞋方に䞍掻性ガスの導入口を有する蒞留塔
を甚いお、䞍掻性ガスを導入しながら䞍掻性炭化
氎玠化合物を、垞圧で枬定した沞点が150℃以䞊
の゚ステル、゚ヌテル、オル゜゚ステル、アルコ
キシケむ玠又はグリコヌル゚ヌテル類を含有しな
い140℃以䞋の留分ずしお蒞留分離しお回収する
こずを特城ずする垌釈剀の回収方法。
1 Consists of a solid transition metal catalyst containing titanium halide, an organoaluminum compound, and at least one compound selected from esters, ethers, orthoesters, alkoxy silicones, and glycol ethers with a boiling point of 150°C or higher measured at normal pressure. The above polymerization is carried out using a polymerization method using propylene itself as a medium using a catalyst system, using at least an inert hydrocarbon compound having a boiling point of 60 to 140 °C as measured at normal pressure as a catalyst diluent, and the inert carbonization is carried out. In a method of recovering and reusing hydrides, inert hydrocarbon compounds are removed at normal pressure while introducing an inert gas using a distillation column that has an inert gas inlet below the condensation section at the top of the distillation column. 1. A method for recovering a diluent, which comprises recovering by distillation separation as a fraction of 140° C. or lower that does not contain esters, ethers, orthoesters, alkoxy silicones, or glycol ethers with a measured boiling point of 150° C. or higher.
JP16027084A 1984-08-01 1984-08-01 Method of recovering diluent Granted JPS6140307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16027084A JPS6140307A (en) 1984-08-01 1984-08-01 Method of recovering diluent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16027084A JPS6140307A (en) 1984-08-01 1984-08-01 Method of recovering diluent

Publications (2)

Publication Number Publication Date
JPS6140307A JPS6140307A (en) 1986-02-26
JPH0521126B2 true JPH0521126B2 (en) 1993-03-23

Family

ID=15711366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16027084A Granted JPS6140307A (en) 1984-08-01 1984-08-01 Method of recovering diluent

Country Status (1)

Country Link
JP (1) JPS6140307A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1749808B1 (en) * 2005-07-29 2010-02-03 Linde AG Method for the preparation of linear alpha-olefins and reactor system therefore with improved disposal of high molecular weight oligomers

Also Published As

Publication number Publication date
JPS6140307A (en) 1986-02-26

Similar Documents

Publication Publication Date Title
KR100576928B1 (en) Process and apparatus preparing propylene homopolymers and copolymers
CN1066167C (en) Absorption process for rejection of reactor byproducts and recovery of monomers from waste gas streams in olefin polymerization processes
KR102304763B1 (en) A polymerization process comprising discharging polyolefin particles from a gas phase polymerization reactor
US5030790A (en) Process for producing butene-1
US6358372B1 (en) Method of reducing formation of precipitates in solvent recovery system
KR890002558B1 (en) Purification process of polymerization solvent
EP3976670A1 (en) Suspension process for preparing ethylene polymers comprising work-up of the suspension medium
JPS5980618A (en) Recovery of cyclopentadiene
JPH0521126B2 (en)
US3475517A (en) Process for making block polymers of olefins
JPH0548244B2 (en)
JPH0551003B2 (en)
US3639374A (en) Process for flashing propylene diluent from polypropylene in cyclone separator
US4065610A (en) Treatment of contaminated hydrocarbon from olefin polymerization
JPH0344563B2 (en)
EP3763749A1 (en) Method for purifying solvent
WO2020239887A1 (en) Suspension process for preparing ethylene polymers comprising drying of the polymer particles
US2999083A (en) Polymerization of unsaturated hydrocarbons
JPS5831085B2 (en) Catalyst composition for olefin polymerization
JPS6225683B2 (en)
JPS6071611A (en) Process for polymerizing propylene
US6992033B2 (en) Process for preparation of catalyst composition for ethylene polymerization
CN117529462A (en) Process for producing alpha-olefin
JPH0456844B2 (en)
WO2021191076A1 (en) Suspension process for preparing ethylene polymers comprising workup of the suspension medium