JPH05210865A - Optical data storing and reproducing device - Google Patents

Optical data storing and reproducing device

Info

Publication number
JPH05210865A
JPH05210865A JP4014549A JP1454992A JPH05210865A JP H05210865 A JPH05210865 A JP H05210865A JP 4014549 A JP4014549 A JP 4014549A JP 1454992 A JP1454992 A JP 1454992A JP H05210865 A JPH05210865 A JP H05210865A
Authority
JP
Japan
Prior art keywords
laser
recording
hfm
frequency module
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4014549A
Other languages
Japanese (ja)
Inventor
Toshio Suetsugu
俊夫 末次
Akihiro Sakata
昭博 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4014549A priority Critical patent/JPH05210865A/en
Publication of JPH05210865A publication Critical patent/JPH05210865A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To quicken the rise of laser power at a recording time and to stably and acculately control laser power in an optical data storing and reproducing device using a high frequency module as a light source. CONSTITUTION:An HFM superimposition storage part 119 and an HFMOFF signal 152 are provided and the HFMOFF signal 152 is turned OFF in a fixed interval at a reproducing time before recording and the difference of the voltage laser driving voltage between the HFMON and the HFMOFF is stored in the HFM superim-position storage part 119 and added at a recording time. Further, an HFM exclusive stabilized power supply 218 is provided and the oscillation amplitude of the HFM is stabilized. Thus, the stable optical data storing and reproducing device with high accuracy and with the quick rise at the starting time of recording is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ディスクに代表され
る様な大容量かつ可換性のある情報媒体を用い、その情
報媒体にデ−タを記録再生するレ−ザ素子や高周波モジ
ュ−ル(以下、HFMと称す)を駆動した光学式デ−タ
記憶再生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a large-capacity and exchangeable information medium represented by an optical disk, and a laser element or a high-frequency module for recording / reproducing data on / from the information medium. The present invention relates to an optical data storage / reproduction device that drives a drive (hereinafter referred to as HFM).

【0002】[0002]

【従来の技術】近年、光学式デ−タ記憶再生装置の開
発、商品化が活発に行われている。また、情報媒体に安
定に精度良く情報を記録するために、極めて高精度で光
パワ−を放射制御する技術が望まれている。
2. Description of the Related Art In recent years, development and commercialization of optical data storage / reproduction devices have been actively carried out. Further, in order to stably and accurately record information on an information medium, there is a demand for a technique for controlling radiation of optical power with extremely high precision.

【0003】以下に従来の光学式デ−タ記憶再生装置に
ついて図面を用いて説明する。図8は光学式デ−タ記憶
再生装置の主要部を示すものである。図8において、5
01は情報媒体、502は光ヘッド、503はレ−ザ、
504はHFM、505は受光素子、506はレ−ザH
FM駆動回路、507はデ−タ再生手段、508はCP
Uである。図5は従来の光学式デ−タ記憶再生装置のレ
−ザHFM駆動回路を示すものである。図5において、
301はHFM、302はレ−ザ、303は受光素子、
304は電流電圧変換を行うI/V変換部、305は再
生用基準電圧、306は記録用基準電圧、307は電圧
比較部、308は記録固定電圧部、309は加算部、3
11はアナログスイッチ、317は他の回路ブロック、
350は再生記録切替え信号、351はCPU508か
ら転送されるデ−タ信号である。図7は光学式デ−タ記
憶再生装置のレ−ザ及びHFMの電流−光特性である。
A conventional optical data storage / reproduction device will be described below with reference to the drawings. FIG. 8 shows the main part of the optical data storage / reproduction device. In FIG. 8, 5
01 is an information medium, 502 is an optical head, 503 is a laser,
504 is an HFM, 505 is a light receiving element, and 506 is a laser H.
FM drive circuit, 507 data reproducing means, 508 CP
U. FIG. 5 shows a laser HFM drive circuit of a conventional optical data storage / reproduction device. In FIG.
301 is an HFM, 302 is a laser, 303 is a light receiving element,
Reference numeral 304 is an I / V conversion unit for performing current-voltage conversion, 305 is a reproduction reference voltage, 306 is a recording reference voltage, 307 is a voltage comparison unit, 308 is a fixed recording voltage unit, 309 is an addition unit, 3
11 is an analog switch, 317 is another circuit block,
Reference numeral 350 is a reproduction / recording switching signal, and 351 is a data signal transferred from the CPU 508. FIG. 7 shows the current-optical characteristics of the laser and HFM of the optical data storage / reproduction device.

【0004】以上のように構成された光学式デ−タ記憶
再生装置について、以下その動作について説明する。ま
ず、図8に示した様に、光学式デ−タ記憶再生装置は記
録時にCPU508からレ−ザHFM駆動回路506に
記録デ−タが転送され、レ−ザ503によって電気信号
から光信号に変換され、情報媒体501に記録される。
再生時には、レ−ザ503から記録時より弱いレ−ザ光
を情報媒体501に照射し、その反射光をデ−タ再生手
段507において光信号から電気信号に変換し、CPU
508に転送される。ここで再生手段507は光ヘッド
502上に配置されたレンズ、プリズム等の光学系と光
電変換素子(以下ディテクタと称す)等からなっており
記録部と再生部でほとんどの部分共用しているのが一般
的であるが、説明の便宜上分離独立したブロックとして
扱う。次に、レ−ザHFM駆動回路506の動作を図5
で説明する。レ−ザ302で発光した光パワ−の一部を
受光素子303で受光し、I/V変換304で電流−電
圧変換する。再生時には再生用基準電圧305、記録時
には記録用基準電圧306をアナログスイッチ311で
選択する。電圧比較307では前記304と311の出
力を比較し、その誤差信号と、記録固定電圧308が加
算部309で加算され、トランジスタ−313のベ−ス
に出力される。ここで記録固定電圧308は、レーザ駆
動電流が記録時には数倍多く必要となるため、前述の基
準電圧を再生用305から記録用306に切り替えるの
みでレーザ出力の制御を行なう場合には、その基準電位
差に応じた目標値の変化が発生し、過渡応答時間がI−
V変換304や電圧比較部307の応答特性分だけ遅く
なり、記録レーザ出力が安定するまでに数μSの時間遅
れを生じる。そのため予め記録時と再生時のレーザ電流
差に応じた電圧を固定電圧308として準備し、記録時
には駆動段のトランジスタ313の応答速度で決まる記
録レーザの立ち上がりを実現している。このことによっ
て固定電圧を加算しない方法に比べ立ち上がり時間を約
半分にでき、記録時の時間的マージンを確保することが
できる。この様な理由から再生時には前述の記録固定電
圧308は加算されない。ここで電圧比較部307では
記録時の信号が、記録データによってその平均値が変化
するため、ピークホールド型に切り替えることも有効で
あるがここでは詳述しない。
The operation of the optical data storage / reproducing apparatus having the above structure will be described below. First, as shown in FIG. 8, in the optical data storage / reproducing apparatus, the recording data is transferred from the CPU 508 to the laser HFM drive circuit 506 during recording, and the laser 503 converts the electric signal into the optical signal. It is converted and recorded on the information medium 501.
At the time of reproduction, laser light weaker than that at the time of recording is emitted from the laser 503 to the information medium 501, and the reflected light is converted from an optical signal to an electric signal in the data reproducing means 507, and the CPU
508. Here, the reproducing means 507 is composed of an optical system such as a lens and a prism arranged on the optical head 502, a photoelectric conversion element (hereinafter referred to as a detector), and the like, and is mostly shared by the recording section and the reproducing section. Is generally used, but for convenience of explanation, it is treated as a separated and independent block. Next, the operation of the laser HFM drive circuit 506 will be described with reference to FIG.
Described in. A part of the optical power emitted by the laser 302 is received by the light receiving element 303, and current / voltage conversion is performed by the I / V conversion 304. An analog switch 311 selects a reproduction reference voltage 305 during reproduction and a recording reference voltage 306 during recording. In the voltage comparison 307, the outputs of 304 and 311 are compared, and the error signal and the recording fixed voltage 308 are added by the adder 309 and output to the base of the transistor-313. Since the recording fixed voltage 308 requires a laser driving current several times larger during recording, the reference voltage is used when the laser output is controlled only by switching the reference voltage from the reproducing 305 to the recording 306. The target value changes according to the potential difference, and the transient response time is I-
It is delayed by the response characteristics of the V conversion 304 and the voltage comparison unit 307, and a time delay of several μS occurs until the recording laser output stabilizes. Therefore, a voltage corresponding to the laser current difference at the time of recording and at the time of reproducing is prepared in advance as the fixed voltage 308, and at the time of recording, the rise of the recording laser determined by the response speed of the transistor 313 in the driving stage is realized. As a result, the rise time can be halved as compared with the method in which the fixed voltage is not added, and the time margin at the time of recording can be secured. For this reason, the fixed recording voltage 308 is not added during reproduction. Here, in the voltage comparison unit 307, since the average value of the signal at the time of recording changes depending on the recording data, switching to the peak hold type is also effective, but it will not be described in detail here.

【0005】再生時にはデ−タ351は”L”なのでト
ランジスタ−314はOFFしトランジスタ−313の
コレクタ−電流は全てレ−ザ302に流れる。温度変化
等によりレ−ザ302の光出力が低下した時は、電圧比
較307の誤差信号がレ−ザ302の電流増加させ、光
出力を一定に保つ様制御している。記録時にはデ−タ3
51に変調された記録デ−タ”L”及び”H”が入力
し、それによりトランジスタ−314が”OFF”及
び”ON”し、レ−ザが”発光”及び”非発光”し、情
報媒体501に変調されたデ−タを記録する。又、レ−
ザ302が再生時発光している時の情報媒体501から
レ−ザ302への戻り光によるノイズ削減を目的とし、
再生記録切替え信号350より再生時のみHFM301
を高周波発振し、コンデンサ−316を介してレ−ザ3
02に数百MHzの高周波を重畳している。
Since the data 351 is "L" at the time of reproduction, the transistor-314 is turned off and the collector current of the transistor-313 all flows to the laser 302. When the optical output of the laser 302 is lowered due to a temperature change or the like, the error signal of the voltage comparison 307 increases the current of the laser 302 to control the optical output to be constant. Data 3 during recording
The modulated recording data "L" and "H" are input to 51, whereby the transistor-314 turns "OFF" and "ON", the laser "lights" and "non-lights", and the information The modulated data is recorded on the medium 501. In addition,
For the purpose of reducing noise by returning light from the information medium 501 to the laser 302 when the laser 302 is emitting light during reproduction,
HFM301 only during playback from playback record switching signal 350
Laser is oscillated at high frequency, and laser 3 is passed through capacitor-316.
02 is superimposed with a high frequency of several hundred MHz.

【0006】次に図6のタイミングチャ−ト図を用いて
各信号の動作タイミングを説明する。T31は再生モ−
ド、T32は記録立ち上がりモ−ド、T33は記録安定
モ−ドを示す。T32モ−ドでは、T31モ−ドでの再
生光パワ−に必要な電圧に初期調整時調整した記録固定
電圧308が加算され記録光パワ−が発光する。ところ
が再生光パワ−に必要な電圧が初期調整時と、主にHF
Mの電源電圧変化及び温度変化によりHFMの発振振幅
が変化することなどにより異なるため、T32モ−ドで
の光パワ−が安定しない。T33モ−ドでは図5に示す
記録基準電圧306と受光素子303、I−V変換30
4、電圧比較部307より構成されるフィードバックル
ープの制御が支配的になりそのサ−ボ特性により記録用
基準電圧に記録光パワ−が安定する。
Next, the operation timing of each signal will be described with reference to the timing chart of FIG. T31 is playback mode
The recording start mode is indicated by T32, and the recording stabilization mode is indicated by T33. In the T32 mode, the recording fixed voltage 308 adjusted during the initial adjustment is added to the voltage required for the reproducing light power in the T31 mode, and the recording light power emits light. However, the voltage required for reproducing light power is mainly during HF adjustment and during HF adjustment.
The optical power in T32 mode is not stable because the oscillation amplitude of the HFM changes due to changes in the power supply voltage of M and changes in temperature. In the T33 mode, the recording reference voltage 306, the light receiving element 303, and the IV conversion 30 shown in FIG.
4. The control of the feedback loop constituted by the voltage comparison unit 307 becomes dominant and the servo characteristic stabilizes the recording light power at the recording reference voltage.

【0007】ここで上記の、記録パワーが図6のT32
モードで安定しない理由について図7を用いて説明す
る。図7は半導体レーザの駆動電流と光パワーの関係を
示す電流−光特性を示す。401は標準温度におけるレ
ーザ単体の電流−光特性、401’は温度変動等で40
1がずれた状態、402はレーザにHFMを付加した場
合の再生出力近傍の低パワー時の電流−光特性を、40
2’は402が電源電圧変動、温度変動などで加算され
るHFMの出力振幅が変動した場合の電流−光特性を示
す。同図に示すように光出力がHFMの振幅を超えるあ
る一定以上になると、HFMを付加した場合もレーザ単
体と同じカーブ401と重なる。これはレーザ出力が高
周波によって出力変化している交流成分の平均値が0に
なりレーザ単体の直流出力と一致するためである。これ
に対して、レーザ出力が低い場合は、重畳された高周波
の波形がレーザ出力が0になる点で飽和し歪を生じるた
めに高周波によって変調されているレーザ出力の平均値
が0にならずに少し+の直流成分を持つため、見かけ上
レーザ駆動電流が減少しているような特性になる。実際
は駆動電流減少分は、HFMから流入している訳であ
る。
Here, the above-mentioned recording power is T32 in FIG.
The reason why the mode is not stable will be described with reference to FIG. FIG. 7 shows current-optical characteristics showing the relationship between the driving current of the semiconductor laser and the optical power. 401 is the current-optical characteristics of the laser unit at the standard temperature, and 401 'is the temperature fluctuation.
In the state where 1 is shifted, 402 is the current-optical characteristic at the time of low power near the reproduction output when HFM is added to the laser.
Reference numeral 2'indicates current-optical characteristics when the output amplitude of the HFM added by 402 changes due to power supply voltage fluctuations, temperature fluctuations, and the like. As shown in the figure, when the optical output exceeds a certain level, which exceeds the amplitude of the HFM, even when the HFM is added, the same curve 401 as that of the laser alone overlaps. This is because the average value of the AC component of which the laser output is changing due to the high frequency becomes 0, which coincides with the DC output of the laser unit. On the other hand, when the laser output is low, the superimposed high-frequency waveform is saturated at the point where the laser output becomes 0 and causes distortion, so the average value of the laser output modulated by the high frequency does not become 0. Since it has a little + DC component, the laser drive current is apparently reduced. Actually, the amount of decrease in the driving current is flowing in from the HFM.

【0008】ここで同図の初期調整状態403および電
流−光特性402、401において、再生状態において
は、(P1,I1)の1mW程度の低い光出力で、図5
の再生基準電圧305による制御ループで正確に制御さ
れている。また記録状態においては(P3,I3)の数
mW程度の出力で、図5の記録基準電圧306、記録固
定電圧308による制御ループで制御されることにな
る。図5と図7の関係において、図5の電圧比較部V3
A点に相当する電圧が図7中403のVxであり、記録
固定電圧V3Bに相当する電圧が図7中403のVyを
意味している。Vx、Vyは図7では電流値表示である
が、その電流に比例する電圧として扱う。
Here, in the initial adjustment state 403 and the current-optical characteristics 402 and 401 in the same figure, in the reproducing state, a low optical output of about 1 mW of (P1, I1),
Is accurately controlled by the control loop based on the reproduction reference voltage 305. In the recording state, the output of (P3, I3) is about several mW, which is controlled by the control loop by the recording reference voltage 306 and the recording fixed voltage 308 in FIG. In the relationship between FIG. 5 and FIG. 7, the voltage comparison unit V3 of FIG.
The voltage corresponding to the point A is Vx of 403 in FIG. 7, and the voltage corresponding to the recording fixed voltage V3B is Vy of 403 in FIG. Although Vx and Vy are displayed as current values in FIG. 7, they are treated as voltages proportional to the currents.

【0009】次に温度変動などが発生し、レーザの電流
−光特性が401’、402’のカーブに変わった場合
の動作点は、再生状態では(P1,I2)、記録状態で
は(P3,I4)、図7の404で示す電流配分にな
り、電圧比較部V3Aの出力に相当する電流値はV
x’、記録固定電圧部に相当する電流値は、初期状態と
同じVyで、駆動電流は変化するが光出力はP3点から
変動しない。これは半導体レーザの電流−光特性が温度
によって発光しきい値が変化するだけで、実用範囲にお
いて401と401’の傾斜はほとんど変化しないこと
によるものである。
Next, when temperature fluctuations occur and the current-optical characteristics of the laser change to curves 401 'and 402', the operating points are (P1, I2) in the reproducing state and (P3, in the recording state. I4), the current distribution indicated by 404 in FIG. 7 is obtained, and the current value corresponding to the output of the voltage comparison unit V3A is V
x ′, the current value corresponding to the recording fixed voltage portion is Vy which is the same as in the initial state, and the drive current changes but the optical output does not change from point P3. This is because the current-light characteristics of the semiconductor laser only change the light emission threshold depending on the temperature, and the slopes of 401 and 401 'hardly change in the practical range.

【0010】しかしながら、HFMの温度特性や電圧特
性が半導体レーザの特性変化と、独立して変化した場合
は、例えば電流−光特性が402’、401で表現され
るような場合の動作点は、再生時は(P1,I2)、記
録時初期は(P4,I4)を経て、記録基準電圧306
が支配的になると(P3,I3)に安定することにな
る。これは一般的に受光素子303の温度変化率がレー
ザやその他の素子に比較して、非常に小さい為、記録時
のパワーサーボが安定すると、初期調整値に収束するこ
とになる。
However, when the temperature characteristic and the voltage characteristic of the HFM change independently of the characteristic change of the semiconductor laser, the operating point when the current-light characteristic is represented by 402 'and 401 is, for example, At the time of reproduction (P1, I2), at the beginning of recording, the recording reference voltage 306 is passed through (P4, I4).
When becomes dominant, it becomes stable at (P3, I3). This is because the temperature change rate of the light receiving element 303 is generally much smaller than that of a laser or other elements, so that when the power servo during recording stabilizes, it will converge to the initial adjustment value.

【0011】[0011]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、レーザの記録制御が安定するための時間
を極めて短くでき、記録の高速化、記録時の時間的マー
ジン等の確保には有効であるが、前記したように、HF
M発振振幅変動によりレ−ザへの高周波重畳量が変化し
たり、半導体レーザとHFMの温度特性が大きく異なる
場合等、再生時と記録時の電流−光特性の相関が取れな
い時には図6で示す記録制御が安定になるまでのT32
モードにおいてレ−ザパワ−が低すぎるあるいは高くな
りすぎて、ゴミや埃への記録マ−ジンが減少すると言う
問題点を有していた。また高すぎる場合には顕著な場合
は、レーザの寿命を極端に短くしてしまうこともある。
However, in the above-mentioned conventional structure, the time required for stabilizing the recording control of the laser can be extremely shortened, and it is effective for speeding up the recording and securing a time margin at the time of recording. However, as mentioned above, HF
If the correlation between the current-optical characteristics during reproduction and recording cannot be obtained, such as when the amount of high-frequency superimposition on the laser changes due to fluctuations in the M oscillation amplitude, or when the temperature characteristics of the semiconductor laser and the HFM differ greatly, FIG. T32 until the recording control shown becomes stable
In the mode, there is a problem that the laser power becomes too low or too high, and the recording margin to dust and dust decreases. If it is too high, the life of the laser may be extremely shortened if it is remarkable.

【0012】本発明は上記従来の問題点を解決するもの
で、半導体レーザとHFMの温度特性が大きく異なる場
合においても補正値を検出するか、HFM発振振幅を安
定化し、レ−ザパワ−を一定に保つ光学式デ−タ記憶再
生装置を提供する事を目的とする。
The present invention solves the above-mentioned conventional problems. Even when the semiconductor laser and the HFM have greatly different temperature characteristics, the correction value is detected or the HFM oscillation amplitude is stabilized to keep the laser power constant. It is an object of the present invention to provide an optical data storage / reproduction device for keeping the same.

【0013】[0013]

【課題を解決するための手段】この目的を達成するため
に本発明の光学式デ−タ記憶再生装置は、情報媒体にデ
−タを書き込む又は既に書き込まれたデ−タを読み込む
ためのレ−ザ光源と、デ−タ読み込み時にノイズ削減す
るために前記レ−ザ光源に高周波重畳する高周波モジュ
−ルと、前記レ−ザ光源と高周波モジュ−ル駆動するた
めのレ−ザHFM駆動回路と、記録前に高周波モジュ−
ルを一旦OFFしON時とOFF時のレ−ザに重畳する
電流差を記憶するHFM重畳記憶部または、前記高周波
モジュ−ルの発振出力を安定に動作させるための手段と
の構成を有している。
In order to achieve this object, the optical data storage / reproducing apparatus of the present invention has a function for writing data to an information medium or reading already written data. A laser light source, a high-frequency module for high-frequency superimposing on the laser light source to reduce noise when reading data, and a laser HFM drive circuit for driving the laser light source and the high-frequency module. And the high frequency module before recording
HFM superposition storage section for temporarily turning off the module and storing the current difference that is superimposed on the laser when it is on and when it is off, or means for stably operating the oscillation output of the high frequency module. ing.

【0014】[0014]

【作用】この構成によって、記録する手前でHFMをO
FFし、レ−ザへのHFM重畳量を記憶し、記録時に記
憶した前記重畳量をレ−ザに加える事により記録時の立
ち上がりを高速化するための記録固定電圧を補正する、
又HFM専用安定化電源等を用いてHFMの発振出力を
安定化させ半導体レーザとHFMの温度特性が大きく異
ならないようにする事により、レ−ザ記録パワ−を安定
化し、ゴミや埃への記録マ−ジンを拡大し、大電流によ
るレーザ破損を防ぐ事ができる。
With this structure, the HFM is turned off before recording.
FF is performed, the HFM superposition amount to the laser is stored, and the superposition amount stored at the time of recording is added to the laser to correct the recording fixed voltage for speeding up the rising at the time of recording.
Further, by stabilizing the oscillation output of the HFM by using a stabilizing power supply for exclusive use of the HFM so that the temperature characteristics of the semiconductor laser and the HFM do not differ greatly, the laser recording power is stabilized and dust and dust are prevented. The recording margin can be enlarged to prevent laser damage due to large current.

【0015】[0015]

【実施例】【Example】

(実施例1)以下本発明の第1の実施例について図面を
参照しながら説明する。
(Embodiment 1) Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.

【0016】図1において、101はHFM、102は
レ−ザ、103は受光素子、104はI/V変換部、1
05は再生用基準電圧、106は記録用基準電圧、10
7は電圧比較部、108は記録固定電圧部、109は加
算部、111はアナログスイッチ、117は他の回路ブ
ロック、150は記録再生切替え信号で、以上は図5の
従来例構成と同様なものである。図5の構成と異なるの
はHFM重畳記憶部119、HFMOFF信号152が
追加された事である。
In FIG. 1, 101 is an HFM, 102 is a laser, 103 is a light receiving element, 104 is an I / V converter, and 1
Reference numeral 05 is a reproducing reference voltage, 106 is a recording reference voltage, 10
Reference numeral 7 is a voltage comparison unit, 108 is a fixed recording voltage unit, 109 is an addition unit, 111 is an analog switch, 117 is another circuit block, and 150 is a recording / reproduction switching signal. The above is the same as the conventional configuration of FIG. Is. The difference from the configuration of FIG. 5 is that the HFM superposition storage unit 119 and the HFM OFF signal 152 are added.

【0017】以上のように構成された光学式デ−タ記憶
再生装置について図1を用いてその動作を説明する。レ
−ザ102で発光した光パワ−の一部を受光素子103
で受光し、I/V変換104で電流−電圧変換する。一
方再生時には再生用基準電圧105、記録時には記録用
基準電圧106をアナログスイッチ111で選択する。
電圧比較部107では前記104と111の出力を比較
し、その誤差信号と、記録固定電圧108とHFM重畳
記憶部119が加算部109で加算され、トランジスタ
−113のベ−スに出力される。
The operation of the optical data storage / reproducing apparatus configured as described above will be described with reference to FIG. A part of the optical power emitted by the laser 102 is received by the light receiving element 103.
The light is received by and the I / V converter 104 converts the current into a voltage. On the other hand, the reproduction reference voltage 105 is selected at the time of reproduction and the recording reference voltage 106 is selected at the time of recording by the analog switch 111.
In the voltage comparison unit 107, the outputs of 104 and 111 are compared, and the error signal, the fixed recording voltage 108 and the HFM superposition storage unit 119 are added by the addition unit 109 and output to the base of the transistor-113.

【0018】HFM重畳記憶部119は記録する直前の
再生時に一定期間HFMをOFFし、この時のレ−ザへ
のON−OFF差の重畳量を記憶し、記録時に加算部1
09に加算される。再生時にはデ−タ151は”L”な
のでトランジスタ−114はOFFしトランジスタ−1
13のコレクタ−電流は全てレ−ザ102に流れる。温
度変化等によりレ−ザ102の光出力が低下した時は、
電圧比較107の誤差信号がレ−ザ102に電流増加さ
せ、光出力を一定に保つ様制御している。記録時にはデ
−タ151に変調された記録デ−タ”L”及び”H”が
出力され、それによりトランジスタ−114が”OF
F”及び”ON”し、レ−ザが”発光”及び”非発光”
し、情報媒体501にデ−タを記録する。
The HFM superposition storage unit 119 turns off the HFM for a certain period at the time of reproduction just before recording, stores the superposition amount of ON-OFF difference to the laser at this time, and adds at the time of recording the addition unit 1
09 is added. At the time of reproduction, since the data 151 is "L", the transistor-114 is turned off and the transistor-1
All 13 collector currents flow to the laser 102. When the optical output of the laser 102 decreases due to temperature change,
The error signal of the voltage comparison 107 causes the laser 102 to increase the current so that the optical output is kept constant. At the time of recording, the modulated recording data "L" and "H" are output to the data 151, which causes the transistor-114 to "OF".
F "and" ON ", laser is" emissive "and" non-emissive "
Then, the data is recorded on the information medium 501.

【0019】このタイミングチャートを図2に示す。記
録する直前の再生時T12に一定期間HFMをOFF
し、この時のレ−ザへの重畳量であるV1Aの変化分V
zをV1C欄に示すHFM重畳記憶部119に記憶させ
る。そしてあらかじめ記録固定電圧部108にはHFM
をOFFした状態の記録パワ−と再生パワ−の差の電圧
が初期調整時に調整されており、記録時先頭では、図7
の407におけるHFMがONしている時の電圧Vxと
HFM重畳記憶部119のVzと記録固定電圧部108
Vy’が加算される。ここでHFMのON電圧とHFM
重畳記憶部119を加えた電圧はHFMOFFの電圧で
ある。またHFMをONしている時の電圧Vxは図1中
では構成ブロックは示されないが、電圧比較部107の
出力V1Aの中に含まれる形で、例えばサンプルホール
ド出力と記録時の電圧比較出力が加算された形で出力さ
れる。この電圧V1Aは、記録先頭の立ち上がり時は、
前述したように記録基準によるサーボ出力が遅れるため
Vx相当の電圧が支配的になる。その後図2のT15で
示すサーボ 安定期間では記録基準電圧とI−V変換を
比較した出力が支配的になる。
This timing chart is shown in FIG. HFM is turned off for a certain period during playback T12 immediately before recording
However, the change amount V1A of the superimposing amount on the laser at this time is V
z is stored in the HFM superposition storage unit 119 shown in the column V1C. Then, the recording fixed voltage unit 108 is previously provided with the HFM.
The voltage of the difference between the recording power and the reproducing power when the switch is turned off is adjusted at the time of initial adjustment.
407, the voltage Vx when the HFM is ON, the Vz of the HFM superposition storage unit 119, and the recording fixed voltage unit 108.
Vy 'is added. Here, the ON voltage of HFM and HFM
The voltage applied to the superposition storage unit 119 is the HFMOFF voltage. The voltage Vx when the HFM is on is not shown in the configuration block in FIG. 1, but is included in the output V1A of the voltage comparison unit 107, for example, the sample hold output and the voltage comparison output at the time of recording. It is output in the added form. This voltage V1A is
As described above, since the servo output based on the recording standard is delayed, the voltage corresponding to Vx becomes dominant. After that, in the servo stable period shown by T15 in FIG. 2, the output obtained by comparing the recording reference voltage and the IV conversion becomes dominant.

【0020】このように、再生状態でのHFMを付加し
ているときの電流値相当の電圧をV1Aの一部として、
再生状態でHFMを付加した状態と付加しない状態の差
電流に相当する電圧を記憶してV1Cとして、さらに初
期状態で正確に調整した記録固定電圧をV1Bとして加
算した出力によりレーザの電流を制御することによっ
て、立ち上がりの高速化を実現するとともに、HFM発
振振幅変動によりレ−ザへの高周波重畳量が変化した
り、半導体レーザとHFMの温度特性が大きく異なる場
合等、再生時と記録時の電流−光特性の相関が取れない
時においても記録時先頭でレ−ザパワ−が変動する事の
ない高速で、安定なレーザパワー制御を実現することが
できるものである。
As described above, the voltage corresponding to the current value when the HFM in the reproducing state is added is set as a part of V1A,
The laser current is controlled by the output obtained by storing the voltage corresponding to the difference current between the state in which the HFM is added in the reproducing state and the state in which the HFM is not added, as V1C, and further adding the precisely fixed recording fixed voltage as V1B in the initial state. As a result, the rise in speed can be increased, the amount of high-frequency superimposition on the laser changes due to HFM oscillation amplitude changes, and the temperature characteristics of the semiconductor laser and HFM differ greatly. It is possible to realize high-speed and stable laser power control in which the laser power does not change at the beginning of recording even when the optical characteristics cannot be correlated.

【0021】上記HFM重畳記憶部はD/A変換、半導
体メモリ、差演算を行なうレジスタ、A/D変換などで
簡単に実現できるが、サンプルホールド回路をHFMの
ON時とOFF時用の2回路準備し、その差信号を利用
することによっても実現することができる。
The HFM superposition storage section can be easily realized by D / A conversion, semiconductor memory, a register for performing difference calculation, A / D conversion, etc., but the sample and hold circuit is two circuits for turning the HFM on and off. It can also be realized by preparing and using the difference signal.

【0022】ここで、HFM重畳記憶部に信号を取り込
むタイミングを記録直前として説明したが、記録前のサ
ーチ終了後、必要なデータの再生後の時間待ち状態など
信号の読みだしを必要としないタイミングにおいて実施
することも有効であり、また、不揮発性のメモリ等の記
憶部の構成によっては起動時に一回実施するだけでも有
効である。また別途温度検出器などを備え、温度変動が
一定量を超えた時の記録または再生を行なっていない信
号のS/N比などの品質をあまり必要としないタイミン
グに、順次実施するようにしてもよい。
Here, the timing at which the signal is taken into the HFM superposition storage section is described just before recording, but after the search before recording is completed, a timing such as a time waiting state after reproduction of necessary data does not require signal reading. It is also effective to carry out the method in 1., and depending on the configuration of the storage unit such as the non-volatile memory, it is also effective to carry out only once at startup. In addition, a separate temperature detector may be provided so that when the temperature variation exceeds a certain amount, the quality is not required so much, such as the S / N ratio of the signal that is not recorded or reproduced, so that it is sequentially performed. Good.

【0023】以上のように本実施例によれば情報媒体に
デ−タを書き込む又は前記情報媒体に既に書き込まれた
デ−タを読み込むためのレ−ザ光源と、デ−タ読み込み
時にノイズ削減するために前記レ−ザ光源に高周波重畳
する高周波モジュ−ルと、前記レ−ザ光源と高周波モジ
ュ−ル駆動するためのレ−ザHFM回路と、記録直前に
高周波モジュ−ルをOFFしON時とOFF時の差の電
圧を記憶するHFM重畳記憶部とを設ける事により記録
時パワ−の立ち上がりを高速化、安定化する事ができ
る。
As described above, according to this embodiment, a laser light source for writing data on the information medium or reading the data already written on the information medium, and noise reduction at the time of reading the data. To this end, a high-frequency module for high-frequency superimposing on the laser light source, a laser HFM circuit for driving the laser light source and the high-frequency module, and a high-frequency module are turned off and turned on immediately before recording. By providing an HFM superposition storage unit that stores the voltage difference between the time and the OFF time, the rise of the recording power can be speeded up and stabilized.

【0024】(実施例2)以下本発明の他の実施例につ
いて、図面を参照しながら説明する。図3において20
1はHFM、202はレ−ザ、203は受光素子、20
4はI/V変換部、205は再生用基準電圧、206は
記録用基準電圧、207は電圧比較部、208は記録固
定電圧部、209は加算部、211はアナログスイッ
チ、217は他の回路ブロック、218はHFM専用安
定化電源、250は再生記録切替え信号、251はCP
U508から転送されるデ−タ信号である。
(Embodiment 2) Another embodiment of the present invention will be described below with reference to the drawings. 20 in FIG.
1 is an HFM, 202 is a laser, 203 is a light receiving element, 20
4 is an I / V conversion unit, 205 is a reproduction reference voltage, 206 is a recording reference voltage, 207 is a voltage comparison unit, 208 is a fixed recording voltage unit, 209 is an addition unit, 211 is an analog switch, and 217 is another circuit. Block 218, stabilized power supply dedicated to HFM, 250 reproduction / recording switching signal, 251 CP
This is a data signal transferred from U508.

【0025】以上のように構成された光学式デ−タ記憶
再生装置について図3を用いてその動作を説明する。レ
−ザ202で発光した光パワ−の一部を受光素子203
で受光し、I/V変換204で電流−電圧変換する。再
生時には再生用基準電圧205、記録時には記録用基準
電圧206をアナログスイッチ211で選択する。電圧
比較部207では前記204と211の出力を比較し、
その誤差信号と、記録固定電圧208が加算部209で
加算され、トランジスタ−213のベ−スに出力され
る。再生時にはデ−タ251は”L”なのでトランジス
タ−214はOFFしトランジスタ−213のコレクタ
−電流は全てレ−ザ202に流れる。温度変化等により
レ−ザ202の光出力が低下した時は、電圧比較207
の誤差信号がレ−ザ202に電流増加させ、光出力を一
定に保つ様制御している。記録時にはデ−タ251に変
調された記録デ−タ”L”及び”H”が出力され、それ
によりトランジスタ−214が、”OFF”及び”O
N”し、レ−ザが”発光”及び”非発光”し、情報媒体
501にデ−タを記録する。又、レ−ザ202が再生時
発光している時の情報媒体501からレ−ザ202への
戻り光等によるノイズ削減を目的とし、HFM201を
高周波発振し、コンデンサ−216を介してレ−ザ20
2に高周波重畳している。ここでHFM201の電源は
極めて近傍に配置されたHFM専用安定化電源218で
安定化されているので、どのモ−ドにおいても、HFM
の発振は安定しており、レ−ザ202への重畳量も一定
であり、記録時の先頭でレ−ザパワ−が変化する事はな
い。次に図4のタイミングチャ−ト図を説明する。T2
1は再生モ−ド、T22は記録立ち上がりモ−ド、T2
3は記録安定モ−ドを示す。T22モ−ドでは、T21
モ−ドでの再生光パワ−に必要な電圧に初期調整時調整
した記録固定電圧308が加算され記録パワ−が出力さ
れる。ところが再生光パワ−に必要な電圧がHFMの電
源電圧に安定化電源を使用していることにより初期調整
時と変化していないため、T22モ−ドでの記録パワ−
が安定する。T23モ−ドではレ−ザHFM駆動回路5
06のサ−ボ特性により記録用基準電圧によって記録パ
ワ−に安定する。次に従来例と実施例2の比較を図7を
用いて説明する。同図において従来は、初期調整時40
3に示す様に、最適に記録パワ−が出力される様に調整
されているが、市場でHFMにかかる電圧が変動した時
405に示す様、記録立ち上がり時に記録パワ−が変動
していた。実施例2ではHFMの電圧が安定しているの
で、406に示すように、市場においても最適な記録パ
ワ−が出力される。この図7から明らかなように、本実
施例による光学式デ−タ記憶再生装置は記録パワ−立ち
上がり時に記録パワ−が安定しゴミや埃に対する記録マ
−ジンの点で優れた効果が得られる。
The operation of the optical data storage / reproducing apparatus constructed as above will be described with reference to FIG. A part of the optical power emitted by the laser 202 is received by the light receiving element 203.
The light is received by, and current / voltage conversion is performed by the I / V conversion 204. An analog switch 211 selects a reproduction reference voltage 205 for reproduction and a recording reference voltage 206 for recording. The voltage comparison unit 207 compares the outputs of 204 and 211,
The error signal and the recording fixed voltage 208 are added by the adder 209 and output to the base of the transistor 213. Since the data 251 is "L" at the time of reproduction, the transistor-214 is turned off, and the collector current of the transistor-213 all flows to the laser 202. When the optical output of the laser 202 decreases due to temperature change or the like, the voltage comparison 207
Error signal increases the current in the laser 202 and controls so that the optical output is kept constant. At the time of recording, the modulated recording data "L" and "H" are output to the data 251, so that the transistor 214 is turned "OFF" and "O".
N ", the laser emits light and does not emit light, and data is recorded on the information medium 501. Also, when the laser 202 emits light during reproduction, the laser emits light from the information medium 501. The HFM 201 is oscillated at a high frequency for the purpose of reducing noise due to returning light to the laser 202, and the laser 20 is passed through the capacitor 216.
2 is superposed on high frequency. Since the power source of the HFM 201 is stabilized by the HFM-dedicated stabilizing power source 218 arranged very close to the HFM 201, the HFM 201 can be operated in any mode.
Oscillation is stable, the amount of superimposition on the laser 202 is constant, and the laser power does not change at the beginning of recording. Next, the timing chart of FIG. 4 will be described. T2
1 is a reproduction mode, T22 is a recording start mode, and T2.
Reference numeral 3 shows the recording stability mode. In T22 mode, T21
The recording fixed voltage 308 adjusted at the initial adjustment is added to the voltage required for the reproduction light power in the mode, and the recording power is output. However, the voltage required for reproducing light power does not change from that at the time of initial adjustment because the stabilized power supply is used for the power supply voltage of the HFM, so the recording power in T22 mode is used.
Is stable. Laser HFM drive circuit 5 in T23 mode
The servo characteristic of 06 stabilizes the recording power by the recording reference voltage. Next, a comparison between the conventional example and the second embodiment will be described with reference to FIG. In the same figure, in the conventional case, 40 is
As shown in FIG. 3, the recording power is adjusted so as to be optimally output, but when the voltage applied to the HFM changes in the market, the recording power changes at the start of recording, as indicated by 405. Since the HFM voltage is stable in the second embodiment, the optimum recording power is output even in the market, as indicated by 406. As is apparent from FIG. 7, the optical data storage / reproducing apparatus according to the present embodiment stabilizes the recording power when the recording power rises, and has an excellent effect on the recording margin against dust and dirt. ..

【0026】上述したように本例はHFMの出力振幅変
化が温度変化よりも、電圧変動に影響され易いことに対
する対策であり、ここでさらにHFMの振幅特性の温度
による影響が大きい場合は、図3のHFM201からH
FM専用安定化電源218に波線で示すようにフィード
バックし、エンベロープ検出等の回路手段によって、振
幅検出し、その出力が一定になるように電源電圧を変え
るか、または図示しないが、HFM内の高周波発振回路
のゲインやバイアスコントロールすることも振幅安定化
のためには非常に有効な手段となるものである。
As described above, this example is a countermeasure against the change in the output amplitude of the HFM being more susceptible to the change in voltage than the change in temperature. Here, when the influence of the temperature on the amplitude characteristic of the HFM is greater, 3 HFM201 to H
The stabilized power source 218 dedicated to FM is fed back as shown by a wavy line, the amplitude is detected by a circuit means such as envelope detection, and the power supply voltage is changed so that the output becomes constant, or a high frequency in the HFM is not shown. Controlling the gain and bias of the oscillation circuit is also a very effective means for stabilizing the amplitude.

【0027】以上のように本発明によれば情報媒体にデ
−タを書き込む又は前記情報媒体に既に書き込まれたデ
−タを読み込むためのレ−ザ光源と、デ−タ読み込み時
にノイズ削減するために前記レ−ザ光源に高周波重畳す
る高周波モジュ−ルと、前記レ−ザ光源と高周波モジュ
−ル駆動するためのレ−ザHFM回路と、前記高周波モ
ジュ−ルの発振出力を安定に動作するための手段として
例えばHFM専用安定化電源を設ける事によりHFMの
発振出力を安定化し、記録立上がりの高速化を実現する
とともに、パワ−を安定化する事ができる。
As described above, according to the present invention, a laser light source for writing data on the information medium or reading the data already written on the information medium, and noise reduction at the time of reading the data. To this end, a high-frequency module for high-frequency superimposing on the laser light source, a laser HFM circuit for driving the laser light source and the high-frequency module, and an oscillation output of the high-frequency module are stably operated. As a means for achieving this, for example, by providing a stabilizing power supply dedicated to the HFM, the oscillation output of the HFM can be stabilized, the speed of the rising edge of the recording can be realized, and the power can be stabilized.

【0028】[0028]

【発明の効果】以上のように本発明は、情報媒体にデ−
タを書き込む又は前記情報媒体に既に書き込まれたデ−
タを読み込むためのレ−ザ光源と、デ−タ読み込み時に
ノイズを削減するために前記レ−ザ光源に高周波重畳す
る高周波モジュ−ルと、前記レ−ザ光源と高周波モジュ
−ルを駆動するためのレ−ザHFM回路と、記録直前に
高周波モジュ−ルをOFFしON時とOFF時のレ−ザ
に流れる電流差を記憶するHFM重畳記憶部または、前
記高周波モジュ−ルの発振出力を安定にするための手段
とを設けることにより、記録立ち上がり時の高速化、記
録パワ−を精度良く安定化する優れた光学式デ−タ記憶
再生装置を提供できるものである。
As described above, the present invention can be applied to an information medium.
Data or data already written on the information medium.
A laser light source for reading data, a high-frequency module for high-frequency superimposing on the laser light source to reduce noise when reading data, and a laser light source and a high-frequency module for driving the laser light source. And a HFM superposition storage section for storing the difference between the currents flowing in the laser when the high frequency module is turned off immediately before recording and turning it on and off, or the oscillation output of the high frequency module. By providing the means for stabilizing, it is possible to provide an excellent optical data storage / reproducing apparatus which speeds up the start of recording and stabilizes the recording power with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における光学式デ−タ記
憶再生装置のレ−ザHFM駆動回路ブロック図
FIG. 1 is a block diagram of a laser HFM drive circuit of an optical data storage / reproduction device according to a first embodiment of the present invention.

【図2】本発明の第1の実施例における光学式デ−タ記
憶再生装置のレ−ザHFM駆動回路タイミングチャ−ト
FIG. 2 is a timing chart of a laser HFM drive circuit of the optical data storage / reproducing apparatus according to the first embodiment of the present invention.

【図3】本発明の第2の実施例における光学式デ−タ記
憶再生装置のレ−ザHFM駆動回路ブロック図
FIG. 3 is a block diagram of a laser HFM drive circuit of an optical data storage / reproduction device according to a second embodiment of the present invention.

【図4】本発明の第2の実施例における光学式デ−タ記
憶再生装置のレ−ザHFM駆動回路タイミングチャ−ト
FIG. 4 is a timing chart of a laser HFM drive circuit of an optical data storage / reproduction device according to a second embodiment of the present invention.

【図5】従来の光学式デ−タ記憶再生装置のレ−ザHF
M駆動回路ブロック図
FIG. 5: Laser HF of conventional optical data storage / reproduction device
M drive circuit block diagram

【図6】従来の光学式デ−タ記憶再生装置のレ−ザHF
M駆動回路タイミングチャ−ト図
FIG. 6 shows a laser HF of a conventional optical data storage / reproduction device.
M drive circuit timing chart

【図7】HFM付加時のレ−ザの電流−光特性図FIG. 7: Current-optical characteristic diagram of laser when HFM is added

【図8】本発明の第1の実施例、本発明の第2の実施例
及び従来の光学式デ−タ記憶再生装置のブロック図
FIG. 8 is a block diagram of a first embodiment of the present invention, a second embodiment of the present invention and a conventional optical data storage / reproduction device.

【符号の説明】[Explanation of symbols]

501 情報媒体 102 レ−ザ光源 101 高周波モジュ−ル(HFM) 506 レ−ザHFM駆動回路 119 HFM重畳記憶部 218 HFM専用安定化電源 501 information medium 102 laser light source 101 high frequency module (HFM) 506 laser HFM drive circuit 119 HFM superposition storage unit 218 HFM dedicated stabilizing power supply

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】情報媒体と、前記情報媒体にデ−タを書き
込む又は前記情報媒体に既に書き込まれたデ−タを読み
込むためのレ−ザ光源と、デ−タ読み込み時にノイズ削
減するために前記レ−ザ光源に高周波重畳する高周波モ
ジュ−ルと、前記レ−ザ光源と高周波モジュ−ル駆動す
るためのレ−ザ高周波モジュール駆動回路と、記録直前
に高周波モジュ−ルをOFFしON時とOFF時のレ−
ザを駆動する電流差を記憶する高周波モジュール重畳記
憶部とを備えた光学式デ−タ記憶再生装置。
1. An information medium, a laser light source for writing data on the information medium or for reading data already written on the information medium, and noise reduction at the time of reading the data. A high-frequency module for high-frequency superimposing on the laser light source, a laser high-frequency module drive circuit for driving the laser light source and the high-frequency module, and a high-frequency module turned off and turned on immediately before recording. And the delay when OFF
An optical data storage / reproduction device having a high-frequency module superimposition storage unit that stores a current difference that drives the laser.
【請求項2】起動時または記録動作前の再生動作中で信
号読み取りを必要としないタイミングにおいて、高周波
モジュ−ルをOFFしON時とOFF時のレ−ザを駆動
する電流差を記憶することを特徴とする光学式デ−タ記
憶再生装置。
2. A current difference for driving the laser at the time of turning on the high frequency module and turning it off and at the time of turning off the high frequency module at the timing at which the signal reading is not required at the time of start-up or during the reproducing operation before the recording operation. An optical data storage / reproduction device characterized by:
【請求項3】情報媒体と、前記情報媒体にデ−タを書込
む又は前記情報媒体に既に書込まれたデ−タを読込むた
めのレ−ザ光源と、デ−タ読込み時にノイズ削減するた
めに前記レ−ザ光源に高周波重畳する高周波モジュ−ル
と、前記レ−ザ光源と高周波モジュ−ルを駆動するため
のレ−ザ高周波モジュール駆動回路と、前記高周波モジ
ュ−ルの発振出力振幅を一定にする振幅安定化手段とを
備えた光学式デ−タ記憶再生装置。
3. An information medium, a laser light source for writing data on the information medium or for reading data already written on the information medium, and for reducing noise at the time of reading the data. A high-frequency module for high-frequency superimposing on the laser light source, a laser high-frequency module drive circuit for driving the laser light source and the high-frequency module, and an oscillation output amplitude of the high-frequency module. An optical data storage / reproduction device having an amplitude stabilizing means for maintaining a constant value.
JP4014549A 1992-01-30 1992-01-30 Optical data storing and reproducing device Pending JPH05210865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4014549A JPH05210865A (en) 1992-01-30 1992-01-30 Optical data storing and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4014549A JPH05210865A (en) 1992-01-30 1992-01-30 Optical data storing and reproducing device

Publications (1)

Publication Number Publication Date
JPH05210865A true JPH05210865A (en) 1993-08-20

Family

ID=11864237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4014549A Pending JPH05210865A (en) 1992-01-30 1992-01-30 Optical data storing and reproducing device

Country Status (1)

Country Link
JP (1) JPH05210865A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294130A (en) * 1988-09-30 1990-04-04 Yokogawa Electric Corp Apc driving circuit
JPH043479A (en) * 1990-04-19 1992-01-08 Olympus Optical Co Ltd Semiconductor laser drive

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294130A (en) * 1988-09-30 1990-04-04 Yokogawa Electric Corp Apc driving circuit
JPH043479A (en) * 1990-04-19 1992-01-08 Olympus Optical Co Ltd Semiconductor laser drive

Similar Documents

Publication Publication Date Title
KR100477274B1 (en) Optical recorder
US6345062B1 (en) Semiconductor laser control circuit, semiconductor laser apparatus, information recording/reproduction apparatus and image recording apparatus
CN100524982C (en) Laser drive, optical disc apparatus, and laser-driving method
JPH0490143A (en) Laser diode control system for optical recording/ reproducing device
JP2671467B2 (en) Laser drive circuit
US6501775B2 (en) Semiconductor laser driving circuit and semiconductor laser device
US6741041B2 (en) Power controller
JP2706262B2 (en) Semiconductor laser driver
JP2003338067A (en) Apparatus and method for controlling laser power for disk drive
JPH0595150A (en) Controller for laser
JP2887276B2 (en) Laser diode power control device
JPH05210865A (en) Optical data storing and reproducing device
JP3257287B2 (en) Optical disk recording device
US20030156512A1 (en) Optical power level-controlling device for stable oscillation of laser diode
JP3323033B2 (en) Semiconductor laser control device, semiconductor laser device, information recording / reproducing device, and image recording device
JPS60239925A (en) Semiconductor laser driving circuit
JP2910350B2 (en) Optical memory device and servo offset correction method therefor
JPH0731823B2 (en) Light source drive circuit
JP2795483B2 (en) Optical power control circuit for semiconductor light emitting device
JPH05299738A (en) Laser-diode control circuit and optical-disk driving device
JP2935268B2 (en) Optical power control circuit for semiconductor light emitting device
JP2505591B2 (en) Laser diode drive circuit for optical storage device
JP2636488B2 (en) Laser drive
JPH0594634A (en) Disk device
JPH0992915A (en) Semiconductor laser driver