JPH0521033B2 - - Google Patents

Info

Publication number
JPH0521033B2
JPH0521033B2 JP13119985A JP13119985A JPH0521033B2 JP H0521033 B2 JPH0521033 B2 JP H0521033B2 JP 13119985 A JP13119985 A JP 13119985A JP 13119985 A JP13119985 A JP 13119985A JP H0521033 B2 JPH0521033 B2 JP H0521033B2
Authority
JP
Japan
Prior art keywords
chelating agent
metal
eluent
group
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13119985A
Other languages
Japanese (ja)
Other versions
JPS61293556A (en
Inventor
Yasuhiko Inoe
Kimiaki Matsuda
Yoshiro Akyoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP13119985A priority Critical patent/JPS61293556A/en
Priority to EP86106932A priority patent/EP0204217B1/en
Priority to DE8686106932T priority patent/DE3665609D1/en
Priority to AU57861/86A priority patent/AU580416B2/en
Priority to US06/867,061 priority patent/US4797264A/en
Priority to CA000510244A priority patent/CA1286115C/en
Publication of JPS61293556A publication Critical patent/JPS61293556A/en
Publication of JPH0521033B2 publication Critical patent/JPH0521033B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は、キレヌト化剀に吞着した金属の溶離
方法に関し、曎に詳しくは、金属を吞着したキレ
ヌト化剀から金属を溶離するにあたり、皮以䞊
の還元剀を含有する塩基性氎溶液を甚いるこずに
よる金属の溶離方法に関する。 埓来の技術 埓来より、キレヌト化剀に吞着した金属の溶離
は、䞀般的には金属を吞着したキレヌト化剀を硫
酞・塩酞等の鉱酞の氎溶液ず接觊凊理するこずに
より行なわれおいるが、かかる方法による堎合、
キレヌト化剀がオキシム基、燐酞゚ステル基等の
耐酞性を有しない官胜基を有する堎合には官胜基
の分解による性胜䜎䞋をもたらし、奜たしくな
い。 たた䟋えば、匷酞性むオン亀換暹脂あるいは−
POOR2、−PHOR3等の燐系の官胜基を有す
るキレヌト化剀は、重金属ずの結合が匷く、モリ
ブデン、バナゞりム、りラン等の金属の溶離は埓
来法では難しい堎合が倚い。そのためそれら結合
力の匷い金属の溶離には、過酞化氎玠を含有した
鉱酞、金属むオンを含有した鉱酞溶液が甚いられ
おいる。 発明が解決しようずする問題点 しかしながら、鉱酞溶液による溶離では、溶離
率が䜎く、過酞化氎玠、金属を倚量に必芁ずする
等の問題を有しおいる。 かかる事情に鑑み、本発明者らは、䞊蚘のよう
な奜郜合を克服したキレヌト化剀に吞着した金属
の溶離方法を開発すべく怜蚎を行な぀た結果、還
元剀を含有する塩基氎溶液を溶離剀ずしお甚いる
こずにより、溶離速床が速く、比范的䜎濃床溶離
剀でも溶離が可胜で、高濃床域たで金属分を液状
で回収するこずができ、しかも吞収着剀の劣化を
本質的に招かないこずを芋出し、本発明を完成す
るに至぀た。 問題点を解決しようずするための手段 すなわち本発明は、キレヌト化剀に吞着した金
属を溶離剀により溶離するにあたり、溶離剀ずし
お還元剀および塩基性化合物を含有する氎溶液を
甚いるこずを特城ずするキレヌト化剀に吞着した
金属の溶離方法を提䟛するにある。 本発明方法の察象ずするキレヌト化剀は特に限
定されるものではなく、どのようなキレヌト化剀
にでも適甚できるが、特に、分子䞭にNOH、
−OR2、−POOR2、−PHOR3、−SR、
NOH、−(R)2、− 3匏䞭は、同䞀又
は、異なる氎玠、プニル基、アルキル基たたは
アルケニル基を瀺す。から遞ばれた官胜基又は
これらの金属塩の少くずも皮を有するキレヌト
化剀に察しお奜適である。 䞊蚘の本発明方法で奜適に䜿甚されるキレヌト
化剀は塩基性では比范的安定で、酞性で䞍安的な
キレヌト化剀であり、䞀般には、(1)アクリロニト
リル、α−クロルアクリロニトリル、シアン化ビ
ニリデン、メタアクリロニトリル等のシアン化ビ
ニル系単量䜓の重合䜓、若しくはシアン化ビニル
系単量䜓ず共重合が可胜な他の゚チレン系䞍飜和
単量䜓ずの共重合䜓に、ヒドロキシルアミン又は
ヒドロキシルアミンの誘導䜓を反応させおアミド
キシム基を有せしめたキレヌト暹脂、(2)アクリロ
ニトリル、α−クロルアクリロニトリル、シアン
化ビニリデン、メタアクリロニトリル等のシアン
化ビニル系単量䜓にヒドロキシルアミン又はヒド
ロキシルアミン誘導䜓を反応させたシアン化ビニ
ル系誘導䜓を単独重合又は共重合可胜な他の゚チ
レン系䞍飜和単量䜓ず共重合させた暹脂、(3)クロ
ルメチル基、ブロムメチル基等のハロゲン化アル
キル基あるいは臭玠、ペり玠等のハロゲン原子を
含有したスチレン−ゞビニルベンれン共重合䜓、
プノヌル暹脂、ポリ゚チレン、ポリプロピレン
等の重合䜓にリチりムゞプニルホスフむン、ナ
トリりムゞプニルホスフむン、リチりムプニ
ルホスフむン、トリクレゞルホスフむン等のホス
フむン化合物もしくはこれらの混合物を反応させ
るこずにより埗られるフオスフむン基もしくはホ
スホニりム塩基を有するキレヌト暹脂、(4)クロル
メチル基、ブロムメチル基等のハロゲン化アルキ
ル基を含有したスチレン−ゞビニルベンれン共重
合䜓、プノヌル暹脂、アニリン暹脂、−プ
ニレン重合䜓以䞋、ハロゲン化アルキル基を有
した暹脂ず称す。に亜リン酞トリ゚チル、亜リ
ン酞トリプニル、亜リン酞トリメチル等の亜リ
ン酞誘導䜓もしくはこれらの混合物以䞋、これ
らを亜燐酞誘導䜓ず称すを反応させるこずによ
り埗られるフオスフオン酞゚ステル基を有するキ
レヌト暹脂、(5)玚もしくは玚のアミノ基を有
する暹脂にクロルメチルフオスホン酞ゞ゚チル、
クロルメチルフオスホン酞゚チル、クロルメチル
フオスホン酞ゞプニル、クロルメチルフオスホ
ン酞ゞクレゞル、クロルメチルフオスフむン酞゚
チル等のハロゲン化アルキル燐酞゚ステルもしく
はこれらの混合物を反応させるこずにより埗られ
るアミノアルキレン燐酞゚ステル基を有するキレ
ヌト暹脂、(6)前蚘アミノアルキレン燐酞゚ステル
基を有するキレヌト暹脂を加氎分解するか、前蚘
アミノアルキレン燐酞゚ステル基を有する暹脂の
補造の時に甚いた亜燐酞誘導䜓を亜燐酞に倉える
以倖は党く同様にしお反応させるこずにより埗ら
れるアミノアルキレン燐酞基を有するキレヌト暹
脂、(7)クロルメチル基、ブロムメチル基等のハロ
ゲン化アルキル基あるいは臭玠、ペり玠等のハロ
ゲン原子を含有したスチレン−ゞビニルベンれン
共重合䜓にゞメチルアミン、ゞ゚チルアミン、ト
リメチルアミン、トリ゚チルアミン、ゞメチル゚
タノヌルアミン等を反応させるこずにより埗られ
る玚又は玚アミノ基を有するキレヌト暹脂、
(8)その他ゞブチルリン酞゚ステル、−゚チルヘ
キシル−プニルホスホン酞゚ステル、ゞブチル
〔ゞ゚チル−カルバモむルメチル〕ホスホン酞
゚ステル、ゞ−−゚チルヘキシル−燐酞゚ス
テル、−ノニル−サリチルアルドオキシム、
−ヒドロキシ−−ノニル−アセトプノンオキ
シム、ラりリルアミドオキシム、−オクチルベ
ンズアミドオキシム、−゚チルヘキシルむ゜ブ
チルゞチオ燐酞などの各皮氎難溶性キレヌト化剀
が挙げられる。 本発明におけるキレヌト化剀においお、金属塩
ずはキレヌト化剀䞭の官胜基ず金属の間のむオン
結合、キレヌト結合もしくは錯結合による金属塩
であ぀お、これら塩圢成の結合力が前蚘官胜基ず
吞着、回収を目的ずする金属の結合力より匱い金
属であれば特に制限されるものではない。 かかる金属塩を圢成するための金属ずしおは䞀
般にはナトリりム、カリりム、カルシりム、マグ
ネシりム等のアルカリ金属、アルカリ土類金属が
挙げられる。 本発明においお甚いられる金属を吞着したキレ
ヌト暹脂は、金属がどのような方法で吞着された
ものであ぀おもさし぀かえない。たた吞着される
金属の皮類も特に制限されないが、りラン、モリ
ブデン、レニりム、チタン、バナゞりム、ゲルマ
ニりム、タングステン等の酞化物あるいは、含酞
玠化合物ずなり易い金属が奜たしい。 本発明方法の実斜にあたり、溶離剀ずしおは還
元剀および塩基性化合物を含有し、か぀その濃床
がそれぞれ0.001〜芏定および0.05芏定以䞊で
ある氎溶液が奜たしく甚いられる。 溶離剀ずしお還元剀濃床が0.001芏定未満の塩
基性氎溶液を甚いる堎合には、金属の溶離が、実
質的に起きないか、又は金属の溶離速床が遅く、
溶離に長時間を芁するし、䞀方、芏定を超しお
もそれに比䟋した効果は埗がたい。たた還元剀濃
床が、0.001〜芏定であ぀おも、塩基性化合物
の濃床が0.05芏定より䜎い堎合には金属の芁離速
床が遅く、溶離に長時間を芁するので奜たしはな
い。 しかしお、䞊述のような特定濃床の還元剀ず特
定濃床の塩基性氎溶液ずを組合せるこずによ぀
お、目的ずする溶離速床、金属分の液状回収を可
胜ずし、しかも吞着剀の実質的な劣化を招かない
溶離剀ずなる。 本発明方法に甚いる溶離剀の構成成分ずしお
は、還元剀ずしおは、亜硫酞、亜硝酞、二酞化む
オり、チオ硫酞等の䜎玚酞化物たたはそれらの
塩、氎玠化ホり玠ナトリりム等の金属氎玠化物、
たたはヒドラゞン、ヒドロキシルアミン、ハむド
ロキノン、シナり酞、ホルムアルデヒドたたはそ
れらの誘導䜓が挙げられる。 たた、他の䞀員である塩基性化合物ずしおは、
氎酞化ナトリりム、氎酞化カリりム、氎酞化カル
シりム、氎酞化マグネシりム、アンモニアなどの
無機アルカリ化合物や、゚チレンゞアミン、ゞ゚
チレントリアミン、ゞ゚チルアミン、トリ゚チル
アミンなどの氎溶性有機アミンが挙げられる。か
かる還元剀ず、塩基性化合物ずは混合され氎溶液
ずしお甚いられる。 溶離剀は原則的には䞊蚘したようにそれぞれの
氎溶液ずしお䜿甚されるが、接觊凊理に差し支え
ない限り、有機溶媒を含んでいおもよい。 溶離剀の䜿甚量は特に制限されるものではなく
溶離剀の皮類、濃床、キレヌト化剀の皮類、吞着
された金属の皮類、含量等によ぀お倉わるが、こ
れは適宜予備実隓を行なうこずによ぀お蚭定する
こずができる。 金属を吞着したキレヌト化剀ず溶離剀の接觊枩
床は特に制限されるものではないが、通垞〜
100℃で実斜される。 接觊時間も特に制限されるものではない。 接觊方法は特に制限されるものではなく、たず
えば暹脂状のキレヌト化剀を充填した塔䞭ぞ溶離
剀を通液する方法、溶離剀の䞭ぞ暹脂状のキレヌ
ト化剀を浞挬し、次いで過分離する方法、溶離
剀䞭に液状のキレヌト化剀を加え、接觊撹拌埌、
静眮分離する方法等が採甚される。 溶離された金属含有液以䞋溶離液ず略す
は、金属の皮類、甚途によ぀おも異なるが、䞭
和、過等の凊理を行ない、金属氎酞化物ずしお
回収したり、あるいは溶離液をそのたた還元剀に
よる凊理、電解等を実斜するこずにより、金属を
回収するこずができる。 このようにしお金属むオンが溶離されたキレヌ
ト化剀は、そのたたあるいは必芁に応じお氎およ
びたたは氎酞化ナトリりム、氎酞化カリりム、
氎酞化カルシりム、氎酞化マグネシりム、アンモ
ニア等の塩基性氎溶液、塩酞、硫酞、硝酞、燐酞
等の酞性氎溶液で凊理をした埌再び金属むオンの
吞着捕集剀ずしお繰り返し甚いるこずができる。 発明の効果 以䞊詳述した本発明方法によれば、重金属ずの
結合力が倧である特殊の官胜基䟋えば−
OR2、−POOR2、NOH、−N+OR3等を有
するキレヌト化剀からの金属の溶離を容易に行な
うこずが可胜ずなり、溶離率、溶離速床を著しく
高めるこずが可胜ずな぀た。 たた本発明方法に甚いる溶離剀の成分濃床は、
埓来䞀般に甚いられおいる溶離剀濃床に比べお、
かなり䜎濃床で甚いるこずができるため、暹脂の
劣化を抑え溶離剀による劣化を本質的に招かない
為、その工業的意矩は極めお倧なるものである。 以䞋、本発明を実斜䟋によ぀おさらに詳现に説
明するが、本発明はその芁旚を越えない限り以䞋
の実斜䟋によ぀お限定されるものでないこずは蚀
うたでもない。 実斜䟋〜13、比范䟋〜 スミキレヌト MC−95アミノメチレンホス
ホン酞基を有するキレヌト化剀、䜏友化孊瀟補
10mlを内埄10のカラムに充填し、りラン濃
床100mgの硫酞氎溶液を䞋向流で空間速床
10hr-1で時間通液を行ないりランを吞着させ
た。 次いで第衚に瀺す組成の溶離剀を宀枩䞋、䞋
向流で空間速床10hr-1で時間通し、キレヌト化
剀に吞着したりランの溶離を行な぀た。 埗られた溶離液䞭のりラン濃床は第衚に瀺す
ようであ぀た。
(Industrial Application Field) The present invention relates to a method for eluting metals adsorbed on a chelating agent, and more specifically, in eluting metals from a chelating agent that has adsorbed metals, the present invention relates to a method for eluting metals from a chelating agent that contains one or more reducing agents. This invention relates to a method for eluting metals using a basic aqueous solution. (Prior art) Conventionally, the elution of metals adsorbed onto chelating agents has generally been carried out by contacting the chelating agent that has adsorbed metals with an aqueous solution of mineral acids such as sulfuric acid or hydrochloric acid. However, if this method is used,
When the chelating agent has a functional group that does not have acid resistance, such as an oxime group or a phosphoric acid ester group, this is not preferable because the performance deteriorates due to decomposition of the functional group. For example, strongly acidic ion exchange resin or -
Chelating agents with phosphorus-based functional groups such as PO(OR) 2 and -PH(OR) 3 have strong bonds with heavy metals, and it may be difficult to elute metals such as molybdenum, vanadium, and uranium using conventional methods. many. Therefore, mineral acids containing hydrogen peroxide and mineral acid solutions containing metal ions are used to elute these metals with strong binding strength. (Problems to be Solved by the Invention) However, elution using a mineral acid solution has problems such as a low elution rate and the need for large amounts of hydrogen peroxide and metal. In view of these circumstances, the present inventors conducted studies to develop a method for eluating metals adsorbed on chelating agents that overcomes the above-mentioned disadvantages, and found that an aqueous base solution containing a reducing agent was used as an eluent. By using it as a solvent, the elution rate is fast, it is possible to elute with a relatively low concentration eluent, and metals can be recovered in liquid form up to a high concentration range, and it essentially does not cause deterioration of the absorbent. They discovered this and completed the present invention. (Means for Solving the Problems) That is, the present invention is characterized by using an aqueous solution containing a reducing agent and a basic compound as the eluent in eluting the metal adsorbed on the chelating agent with an eluent. The present invention provides a method for eluting metals adsorbed on a chelating agent. The chelating agent targeted by the method of the present invention is not particularly limited and can be applied to any chelating agent, but in particular, =NOH,
−P(OR) 2 , −PO(OR) 2 , −PH(OR) 3 , −SR, =
A functional group selected from NOH, -N(R) 2 , -N(R) 3 (wherein R represents the same or different hydrogen, phenyl group, alkyl group or alkenyl group) or a metal salt thereof It is suitable for chelating agents having at least one of the following. The chelating agents preferably used in the above-mentioned method of the present invention are chelating agents that are relatively stable under basic conditions and unstable under acidic conditions, and generally include (1) acrylonitrile, α-chloroacrylonitrile, vinylidene cyanide. , polymers of vinyl cyanide monomers such as methacrylonitrile, or copolymers of vinyl cyanide monomers and other ethylenically unsaturated monomers that can be copolymerized with hydroxylamine or hydroxyl. A chelate resin that has an amidoxime group by reacting an amine derivative, (2) Reacting hydroxylamine or a hydroxylamine derivative with a vinyl cyanide monomer such as acrylonitrile, α-chloroacrylonitrile, vinylidene cyanide, methacrylonitrile, etc. (3) halogenated alkyl groups such as chloromethyl group, bromomethyl group, or bromine, iodine, etc. a styrene-divinylbenzene copolymer containing a halogen atom,
Phosphine obtained by reacting a phosphine compound such as lithium diphenylphosphine, sodium diphenylphosphine, lithium phenylphosphine, tricresylphosphine, or a mixture thereof with a polymer such as phenolic resin, polyethylene, or polypropylene. (4) Styrene-divinylbenzene copolymers containing halogenated alkyl groups such as chloromethyl groups and bromomethyl groups, phenolic resins, aniline resins, m-phenylene polymers (hereinafter referred to as halogenated phosphorous acid derivatives such as triethyl phosphite, triphenyl phosphite, trimethyl phosphite, or mixtures thereof (hereinafter referred to as phosphorous acid derivatives). A chelate resin having a phosphonate group obtained by (5) a resin having a primary or secondary amino group, diethyl chloromethylphosphonate,
Aminoalkylene phosphate groups obtained by reacting halogenated alkyl phosphates such as ethyl chloromethyl phosphonate, diphenyl chloromethyl phosphonate, dicresyl chloromethyl phosphonate, ethyl chloromethyl phosphonate, or mixtures thereof; (6) Hydrolyzing the chelate resin having an aminoalkylene phosphate group or changing the phosphorous acid derivative used in the production of the aminoalkylene phosphate group-containing resin to phosphorous acid. A chelate resin having an aminoalkylene phosphate group obtained by a similar reaction, (7) a styrene-divinylbenzene copolymer containing a halogenated alkyl group such as a chloromethyl group or a bromomethyl group, or a halogen atom such as bromine or iodine. A chelate resin having a tertiary or quaternary amino group obtained by reacting dimethylamine, diethylamine, trimethylamine, triethylamine, dimethylethanolamine, etc. with
(8) Others dibutyl phosphate, 2-ethylhexyl-phenylphosphonic acid ester, dibutyl [(diethyl-carbamoyl)methyl]phosphonic acid ester, di-(2-ethylhexyl)-phosphoric acid ester, 4-nonyl-salicylaldoxime, O
Examples include various poorly water-soluble chelating agents such as -hydroxy-p-nonyl-acetophenone oxime, laurylamide oxime, 4-octylbenzamide oxime, and 2-ethylhexylisobutyldithiophosphoric acid. In the chelating agent of the present invention, a metal salt is a metal salt formed by an ionic bond, a chelate bond, or a complex bond between a functional group in the chelating agent and a metal, and the bonding force of the salt formation is between the functional group and the metal. There are no particular restrictions on the metal as long as it is a metal whose bonding force is weaker than that of the metal to be adsorbed and recovered. Metals for forming such metal salts generally include alkali metals and alkaline earth metals such as sodium, potassium, calcium, and magnesium. The metal-adsorbed chelate resin used in the present invention may be one in which the metal is adsorbed by any method. The type of metal to be adsorbed is also not particularly limited, but metals that easily become oxides or oxygen-containing compounds such as uranium, molybdenum, rhenium, titanium, vanadium, germanium, and tungsten are preferred. In carrying out the method of the present invention, an aqueous solution containing a reducing agent and a basic compound and having a concentration of 0.001 to 3N and 0.05N or higher, respectively, is preferably used as the eluent. When a basic aqueous solution with a reducing agent concentration of less than 0.001 normal is used as an eluent, metal elution does not substantially occur or the metal elution rate is slow;
It takes a long time for elution, and on the other hand, even if it exceeds 3N, it is difficult to obtain a proportional effect. Further, even if the concentration of the reducing agent is 0.001 to 3N, it is not preferable if the concentration of the basic compound is lower than 0.05N because the rate of metal removal is slow and elution takes a long time. Therefore, by combining a reducing agent with a specific concentration and a basic aqueous solution with a specific concentration as described above, it is possible to achieve the desired elution rate and to recover metal components in liquid form, while also reducing the substantial amount of adsorbent. It becomes an eluent that does not cause deterioration. The constituent components of the eluent used in the method of the present invention include, as reducing agents, lower oxides or salts thereof such as sulfurous acid, nitrous acid, sulfur dioxide, and thiosulfate; metal hydrides such as sodium borohydride;
Or hydrazine, hydroxylamine, hydroquinone, oxalic acid, formaldehyde or derivatives thereof. In addition, as other basic compounds,
Examples include inorganic alkali compounds such as sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, and ammonia, and water-soluble organic amines such as ethylenediamine, diethylenetriamine, diethylamine, and triethylamine. Such a reducing agent and a basic compound are mixed and used as an aqueous solution. The eluent is basically used as an aqueous solution as described above, but it may contain an organic solvent as long as it does not interfere with the contact treatment. The amount of eluent to be used is not particularly limited and varies depending on the type and concentration of the eluent, the type of chelating agent, the type and content of the adsorbed metal, but this can be determined by conducting preliminary experiments as appropriate. It can be set accordingly. The contact temperature between the chelating agent that has adsorbed the metal and the eluent is not particularly limited, but is usually between 0 and 0.
Performed at 100℃. The contact time is also not particularly limited. The contact method is not particularly limited, and examples include a method in which the eluent is passed through a column filled with a resinous chelating agent, a method in which the resinous chelating agent is immersed in the eluent, and then overseparation is performed. Add a liquid chelating agent to the eluent, and after contact stirring,
A method such as static separation is adopted. Eluted metal-containing liquid (hereinafter abbreviated as eluent)
Although it varies depending on the type of metal and its purpose, it can be recovered as a metal hydroxide through neutralization, oxidation, etc., or the eluate can be directly treated with a reducing agent, electrolyzed, etc. , metals can be recovered. The chelating agent from which the metal ions have been eluted in this way can be used as is or as needed with water and/or sodium hydroxide, potassium hydroxide,
After treatment with a basic aqueous solution such as calcium hydroxide, magnesium hydroxide, or ammonia, or an acidic aqueous solution such as hydrochloric acid, sulfuric acid, nitric acid, or phosphoric acid, it can be used repeatedly as an adsorption collector for metal ions. (Effects of the Invention) According to the method of the present invention described in detail above, special functional groups having a strong binding force with heavy metals, such as -P
It is now possible to easily elute metals from chelating agents containing (OR) 2 , -PO(OR) 2 , =NOH, -N + (OR) 3, etc., significantly increasing the elution rate and elution rate. It became possible. In addition, the component concentration of the eluent used in the method of the present invention is
Compared to the eluent concentration commonly used in the past,
Since it can be used at a fairly low concentration, it suppresses the deterioration of the resin and essentially does not cause deterioration due to the eluent, so its industrial significance is extremely great. Hereinafter, the present invention will be explained in more detail with reference to examples, but it goes without saying that the present invention is not limited to the following examples unless it exceeds the gist thereof. Examples 1 to 13, Comparative Examples 1 to 6 Sumikylate MC-95 (chelating agent having aminomethylene phosphonic acid group, manufactured by Sumitomo Chemical Co., Ltd.)
Pack 10ml into a column with an inner diameter of 10m/m, and add a sulfuric acid aqueous solution with a uranium concentration of 100mg/m to a column with a downward space velocity.
The liquid was passed for 1 hour at 10 hr -1 to adsorb uranium. Next, an eluent having the composition shown in Table 1 was passed through the reactor at room temperature in a downward flow at a space velocity of 10 hr -1 for 1 hour to elute the uranium adsorbed on the chelating agent. The uranium concentration in the obtained eluate was as shown in Table 1.

【衚】【table】

【衚】 実斜䟋 14 アクリロニトリルずゞビニルベンれンの共重合
䜓に゚チレンゞアミン、二硫化炭玠を反応させお
埗た−CSSH基を有する暹脂状キレヌト化剀
50mlを内埄10のカラムに充填し、モリブデ
ン濃床120mg、10重量NaClを含有する溶液
1500mlを時間通液しおモリブデンを吞着させ
た。次いで氎200mlを流䞋させた埌、ヒドロキシ
ルアミンおよび苛性゜ヌダの濃床がそれぞれ0.1
芏定および0.5芏定である混合氎溶液1000mlを宀
枩䞋時間で流し、キレヌト化剀に吞着されたモ
リブデンの溶離を行な぀た。次いでむオン亀換氎
200mlで氎掗を行な぀た埌、䞊蚘の方法でモリブ
デン含有液の通液および溶離再生を20回繰り返し
たずころ回目のモリブデン吞着率を100ずした
時、20回目の吞着率は98であ぀た。 比范䟋  実斜䟋14で甚いた溶離剀を芏定硫酞氎溶液に
倉えた以倖は、䞊蚘ず党く同様にしおモリブデン
含有液の通液および溶離再生を行な぀たずころ、
20回目の吞着率は、䞊蚘回目のモリブデン吞着
率を100ずした時に察しお12であ぀た。 実斜䟋 15〜29 䞋蚘キレヌト化剀〜をそれぞれml䜿甚
し、そのそれぞれに぀いお、100mgのレニり
ムを含有する0.5芏定塩酞氎溶液100mlず時間接
觊凊理を行ない、レニりムを吞着させたそれぞれ
のキレヌト化剀、たたはキレヌト化剀溶液を埗
た。それぞれのレニりム吞着量を第衚に瀺す。 それぞれのレニりム吞着キレヌト化剀を亜硫酞
ナトリりムおよび苛性゜ヌダ濃床がそれぞれ0.01
芏定、0.5芏定である混合氎溶液50mlず混合し、
時間接觊凊理したのちのレニりム溶離量は第
衚に瀺す通りであ぀た。 比范䟋 〜20 実斜䟋15〜29の溶離剀を芏定硫酞に倉えた以
倖は同様の操䜜を行ないレニりムの溶離量を求め
第衚に瀺した。 キレヌト化剀 アクリロニトリルずゞビニルベンれンの共重合
䜓に硫酞ヒドロキシルアミンずヒドラゞン氎溶
液を反応させお埗たNOH基、NH基、−
NH2基および−NHNH2基を有する暹脂状キ
レヌト化剀。 キレヌト化剀 クロルメチル化ポリスチレン200重量郚ずトリ
ブチルホスフむン200重量郚をゞメチルホルム
アミド溶媒䞭で反応させお埗た四玚ホスホニり
ム塩基を有する暹脂。 キレヌト化剀 クロルメチル化ポリスチレン200重量郚ずトリ
プニルホスフむン260重量郚をゞメチルホル
ムアミド溶媒䞭反応させお埗た四玚ホスホニり
ム塩基を有する暹脂。 キレヌト化剀 臭玠化ポリスチレン150重量郚をテトラヒドロ
フラン溶媒䞭、1.6モル−ブチルリチりム
−ヘキサン溶液64重量郚ず反応させおリチりム
ポリスチレンを埗た。これをテトラヒドロフラ
ン溶媒䞭、クロルゞプニルフオスフむン300
重量郚ず反応させ、さらに塩化メチレン溶媒
䞭、40過酢酞371重量郚で酞化しお埗たフオ
スフむン基を有する暹脂。 キレヌト化剀 キレヌト化剀を20苛性゜ヌダ氎溶液䞭で加
氎分解しお埗たフオスホン酞のナトリりム塩を
有する暹脂。 キレヌト化剀 ポリスチレン100重量郚をクロロホルム溶媒䞭、
䞉塩化燐150重量郚の反応させた埌、加氎分解
反応しお埗たフオスフむン酞基を有する暹脂。 キレヌト化剀 アミノ化ポリスチレン100重量郚を−ゞ
クロル゚タン溶媒䞭、クロルメチルフオスフむ
ン酞クレシル120重量郚ず反応しお埗たフオス
フむン酞゚ステル基を有する暹脂。 キレヌト化剀 スミキレヌト MC−95䜏友化孊瀟補、ゞ゚
チレントリアミノメチレン燐酞基を有する暹
脂。 キレヌト化剀 −ベンズむ゜キサゟヌル−−アセトア
ミドキシムずレゟルシンずホルマリンを反応さ
せお埗た暹脂。 キレヌト化剀 シアン化ビニリデンずゞビニルベンれンずアク
リル酞メチルずの共重合䜓をヒドロキシルアミ
ンず反応させお埗たビニルゞアミドゞオキシム
−ゞビニルベンれン−アクリル酞共重合暹脂。 キレヌト化剀 スミキレヌト MC−30〔むミノゞ酢酞基を有
するキレヌト化剀䜏友化孊瀟補〕 キレヌト化剀 −゚チルヘキシル−プニルホスホン酞゚ス
テル キレヌト化剀 ゞブチル〔ゞ゚チルカルバモむルメチル〕
ホスホン酞゚ステル キレヌト化剀 −ドデシルベンゞルアミノメチレンホスホン
酾 キレヌト化剀 −゚チルヘキシルむ゜ブチルゞチオ燐酞
[Table] Example 14 Resin-like chelating agent having a -CS(SH) group obtained by reacting a copolymer of acrylonitrile and divinylbenzene with ethylenediamine and carbon disulfide
Fill a column with an inner diameter of 10 m/m with 50 ml of a solution containing 120 mg/m of molybdenum and 10 wt% NaCl.
Molybdenum was adsorbed by passing 1500 ml of the solution for 3 hours. Then, after flowing down 200 ml of water, the concentrations of hydroxylamine and caustic soda were each 0.1.
1000 ml of a mixed aqueous solution of normal and 0.5 normal was passed at room temperature for 1 hour to elute molybdenum adsorbed on the chelating agent. Then ion exchange water
After rinsing with 200 ml of water, the above method was used to pass the molybdenum-containing solution and elute and regenerate it 20 times. When the molybdenum adsorption rate for the first time was 100, the adsorption rate for the 20th time was 98%. Ta. Comparative Example 5 A molybdenum-containing solution was passed and elution regeneration was carried out in exactly the same manner as above except that the eluent used in Example 14 was changed to a 2N sulfuric acid aqueous solution.
The adsorption rate at the 20th time was 12% when the molybdenum adsorption rate at the first time was set as 100. Examples 15 to 29 Using 5 ml of each of the following chelating agents A to O, contact treatment was performed for 3 hours with 100 ml of a 0.5 N hydrochloric acid aqueous solution containing 100 mg of rhenium, and each chelate was adsorbed with rhenium. A chelating agent or chelating agent solution was obtained. Table 2 shows the adsorption amount of each rhenium. Each rhenium adsorption chelating agent was treated with sodium sulfite and caustic soda concentrations of 0.01 each.
Mix with 50ml of mixed aqueous solution that is 0.5N,
The amount of rhenium eluted after 3 hours of contact treatment was the second
It was as shown in the table. Comparative Examples 6-20 The same operation as in Examples 15-29 was performed except that 2N sulfuric acid was used, and the amount of rhenium eluted was determined and shown in Table 2. Chelating agent A: =NOH group, =NH group, - obtained by reacting a copolymer of acrylonitrile and divinylbenzene with hydroxylamine sulfate and an aqueous hydrazine solution.
A resinous chelating agent having NH2 and -NHNH2 groups. Chelating agent B: A resin having a quaternary phosphonium base obtained by reacting 200 parts by weight of chloromethylated polystyrene and 200 parts by weight of tributylphosphine in a dimethylformamide solvent. Chelating agent C: A resin having a quaternary phosphonium base obtained by reacting 200 parts by weight of chloromethylated polystyrene and 260 parts by weight of triphenylphosphine in a dimethylformamide solvent. Chelating agent D: Lithium polystyrene was obtained by reacting 150 parts by weight of brominated polystyrene with 64 parts by weight of a 1.6 mol% n-butyllithium-hexane solution in tetrahydrofuran solvent. This was added to chlordiphenylphosphin 300 in tetrahydrofuran solvent.
A resin having a phosphine group obtained by reacting with 371 parts by weight of 40% peracetic acid in a methylene chloride solvent. Chelating agent E: A resin containing a sodium salt of phosphonic acid obtained by hydrolyzing chelating agent B in a 20% aqueous solution of caustic soda. Chelating agent F: 100 parts by weight of polystyrene in chloroform solvent,
A resin containing phosphinic acid groups obtained by reacting 150 parts by weight of phosphorus trichloride and then hydrolyzing it. Chelating agent G: A resin having a phosphinate group obtained by reacting 100 parts by weight of aminated polystyrene with 120 parts by weight of cresyl chloromethylphosphinate in a 1,2-dichloroethane solvent. Chelating agent H: Sumikylate MC-95 (manufactured by Sumitomo Chemical Co., Ltd.), a resin having a diethylenetriaminomethylene phosphate group. Chelating agent I: A resin obtained by reacting 1,2-benzisoxazole-3-acetamidoxime, resorcinol, and formalin. Chelating Agent J: Vinyl diamide dioxime-divinylbenzene-acrylic acid copolymer resin obtained by reacting a copolymer of vinylidene cyanide, divinylbenzene, and methyl acrylate with hydroxylamine. Chelating agent K; Sumikylate MC-30 [(Chelating agent having iminodiacetic acid group (manufactured by Sumitomo Chemical)] Chelating agent L; 2-ethylhexyl-phenylphosphonic acid ester chelating agent M; Dibutyl [(diethylcarbamoyl)methyl ]
Phosphonic acid ester chelating agent N; 4-dodecylbenzylaminomethylenephosphonic acid chelating agent O; 2-ethylhexylisobutyldithiophosphoric acid

【衚】【table】

【衚】【table】

【衚】 実斜䟋30〜33、比范䟋21〜24 第衚に瀺す各皮金属を吞着した各皮キレヌト
化剀10mlを内埄10のカラムに充填し、第
衚に瀺す組成の溶離剀を宀枩䞋、䞋向流で空間速
床5hr-1で時間通し、吞着された金属の溶離を
行な぀たずころ、第衚に瀺す結果を埗た。
[Table] Examples 30 to 33, Comparative Examples 21 to 24 10 ml of various chelating agents adsorbing various metals shown in Table 3 was packed into a column with an inner diameter of 10 m/m, and
The adsorbed metals were eluted by passing an eluent having the composition shown in the table in a downward flow at room temperature at a space velocity of 5 hr -1 for 6 hours, and the results shown in Table 3 were obtained.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  キレヌト化剀に吞着した金属を溶離剀により
溶離するにあたり、溶離剀ずしお還元剀および塩
基性化合物を含有する氎溶液を甚いるこずを特城
ずするキレヌト化剀に吞着した金属の溶離方法。  キレヌト化剀が、分子䞭にNOH、−
OR2、−POOR2、−PHOR3、−SR、−(R)2
たたは− 3䜆し、䞊匏䞭は同䞀たたは
異な぀お氎玠、プニル基、アルキル基たたはア
ルケニル基を瀺すから遞ばれる官胜基もしくは
その金属塩の少なくずも皮を有するキレヌト化
剀である特蚱請求の範囲第項に蚘茉の金属の溶
離方法。  金属が酞化物あるいは含酞玠化合物ずなりう
る金属である特蚱請求の範囲第項たたは第項
に蚘茉の金属の溶離方法。  溶離剀䞭の還元剀の濃床が0.001〜芏定お
よび塩基性化合物の濃床が0.05芏定以䞊である特
蚱請求の範囲第、第たたは第項に蚘茉の金
属の溶離方法。
[Claims] 1. A method for eluting the metal adsorbed on the chelating agent using an aqueous solution containing a reducing agent and a basic compound as the eluent. Elution method. 2 The chelating agent has =NOH, -P in the molecule
(OR) 2 , −PO(OR) 2 , −PH(OR) 3 , −SR, −N(R) 2
or - A chelating agent having at least one functional group selected from N(R) 3 (wherein R in the above formula is the same or different and represents hydrogen, a phenyl group, an alkyl group, or an alkenyl group) or a metal salt thereof. A metal elution method according to claim 1. 3. The metal elution method according to claim 1 or 2, wherein the metal is a metal that can become an oxide or an oxygen-containing compound. 4. The metal elution method according to claim 1, 2 or 3, wherein the concentration of the reducing agent in the eluent is 0.001 to 3N and the concentration of the basic compound is 0.05N or more.
JP13119985A 1985-05-28 1985-06-17 Method for eluting metal adsorbed on chelating agent Granted JPS61293556A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP13119985A JPS61293556A (en) 1985-06-17 1985-06-17 Method for eluting metal adsorbed on chelating agent
EP86106932A EP0204217B1 (en) 1985-05-28 1986-05-22 Recovery of metals adsorbed on chelating agents
DE8686106932T DE3665609D1 (en) 1985-05-28 1986-05-22 Recovery of metals adsorbed on chelating agents
AU57861/86A AU580416B2 (en) 1985-05-28 1986-05-23 Recovery of metals adsorbed on chelating agents
US06/867,061 US4797264A (en) 1985-05-28 1986-05-27 Recovery of metals adsorbed on chelating agents
CA000510244A CA1286115C (en) 1985-05-28 1986-05-28 Recovery of metals adsorbed on chelating agents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13119985A JPS61293556A (en) 1985-06-17 1985-06-17 Method for eluting metal adsorbed on chelating agent

Publications (2)

Publication Number Publication Date
JPS61293556A JPS61293556A (en) 1986-12-24
JPH0521033B2 true JPH0521033B2 (en) 1993-03-23

Family

ID=15052350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13119985A Granted JPS61293556A (en) 1985-05-28 1985-06-17 Method for eluting metal adsorbed on chelating agent

Country Status (1)

Country Link
JP (1) JPS61293556A (en)

Also Published As

Publication number Publication date
JPS61293556A (en) 1986-12-24

Similar Documents

Publication Publication Date Title
EP0204217B1 (en) Recovery of metals adsorbed on chelating agents
JPS60145913A (en) Elution of indium absorbed to chelate resin
JPH0557025B2 (en)
Alexandratos et al. Development of bifunctional polymers for metal ion separations: ionic recognition with polymer-supported reagents
Dudzinska et al. Anion exchange studies of lead-EDTA complexes
JPH0521033B2 (en)
JPH064139B2 (en) Method for elution of metal adsorbed on chelating agent
JPS62176914A (en) Recovery of rare metal
JPS6157899B2 (en)
Ripperger et al. Polymer-supported phosphorus-containing ligands for selective metal ion complexation
JPH0623051B2 (en) Recovery method of rhenium
JPH0777617B2 (en) Elution method of heavy metals adsorbed on chelating agents
JPS6376831A (en) Recovering method for rare metal
JPS58172256A (en) Recovery of indium
JPS6354991A (en) Method for removing lead
JPS62123016A (en) Recovery of rare metal from strongly acidic solution
JPH0463014B2 (en)
JPH0771636B2 (en) Purification method of inorganic salt bath
JPS59123540A (en) Regenerating method of chelate resin
JPH01293139A (en) Method for eluting heavy metal
Lupa et al. Use of phosphorus-containing polymers for the removal of metal ions from wastewater
JPS6360242A (en) Method for refining indium
JPS60260423A (en) Method for recovering germanium
Alexandratos Polymer-supported reagents: The role of bifunctionality in the design of ion-selective complexants
Alexandratos Polymer-Supported Reagents