JPH05210132A - Polarization control method for lithium niobate and lithium tantalate and production of optical waveguide device by this method and optical waveguide device - Google Patents

Polarization control method for lithium niobate and lithium tantalate and production of optical waveguide device by this method and optical waveguide device

Info

Publication number
JPH05210132A
JPH05210132A JP4224350A JP22435092A JPH05210132A JP H05210132 A JPH05210132 A JP H05210132A JP 4224350 A JP4224350 A JP 4224350A JP 22435092 A JP22435092 A JP 22435092A JP H05210132 A JPH05210132 A JP H05210132A
Authority
JP
Japan
Prior art keywords
polarization
substrate
electrodes
electrode
domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4224350A
Other languages
Japanese (ja)
Other versions
JP3303346B2 (en
Inventor
Masahiro Yamada
正裕 山田
Naoji Nada
直司 名田
Shin Kawakubo
伸 川久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP22435092A priority Critical patent/JP3303346B2/en
Publication of JPH05210132A publication Critical patent/JPH05210132A/en
Application granted granted Critical
Publication of JP3303346B2 publication Critical patent/JP3303346B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain polarization inversion structures with good controllability by averting the surface contamination, change in refractive index, etc., of a substrate consisting of lithium niobate LN or lithium tantalate LT. CONSTITUTION:The polarization inversion structures 30 are formed by disposing 1st and 2nd electrodes 1 and 2, in the polarization direction shown by arrows d of the substrate 10 consisting of the monodomained LN or LT, forming at least the 1st electrodes 1 to the patterns corresponding to the patterns of the polarization inversion structures 30 to be finally obtd., confining the distances between the 1st and 2nd electrodes 1 and 2 to <=200mum in the case of the LN and <=700mum in the case of the LT and impressing the voltage between these electrodes 1 and 2 in such a manner that a negative potential is attained on the negative side of the spontaneous polarization of the substrate 10 and a positive potential on the positive side in the polarization control method for the LN or LT by forming the prescribed polarization inversion structures 30 on the above-mentioned substrate 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば光第2高調波発
生素子(以下SHG素子という)等の光デバイスの形成
に適用して好適なニオブ酸リチウム及びタンタル酸リチ
ウムの分極制御方法とこれによる光導波路デバイスの製
造方法及び光導波路デバイスに係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling polarization of lithium niobate and lithium tantalate, which is suitable for application to the formation of an optical device such as an optical second harmonic generating element (hereinafter referred to as SHG element). The present invention relates to an optical waveguide device manufacturing method and an optical waveguide device.

【0002】[0002]

【従来の技術】近年特にSHG素子等の光デバイス装置
において、その表面に周期的な分極反転構造いわゆるド
メイン反転構造を形成して光出力等の特性の向上をはか
ることが提案されている。
2. Description of the Related Art In recent years, it has been proposed to improve characteristics such as optical output by forming a periodically domain-inverted structure, that is, a domain-inverted structure on the surface of an optical device such as an SHG element.

【0003】例えばSHG素子は、周波数ωの光を導入
すると、2ωの周波数の第2高調波の光を発生するもの
で、このSHG素子によって単一波長光の波長範囲の拡
大化がはかられ、これに伴いレーザの利用範囲の拡大化
と各技術分野でのレーザ光利用の最適化をはかることが
できる。例えばレーザ光の短波長化によってレーザ光を
用いた光記録再生、光磁気記録再生等において、その記
録密度の向上をはかることができる。
For example, the SHG element generates light of the second harmonic of the frequency of 2ω when the light of the frequency ω is introduced, and the wavelength range of the single wavelength light can be expanded by the SHG element. Accordingly, it is possible to expand the range of use of lasers and optimize the use of laser light in each technical field. For example, the recording density can be improved in optical recording / reproducing, magneto-optical recording / reproducing, etc. using laser light by shortening the wavelength of the laser light.

【0004】このようなSHG素子としては、例えばK
TP(KTiOPO4 )を用いたいわゆるバルク型のS
HG素子や、より大なる非線形光学定数を利用して位相
整合を行う導波路型のSHG素子、例えばニオブ酸リチ
ウムLiNbO3 (LN)等の非線形光学材料より成る
単結晶基板の上に線形導波路を形成して、これに近赤外
光の基本波を入力して第2高調波の例えば緑、青色光を
放射モードとして基板側からとりだすチェレンコフ放射
型のSHG素子等がある。
An example of such an SHG element is K
So-called bulk type S using TP (KTiOPO 4 ).
An HG element or a waveguide type SHG element that performs phase matching using a larger nonlinear optical constant, for example, a linear waveguide on a single crystal substrate made of a nonlinear optical material such as lithium niobate LiNbO 3 (LN). There is a Cherenkov radiation type SHG element or the like that forms a light source and inputs the fundamental wave of near infrared light to this to take out the second harmonic, for example, green or blue light as a radiation mode from the substrate side.

【0005】しかしながらバルク型SHG素子はその特
性上SHG変換効率が比較的低く、また廉価で高品質が
得られる上述のLNやタンタル酸リチウムLiTaO3
(LT)を用いることができない。またチェレンコフ放
射型SHG素子は、SHGビームの放射方向が基板内方
向であり、ビームスポット形状も例えば三日月状スポッ
トという特異な形状をなし、実際の使用においての問題
点が存在する。
However, the bulk-type SHG device has a relatively low SHG conversion efficiency due to its characteristics, and is inexpensive and of high quality. The above-mentioned LN and lithium tantalate LiTaO 3 can be obtained.
(LT) cannot be used. In addition, the Cherenkov radiation type SHG element has a problem that the SHG beam is emitted in the direction toward the inside of the substrate and the beam spot shape is, for example, a crescent spot, which is a peculiar shape.

【0006】変換効率の高いデバイス実現のためには、
基本波と第2高調波の位相伝播速度を等しくしなくては
ならない。これを疑似的に行う方法として非線形光学定
数の+−を周期的に配列する方法が提案されている(J.
A.Armstrong,N.Bloembergen,他、Phys.Rev.,127,1918(1
962)) 。これを実現する方法として結晶(例えば結晶
軸)の方向を周期的に反転させる方法がある。具体的な
方法としては、例えば結晶を薄く切断して貼り合せる方
法(岡田、滝沢、家入、NHK技術研究、29(1)、24(19
77))や、また結晶引き上げ時に例えば印加する電流の
極性を制御して周期的な分域(ドメイン)を形成して周
期分極反転構造を形成する方法(D.Feng,N.B.Ming,J.F.
Hong,et al、 Appl.Phys.Lett.37,607(1980)、 K.Nassau,
H.J.Levin-stein,G.H.Loiacano Appl.Phys.Lett.6,228
(1965)、 A.Feisst,P.Koidl Appl.Phys.Lett.47,1125(19
85) )がある。これらの方法は結晶材料の全体に渡って
周期構造を形成することを目的としている。しかしなが
ら上述した方法による場合は大規模な装置が必要となる
のみならず、分極反転形成の制御が難しいという問題点
がある。
To realize a device with high conversion efficiency,
The phase propagation velocities of the fundamental wave and the second harmonic must be equal. As a method for simulating this, a method of periodically arranging the nonlinear optical constants + and-has been proposed (J.
A. Armstrong, N. Bloembergen, et al., Phys. Rev., 127, 1918 (1
962)). As a method of achieving this, there is a method of periodically reversing the direction of a crystal (for example, a crystal axis). As a concrete method, for example, a method in which crystals are thinly cut and bonded (Okada, Takizawa, Ieiri, NHK Technical Research, 29 (1), 24 (19)
77)), or a method of forming a periodic domain-inverted structure by forming a periodic domain by controlling the polarity of the applied current when pulling the crystal (D.Feng, NBMing, JF
Hong, et al, Appl.Phys.Lett.37,607 (1980), K.Nassau,
HJLevin-stein, GHLoiacano Appl.Phys.Lett.6,228
(1965), A.Feisst, P.Koidl Appl.Phys.Lett.47,1125 (19
85)) These methods aim to form a periodic structure throughout the crystalline material. However, the above-mentioned method not only requires a large-scale apparatus, but also has a problem that it is difficult to control polarization inversion formation.

【0007】これに対して結晶材料の表面近傍に上述の
周期分極反転構造を形成する方法として、例えばプロト
ンとLiを交換し温度をキュリー温度近くまで上げる方
法(Kiminori Mizuuchi, Kazuhisa Yamamoto and Tetsu
o Taniuchi, Appl.Phys.Lett.,59,1538(1991) )が提案
されている。
On the other hand, as a method of forming the above-mentioned periodically poled structure near the surface of the crystalline material, for example, a method of exchanging protons and Li to raise the temperature to near the Curie temperature (Kiminori Mizuuchi, Kazuhisa Yamamoto and Tetsu
o Taniuchi, Appl. Phys. Lett., 59, 1538 (1991)) has been proposed.

【0008】このプロトン交換法により分極反転を形成
する場合は、例えば図13にその一製造工程の略線的拡
大断面図を示すように、全面的にc軸方向に即ち図13
において矢印dで示す分極方向に単分域化された例えば
LTより成る基板10の、+c面上にTaマスク層21
を所要の例えば平行帯状パターンに例えばピッチPを
3.6μm、幅Wを1.8μmとして被着形成する。
When the polarization inversion is formed by this proton exchange method, for example, as shown in FIG. 13 which is a schematic enlarged cross-sectional view of one manufacturing process thereof, it is entirely in the c-axis direction, that is, as shown in FIG.
The Ta mask layer 21 is formed on the + c plane of the substrate 10 made of, for example, LT, which is domain-domained in the polarization direction indicated by the arrow d in FIG.
Is formed in a required parallel band pattern, for example, with a pitch P of 3.6 μm and a width W of 1.8 μm.

【0009】そしてこのような状態で容器8中に配置
し、260℃のリン酸19の中で50分間浸し、LT基
板のLiイオンとプロトンを矢印H+ ,Li+ で示すよ
うに交換して交換層を形成する。その後、例えば500
℃程度の加熱を行って、図14に示すように分極反転領
域3を周期的に形成することができる。しかしながらこ
の場合、分極反転領域3の屈折率が変化したり、また分
極反転領域3のピッチに対してその深さDが小であり、
かつその分極反転領域は断面三角形状となって形状の制
御性に劣る(F.Laurell et al,Integrated Photonics R
esearch,Tu12,1989)等の恐れがある。また、プロトン交
換時のTaマスク層21等の金属が基板表面に酸化被着
し基板表面を汚染する恐れもある。
Then, in such a state, it is placed in the container 8, immersed in phosphoric acid 19 at 260 ° C. for 50 minutes, and Li ions and protons of the LT substrate are exchanged as shown by arrows H + and Li +. Form an exchange layer. Then, for example, 500
The domain-inverted regions 3 can be periodically formed by performing heating at about C as shown in FIG. However, in this case, the refractive index of the domain-inverted regions 3 changes, or the depth D is smaller than the pitch of the domain-inverted regions 3,
In addition, the domain-inverted region has a triangular cross section and is poor in shape controllability (F. Laurell et al, Integrated Photonics R
esearch, Tu12,1989) etc. In addition, the metal such as the Ta mask layer 21 at the time of proton exchange may be oxidized and adhered to the substrate surface to contaminate the substrate surface.

【0010】即ち、上述した位相整合を確実に行うため
には、分極反転領域3の深さDを大とすることが望まし
く、かつその断面形状は基板10の深さ方向に延長する
ストライプ状に、分極反転領域3と分極反転が生じない
領域とが交互に形成されることが望ましいが、上述のプ
ロトン交換法によってSHG素子を形成した場合、その
分極反転領域3の形状の制御性に劣るため、入力光の漏
波や第2高調波光の漏波、更に入力光と第2高調波光と
の結合効率の低下を招来する等して、いわゆる光変換効
率の低下を招く恐れがある。
That is, in order to ensure the above-mentioned phase matching, it is desirable that the depth D of the domain-inverted region 3 is large, and its cross-sectional shape is a stripe shape extending in the depth direction of the substrate 10. It is desirable that the domain-inverted regions 3 and the regions in which the domain-inverted regions do not occur are alternately formed. However, when the SHG element is formed by the above-mentioned proton exchange method, the controllability of the shape of the domain-inverted regions 3 is poor. The leakage of the input light, the leakage of the second harmonic light, the reduction of the coupling efficiency between the input light and the second harmonic light, and the like may lead to the reduction of the so-called light conversion efficiency.

【0011】[0011]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、上述したような非線形光学材料の特にLN
及びLTの表面汚染、屈折率変化等を回避して、制御性
よく分極反転構造を得ることができるようにし、特性の
良好な光導波路デバイスを得るようにするものである。
SUMMARY OF THE INVENTION The problem to be solved by the present invention is to solve the above-mentioned problems of nonlinear optical materials, especially LN.
In addition, it is possible to obtain a domain-inverted structure with good controllability by avoiding surface contamination of LT, change in refractive index, etc., and to obtain an optical waveguide device with good characteristics.

【0012】[0012]

【課題を解決するための手段】本発明による分極制御方
法の一例の一製造工程の略線的拡大断面図を図1に示
す。本発明は図1に示すように、単分域化されたニオブ
酸リチウム(LN)より成る基板10に、所定の分極反
転構造30を形成するニオブ酸リチウムの分極制御方法
において、この基板10の分極方向に第1及び第2の電
極1及び2を配置して、少なくとも第1の電極1は最終
的に得る分極反転構造30のパターンに対応するパター
ンに形成し、第1及び第2の電極1、2間の距離Tを2
00μm以下として、これら第1及び第2の電極1、2
間に基板10の自発分極の負側を負電位、正側を正電位
となるように電圧を印加して分極反転構造30を形成す
る。
FIG. 1 shows an enlarged schematic cross-sectional view of one manufacturing process of an example of a polarization control method according to the present invention. As shown in FIG. 1, the present invention provides a method for controlling the polarization of lithium niobate in which a predetermined domain-inverted structure 30 is formed on a substrate 10 made of single-domain lithium niobate (LN). The first and second electrodes 1 and 2 are arranged in the polarization direction, and at least the first electrode 1 is formed in a pattern corresponding to the pattern of the polarization inversion structure 30 to be finally obtained. The distance T between 1 and 2 is 2
The first and second electrodes 1, 2 are
In between, a voltage is applied so that the negative side of the spontaneous polarization of the substrate 10 becomes a negative potential and the positive side becomes a positive potential to form the polarization inversion structure 30.

【0013】また本発明の他の一の分極制御方法は、そ
の一例の一製造工程を図2に示すように、面内方向に単
分域化されたニオブ酸リチウムより成る基板10に、所
定の分極反転構造30を形成するニオブ酸リチウムの分
極制御方法において、この基板10の一主面上の分極方
向に第1及び第2の電極1及び2を配置して、少なくと
も第1の電極1は最終的に得る分極反転構造30のパタ
ーンに対応するパターンにその第1及び第2の電極1、
2間の距離を7μm〜200μmとして形成し、150
℃以上の温度下において、これら第1及び第2の電流
1、2間に、基板10の自発分極の負側が負電位、正側
が正電位となるように電圧を印加して分極反転構造30
を形成する。
In another polarization control method of the present invention, one example of the manufacturing process is shown in FIG. 2, and a predetermined process is performed on a substrate 10 made of lithium niobate single-domained in the in-plane direction. In the method of controlling the polarization of lithium niobate for forming the polarization inversion structure 30, the first and second electrodes 1 and 2 are arranged in the polarization direction on the one main surface of the substrate 10, and at least the first electrode 1 Is the first and second electrodes 1 in a pattern corresponding to the pattern of the finally obtained domain-inverted structure 30,
The distance between the two is 7 μm to 200 μm, and
A voltage is applied between the first and second currents 1 and 2 at a temperature of not less than 0 ° C. so that the negative side of the spontaneous polarization of the substrate 10 becomes a negative potential and the positive side becomes a positive potential, and the polarization inversion structure 30 is formed.
To form.

【0014】また本発明は、上述の各分極制御方法にお
いて、第1及び第2の電極1、2間に印加する電圧を1
5kV/mm以上とする。
In the present invention, in each of the above polarization control methods, the voltage applied between the first and second electrodes 1 and 2 is 1
5 kV / mm or more.

【0015】更にまた本発明は、上述の各分極制御方法
において、その第1及び第2の電極1、2間に印加する
電圧を少なくとも2以上のパルスより成るパルス電圧と
する。
Furthermore, in the present invention, in each of the above polarization control methods, the voltage applied between the first and second electrodes 1 and 2 is a pulse voltage composed of at least two pulses.

【0016】また本発明は、上述の各分極制御方法にお
いて、基板10全体を絶縁液に浸漬した状態で第1及び
第2の電極1、2間に電圧を印加する。
Further, according to the present invention, in each of the polarization control methods described above, a voltage is applied between the first and second electrodes 1 and 2 in a state where the entire substrate 10 is immersed in an insulating liquid.

【0017】更にまた本発明光導波路デバイスの製造方
法は、上述の各ニオブ酸リチウムの分極制御方法により
分極反転構造を形成する。
Furthermore, in the method for manufacturing an optical waveguide device of the present invention, a polarization inversion structure is formed by the above-mentioned method for controlling the polarization of lithium niobate.

【0018】また本発明光導波路デバイスはその一例の
略線的拡大斜視図を図3に示すように、矢印cで示すc
軸方向に単分域化されたニオブ酸リチウムより成る基板
10に光導波路11を形成して、この光導波路11によ
る光導波方向に関して周期的に分極反転構造30を形成
し、この分極反転構造30のc軸方向の厚さを200μ
m以下として構成する。
The optical waveguide device of the present invention has an enlarged schematic perspective view of one example thereof, as shown in FIG.
An optical waveguide 11 is formed on a substrate 10 made of lithium niobate, which is divided into single domains in the axial direction, and a domain-inverted structure 30 is periodically formed in the optical waveguide direction of the optical waveguide 11, and the domain-inverted structure 30 is formed. The thickness in the c-axis direction of 200μ
It is configured as m or less.

【0019】また本発明の他の一の分極制御方法は、そ
の一例の略線的拡大断面図を図1に示すように、単分域
化されたタンタル酸リチウム(LT)より成る基板10
に、所定の分極反転構造30を形成するタンタル酸リチ
ウムの分極制御方法において、この基板10の分極方向
に第1及び第2の電極1及び2を配置して、少なくとも
第1の電極1は最終的に得る分極反転構造30のパター
ンに対応するパターンに形成し、第1及び第2の電極
1、2間の距離Tを700μm以下として、これら第1
及び第2の電極1、2間に基板10の自発分極の負側を
負電位、正側を正電位となるように電圧を印加して分極
反転構造30を形成する。
In another polarization control method of the present invention, as shown in FIG. 1 which is a schematic enlarged cross-sectional view of an example thereof, a substrate 10 made of single-domain lithium tantalate (LT) is used.
In the method for controlling the polarization of lithium tantalate for forming a predetermined polarization inversion structure 30, the first and second electrodes 1 and 2 are arranged in the polarization direction of the substrate 10, and at least the first electrode 1 is the final electrode. To form a pattern corresponding to the pattern of the domain-inverted structure 30 obtained in a desired manner, and the distance T between the first and second electrodes 1 and 2 is set to 700 μm or less.
A voltage is applied between the second electrode 1 and the second electrode 2 so that the negative side of the spontaneous polarization of the substrate 10 becomes a negative potential and the positive side becomes a positive potential to form the domain-inverted structure 30.

【0020】また本発明の他の一の分極制御方法は、そ
の一例の一製造工程を図2に示すように、面内方向に単
分域化されたタンタル酸リチウムより成る基板10に、
所定の分極反転構造30を形成するタンタル酸リチウム
の分極制御方法において、この基板10の一主面上の分
極方向に第1及び第2の電極1及び2を配置して、少な
くとも第1の電極1は最終的に得る分極反転構造30の
パターンに対応するパターンにその第1及び第2の電極
1、2間の距離を700μm以下として形成し、150
℃以上の温度下において、これら第1及び第2の電極
1、2間に、基板10の自発分極の負側が負電位、正側
が正電位となるように電圧を印加して分極反転構造30
を形成する。
Further, another polarization control method of the present invention is, as shown in FIG. 2 of one manufacturing process thereof, a substrate 10 made of lithium tantalate single-domained in the in-plane direction,
In the method for controlling the polarization of lithium tantalate which forms a predetermined polarization inversion structure 30, the first and second electrodes 1 and 2 are arranged in the polarization direction on one main surface of the substrate 10, and at least the first electrode is provided. 1 is formed in a pattern corresponding to the pattern of the finally obtained domain-inverted structure 30 with the distance between the first and second electrodes 1 and 2 being 700 μm or less, and 150
A voltage is applied between the first and second electrodes 1 and 2 so that the negative side of the spontaneous polarization of the substrate 10 is a negative potential and the positive side thereof is a positive potential at a temperature of not less than 0 ° C.
To form.

【0021】また本発明は、上述の各タンタル酸リチウ
ムの分極制御方法において、第1及び第2の電極1、2
間に印加する電圧を15kV/mm以上とする。
The present invention also provides a method for controlling the polarization of lithium tantalate as described above, wherein the first and second electrodes 1, 2 are
The voltage applied between them is set to 15 kV / mm or more.

【0022】更にまた本発明は、上述の各タンタル酸リ
チウムの分極制御方法において、その第1及び第2の電
極1、2間に印加する電圧を少なくとも2以上のパルス
より成るパルス電圧とする。
Further, according to the present invention, in the above-described polarization control method for lithium tantalate, the voltage applied between the first and second electrodes 1 and 2 is a pulse voltage composed of at least two pulses.

【0023】また本発明は、上述の各タンタル酸リチウ
ムの分極制御方法において、基板10全体を絶縁液に浸
漬した状態で第1及び第2の電極1、2間に電圧を印加
する。
Further, according to the present invention, in each of the above-described methods for controlling the polarization of lithium tantalate, a voltage is applied between the first and second electrodes 1 and 2 with the entire substrate 10 immersed in the insulating liquid.

【0024】更にまた本発明光導波路デバイスの製造方
法は、上述の各タンタル酸リチウムの分極制御方法によ
り分極反転構造を形成する。
Furthermore, in the method of manufacturing the optical waveguide device of the present invention, the polarization inversion structure is formed by the above-mentioned polarization control method of lithium tantalate.

【0025】また本発明光導波路デバイスはその一例の
略線的拡大斜視図を図3に示すように、矢印cで示すc
軸方向に単分域化されたタンタル酸リチウムより成る基
板10に光導波路11を形成して、この光導波路11に
よる光導波方向に関して周期的に分極反転構造30を形
成し、この分極反転構造30のc軸方向の厚さを700
μm以下として構成する。
Further, the optical waveguide device of the present invention has a schematic enlarged perspective view of an example thereof, as shown in FIG.
An optical waveguide 11 is formed on a substrate 10 made of lithium tantalate which is single-domained in the axial direction, and a polarization inversion structure 30 is periodically formed in the optical waveguide direction of the optical waveguide 11, and this polarization inversion structure 30 is formed. C-axis thickness of 700
Configured to be less than or equal to μm

【0026】[0026]

【作用】上述の、本発明分極制御方法によれば、分極反
転領域の形状を制御性よくまた結晶劣化を生じることな
く形成することができた。
According to the polarization control method of the present invention described above, the shape of the domain inversion region can be formed with good controllability and without causing crystal deterioration.

【0027】これは次に述べる理由に因るものと思われ
る。即ち一般的にはLN単結晶やLT単結晶のような、
高電圧を印加すると結晶が破壊される強誘電体材料(fr
ozenferroelectrics )においては、結晶破壊が生じな
い程度の電圧を印加しても分極反転が生じないとされて
おり、従来は結晶破壊を生じさせない程度の比較的低い
電圧の印加によって分極反転を生じさせていた。即ち抗
電界を下げるために、600℃程度の高温下において、
比較的c軸方向の厚さが1mm程度以上と厚い基板に対
して比較的低い電界、即ち例えば数V/mm〜数百V/
mm程度の電界を印加して分極反転を形成していた。
This is probably because of the following reasons. That is, in general, such as LN single crystal and LT single crystal,
Ferroelectric material (fr) whose crystal is destroyed when high voltage is applied
In ozenferroelectrics), it is said that polarization inversion does not occur even if a voltage that does not cause crystal breakdown is applied, and conventionally, polarization inversion is caused by application of a relatively low voltage that does not cause crystal breakdown. It was That is, in order to reduce the coercive electric field, at a high temperature of about 600 ° C,
A relatively low electric field with respect to a thick substrate having a thickness of about 1 mm or more in the c-axis direction, that is, several V / mm to several hundred V /
An electric field of about mm was applied to form polarization inversion.

【0028】しかしながら、上述したような結晶破壊
は、c軸方向に関する基板の厚さ、即ち電極間の距離に
起因することが本発明者等の鋭意考察研究の結果究明さ
れた。図4及び図5にそれぞれニオブ酸リチウムLN及
びタンタル酸リチウムLT単結晶基板の分極反転電界及
び結晶破壊電界の基板厚依存性を示す。この場合、試料
1として山寿セラミックス社製のLN単結晶、試料2と
してクリスタルテクノロジー社製のLN単結晶、試料3
として三井金属社製のLN単結晶、更に試料4として山
寿セラミック社製のLT単結晶を用い、基板厚を変え
て、分極反転が形成され始める電界(分極反転電界)及
び結晶破壊が生じ始める電界(結晶破壊電界)を測定し
た。図において、△、○、□及び▽はそれぞれ試料1〜
4の反転電界、▲、●、■及び▼はそれぞれ試料1〜4
の破壊電界を示す。
However, it has been clarified by the inventors of the present invention that the above-mentioned crystal breakdown is caused by the thickness of the substrate in the c-axis direction, that is, the distance between the electrodes. 4 and 5 show the substrate thickness dependence of the polarization reversal electric field and the crystal breakdown electric field of the lithium niobate LN and lithium tantalate LT single crystal substrates, respectively. In this case, as sample 1, LN single crystal manufactured by Yamaju Ceramics, as sample 2, LN single crystal manufactured by Crystal Technology, and sample 3
As an LN single crystal manufactured by Mitsui Kinzoku Co., Ltd. and an LT single crystal manufactured by Yamaju Ceramic Co., Ltd. as sample 4, the electric field (polarization reversal electric field) and the crystal breakdown start to occur by changing the substrate thickness. The electric field (crystal breakdown electric field) was measured. In the figure, △, ○, □, and ▽ are samples 1 to 1, respectively.
Inversion electric field of 4, ▲, ●, ■ and ▼ are samples 1 to 4 respectively
Shows the breakdown electric field.

【0029】図4及び図5からわかるように、反転電界
は、ほとんど一定で15〜20kV/mm程度である。
一方、破壊電界は基板厚の増加とともに低下し、基板厚
がLNの場合は200μm、LTの場合は700μm程
度以上となるときは反転電界を下回ってしまう。従っ
て、基板厚がLNの場合は200μm、LTの場合は7
00μmを越えるときは分極反転が生じる前に結晶が破
壊されてしまい、分極反転操作を行うことができなくな
ってしまうものと思われる。
As can be seen from FIGS. 4 and 5, the reversal electric field is almost constant and is about 15 to 20 kV / mm.
On the other hand, the breakdown electric field decreases as the substrate thickness increases, and falls below the reversal electric field when the substrate thickness is 200 μm for LN and 700 μm or more for LT. Therefore, if the substrate thickness is LN, it is 200 μm, and if it is LT, it is 7 μm.
If the thickness exceeds 00 μm, the crystal is destroyed before the polarization inversion occurs, and the polarization inversion operation cannot be performed.

【0030】これに対し、LNにおいて基板の厚さが2
00μm以下、LTにおいて700μm以下の場合は、
反転電界以上破壊電界以下の領域(図4及び図5におい
て斜線を付した領域A,Bで示す)が存在するため、こ
のように比較的薄い厚さの基板を用いる場合は、適切な
電界を印加することによって、結晶破壊を生じることな
く、良好に分極反転構造を得ることができるものと思わ
れる。しかもこの場合は各電極1及び2の間にわたって
分極反転が生じるため、その形状は幅及びピッチに比し
て深さが大とされ、望ましい形状の分極反転構造30を
得ることができる。
On the other hand, in LN, the thickness of the substrate is 2
In case of less than 00 μm and less than 700 μm in LT,
Since there is a region (represented by hatched regions A and B in FIGS. 4 and 5) that is equal to or greater than the reversal electric field and equal to or less than the breakdown electric field, an appropriate electric field is required when using a substrate having such a relatively thin thickness. By applying the voltage, it is considered that a polarization inversion structure can be satisfactorily obtained without causing crystal breakdown. Moreover, in this case, polarization inversion occurs between the electrodes 1 and 2, so that the shape has a larger depth than the width and the pitch, and the polarization inversion structure 30 having a desired shape can be obtained.

【0031】一方、面内方向に単分域化されたニオブ酸
リチウムLN又はタンタル酸リチウムLTより成る基板
10を用いる場合においては、この基板10の一主面上
の分極方向に第1及び第2の電極1及び2を、少なくと
も第1の電極1は最終的に得る分極反転構造30のパタ
ーンに対応するパターンとして形成し、特にその第1及
び第2の電極1、2間の距離を、LNにおいては200
μm以下、LTにおいては700μm以下として形成す
ることによって、同様に制御性良く分極反転構造を形成
することができた。この場合、特にその電圧印加の際の
温度を150℃以上とすることによって精度良く分極反
転構造30を形成することができた。
On the other hand, in the case of using the substrate 10 made of lithium niobate LN or lithium tantalate LT that is single-domained in the in-plane direction, the first and the first polarization directions on one main surface of the substrate 10 are used. The two electrodes 1 and 2 are formed at least as a pattern corresponding to the pattern of the domain-inverted structure 30 finally obtained by the first electrode 1, and in particular, the distance between the first and second electrodes 1 and 2 is 200 for LN
The polarization inversion structure could be similarly formed with good controllability by forming it to have a thickness of less than or equal to μm and, in the case of LT, to less than or equal to 700 μm. In this case, the domain-inverted structure 30 could be accurately formed by setting the temperature at the time of applying the voltage to 150 ° C. or higher.

【0032】また基板厚が100μmのLN、LTの各
基板材料に対し、その主面と裏面に電極を形成して電極
間距離を100μmとし、1.5kVの直流電圧を40
分間印加したところ、結晶破壊を生じることなく分極反
転構造を形成することができた。従って上述の図4及び
図5においては反転電界にばらつきがあるが、印加電界
を15kV/mm以上とすることによって、分極反転構
造を確実に得ることができることがわかる。
For LN and LT substrate materials having a substrate thickness of 100 μm, electrodes are formed on the main surface and the back surface to make the interelectrode distance 100 μm, and a DC voltage of 1.5 kV is 40
When applied for a minute, a domain-inverted structure could be formed without causing crystal breakdown. Therefore, although there is a variation in the reversal electric field in FIGS. 4 and 5, it is understood that the polarization reversal structure can be surely obtained by setting the applied electric field to 15 kV / mm or more.

【0033】また更に印加電圧として2以上のパルス電
圧を印加することによって、同様に結晶破壊を生じるこ
となく分極反転構造を形成することができた。
Further, by applying two or more pulse voltages as the applied voltage, it was possible to form the domain-inverted structure without causing crystal breakdown in the same manner.

【0034】またこれら基板を絶縁液に浸漬した状態で
電圧を印加することによって、高電圧を印加する場合に
おいても基板表面に被着した電極間の放電を抑制するこ
とができ、精度良く分極反転構造を形成することができ
た。
Further, by applying a voltage while these substrates are immersed in an insulating liquid, it is possible to suppress the discharge between the electrodes adhered to the surface of the substrate even when a high voltage is applied, and it is possible to accurately reverse the polarization. The structure could be formed.

【0035】このような各分極制御方法によれば、電極
間の距離をLNにおいては200μm以下、LTにおい
ては700μm以下として15kV/mm以上の電界を
印加することによって確実に結晶破壊を回避できて、従
って抗電界を下げるために500℃〜1200℃程度に
加熱する必要がなく、室温で分極反転を形成することが
できることとなる。このため、加熱しながら電極を被着
或いは接触させることによる結晶の汚染や、プロトン交
換による屈折率の変動をもたらす等の不都合を回避し
て、特性の変動を回避することができる。
According to each polarization control method as described above, the crystal breakdown can be reliably avoided by applying an electric field of 15 kV / mm or more with the distance between the electrodes being 200 μm or less for LN and 700 μm or less for LT. Therefore, it is not necessary to heat to about 500 ° C. to 1200 ° C. in order to reduce the coercive electric field, and the polarization inversion can be formed at room temperature. Therefore, it is possible to avoid the inconvenience such as the contamination of the crystal caused by depositing or contacting the electrodes while heating and the change in the refractive index due to the proton exchange, and the change in the characteristics can be avoided.

【0036】そしてこのような分極制御方法により形成
された光導波路デバイスは、図3に示すように、その光
導波路11が設けられる分極反転構造30のc軸方向の
厚さがLNにおいては200μm以下、LTにおいては
700μm以下となるものであり、このような構成とす
ることによって、上述したように特性の変動を招くこと
なく周期的な分極反転構造を形成することができて、確
実に疑似位相整合がなされてSHG変換効率の良好なS
HG素子を得ることができる。
In the optical waveguide device formed by such a polarization control method, as shown in FIG. 3, the polarization inversion structure 30 in which the optical waveguide 11 is provided has a thickness in the c-axis direction of 200 μm or less at LN. , LT is 700 μm or less, and by adopting such a configuration, it is possible to form a periodic domain-inverted structure without causing a change in characteristics as described above, and surely a quasi phase. S with good matching and good SHG conversion efficiency
An HG element can be obtained.

【0037】[0037]

【実施例】以下本発明分極制御方法の各例を詳細に説明
する。各例共に、LN単結晶又はLT単結晶より成る基
板10上に周期的な分極反転構造を形成すると共に、こ
の部分において光導波路を形成して、高効率のSHG素
子の光導波路デバイスを得る場合を示す。また各例共
に、基板10の単分域化は、例えばそのキュリー温度直
下の例えば600℃程度まで昇温して一定の方向に外部
直流電圧を全面的に印加することによって全面的にc軸
方向に揃えて行った。
EXAMPLES Each example of the polarization control method of the present invention will be described in detail below. In each case, a periodic polarization inversion structure is formed on a substrate 10 made of LN single crystal or LT single crystal, and an optical waveguide is formed in this portion to obtain an optical waveguide device of a high efficiency SHG element. Indicates. Further, in each of the examples, the substrate 10 is divided into single domains by, for example, raising the temperature to, for example, about 600 ° C. immediately below the Curie temperature, and applying an external DC voltage in a certain direction over the entire surface in the c-axis direction. I went to.

【0038】尚、以下の各実施例において、自発分極の
方向を矢印dで示し、分極反転領域の分極方向を矢印h
で示す。先ず以下の実施例1〜8においては、ニオブ酸
リチウム基板上に分極反転構造を形成する場合について
説明する。
In each of the following examples, the direction of spontaneous polarization is indicated by arrow d, and the polarization direction of the domain inversion region is indicated by arrow h.
Indicate. First, in Examples 1 to 8 below, the case where a domain-inverted structure is formed on a lithium niobate substrate will be described.

【0039】実施例1 図1の略線的拡大斜視図を参照して説明する。この場合
基板10が厚さ方向に全面的に単分域化されて成る場合
で、その分極の正側の主面1S上にAl、Au等より成
る第1の電極1が例えば櫛歯状パターンにパターニング
され、分極の負側の裏面1R上には全面的に第2の電極
2が被着されて成る。
Example 1 An explanation will be given with reference to the schematic enlarged perspective view of FIG. In this case, in the case where the substrate 10 is entirely divided into single domains in the thickness direction, the first electrode 1 made of Al, Au, or the like is formed on the main surface 1S on the positive side of the polarization, for example, in a comb tooth pattern. And the second electrode 2 is deposited on the entire back surface 1R on the negative side of the polarization.

【0040】そしてこの例では、基板10全体を、容器
8中のフロリナート(住友3M社製、商品名)等のフロ
ン系耐高電圧液やシリコンオイルなどの絶縁液9に浸漬
した状態で分極の正側即ち第1の電極1側を正電位、分
極の負側即ち第2の電極2側を負電位として電圧を印加
し、第1の電極1の櫛歯パターンに対応するパターンの
分極反転構造を形成した。このとき基板10に印加され
る電界は図4において説明した領域Aの範囲内、即ち反
転電界以上の15kV程度以上で、破壊電界未満の電界
に選定することが望ましい。5は電源を示す。
In this example, the entire substrate 10 is polarized while being immersed in the container 8 in a fluorocarbon high-voltage resistant liquid such as Fluorinert (trade name, manufactured by Sumitomo 3M) or an insulating liquid 9 such as silicon oil. A voltage is applied with the positive side, that is, the first electrode 1 side as a positive potential, and the negative side of polarization, that is, the second electrode 2 side, as a negative potential, and a voltage is applied, and the polarization inversion structure of the pattern corresponding to the comb tooth pattern of the first electrode 1 is applied. Formed. At this time, the electric field applied to the substrate 10 is preferably selected within the range of the area A described in FIG. 4, that is, at least 15 kV which is higher than the reversal electric field and lower than the breakdown electric field. Reference numeral 5 indicates a power source.

【0041】この場合、基板10の厚さを98μm、電
圧を2.1kVとして1ms印加することにより、2.
3μm程度の微細な周期の分極反転構造30を得ること
ができ、更に、各電極1及び2の櫛歯部にわたって即ち
基板10の全厚さにわたって分極反転領域が形成され、
そのピッチPに対して深さを大とすることができた。ま
たこのように絶縁液9中において電圧を印加することに
よって、電極1及び2間の放電を確実に回避することが
できて、結晶破壊を生じることなく制御性よく分極反転
構造を得ることができた。
In this case, the thickness of the substrate 10 is 98 μm, the voltage is 2.1 kV, and the voltage is applied for 1 ms.
A domain-inverted structure 30 having a fine period of about 3 μm can be obtained, and a domain-inverted region is formed over the comb teeth of each of the electrodes 1 and 2, that is, over the entire thickness of the substrate 10.
The depth could be increased with respect to the pitch P. Further, by applying the voltage in the insulating liquid 9 as described above, the discharge between the electrodes 1 and 2 can be surely avoided, and the polarization inversion structure can be obtained with good controllability without causing crystal breakdown. It was

【0042】そしてこのような基板10に対し、図3に
示すように、主面1S上に光導波路11を形成して光導
波路デバイスを作成した。この光導波路11は、例えば
プロトン交換法により、即ち例えばTa等より成るマス
クを導波路11を形成する部分以外にフォトリソグラフ
ィ等の適用によりパターニング形成し、これをマスクと
して20分程度200℃に加熱したりん酸に浸漬して形
成することができる。そしてこのマスクを除去した後光
導波路の端面12を光学研磨して光導波路デバイス即ち
SHG素子を得ることができる。
Then, as shown in FIG. 3, an optical waveguide 11 was formed on the main surface 1S of the substrate 10 to prepare an optical waveguide device. The optical waveguide 11 is patterned by, for example, a proton exchange method, that is, a mask made of Ta or the like is patterned by applying photolithography or the like to a portion other than the portion where the waveguide 11 is formed, and this is used as a mask and heated to 200 ° C. for about 20 minutes. It can be formed by dipping in phosphoric acid. Then, after removing the mask, the end face 12 of the optical waveguide is optically polished to obtain an optical waveguide device, that is, an SHG element.

【0043】この場合、屈折率変化等の特性の変動がな
く、且つそのピッチに対して深さが大とされた周期的な
分極反転構造30が得られることから、確実に疑似位相
整合がなされて、高い光変換効率を有するSHG素子を
得ることができる。
In this case, since there is no change in characteristics such as a change in refractive index and a periodic domain-inverted structure 30 having a large depth with respect to the pitch can be obtained, quasi-phase matching is surely performed. As a result, an SHG element having high light conversion efficiency can be obtained.

【0044】実施例2 図4の略線的拡大斜視図を参照して説明する。図6にお
いて、図1に対応する部分には同一符号を付して示す。
この場合においても基板10が厚さ方向に全面的に単分
域化されて成ると共に、この厚さが200μm以下とさ
れて、その分極の正側の主面1S上にAl等より成る第
1の電極1が櫛歯状パターンにパターニングされ、この
場合分極の負側の裏面1R上にも同様にAl等より成る
櫛歯状パターンの第2の電極2が、その櫛歯部が主面1
S上と裏面1上とで相対向して基板10を挟み込むよう
に被着形成されて成る。そして上述の実施例1と同様
に、分極の正側即ち第1の電極1側を正電位、分極の負
側即ち第2の電極2側を負電位として電圧を印加し、第
1の電極1の櫛歯パターンに対応するパターンの分極反
転構造30を形成した。この場合においても、電界の大
きさを実施例1と同様に選定して、結晶破壊を生じるこ
となく、且つ各電極1及び2の櫛歯部にわたって即ち基
板10の全厚さにわたって分極反転構造30が形成さ
れ、そのピッチに対して深さを大とすることができた。
Example 2 Description will be given with reference to the schematic enlarged perspective view of FIG. 6, parts corresponding to those in FIG. 1 are designated by the same reference numerals.
In this case as well, the substrate 10 is formed into a single domain over the entire surface in the thickness direction, the thickness is set to 200 μm or less, and the first surface made of Al or the like is formed on the main surface 1S on the positive side of the polarization. Electrode 1 is patterned in a comb-teeth pattern, and in this case, the second electrode 2 having a comb-teeth pattern also made of Al or the like is formed on the back surface 1R on the negative side of the polarization, and the comb-teeth portion is the main surface 1.
It is formed so that the substrate 10 is sandwiched between the upper surface S and the rear surface 1 so as to face each other. Then, as in Example 1 described above, a voltage is applied with the positive side of the polarization, that is, the first electrode 1 side as a positive potential, and the negative side of the polarization, that is, the second electrode 2 side as a negative potential, to apply the voltage to the first electrode 1 A domain-inverted structure 30 having a pattern corresponding to the comb-teeth pattern was formed. Also in this case, the magnitude of the electric field is selected in the same manner as in Example 1 so that the crystal inversion does not occur and the domain-inverted structure 30 is formed over the comb teeth of each of the electrodes 1 and 2, that is, over the entire thickness of the substrate 10. Was formed, and the depth could be increased with respect to the pitch.

【0045】またこの場合においても、上述の実施例1
と同様に、主面1S上にプロトン交換法等により光導波
路を形成して光導波路デバイスを作成することができ、
高光変換効率のSHG素子を得ることができる。
Also in this case, the first embodiment described above is also used.
Similarly, an optical waveguide can be formed on the main surface 1S by a proton exchange method or the like to prepare an optical waveguide device,
An SHG element with high light conversion efficiency can be obtained.

【0046】実施例3 図7の略線的拡大斜視図を参照して説明する。図7にお
いて、図6に対応する部分には同一符号を付して重複説
明を省略する。この場合は基板10の裏面1R上に全面
的に第2の電極2を被着形成した例で、この例において
も、上述の実施例5と同様に、第1の電極1のパターン
に対応するパターンの分極反転構造30を得ることがで
き、更にそのピッチに対して深さを大とすることができ
た。
Embodiment 3 Description will be given with reference to the schematic enlarged perspective view of FIG. In FIG. 7, parts corresponding to those in FIG. 6 are designated by the same reference numerals, and redundant description will be omitted. In this case, the second electrode 2 is entirely formed on the back surface 1R of the substrate 10, and this example also corresponds to the pattern of the first electrode 1 as in the case of the fifth embodiment. It was possible to obtain the domain-inverted structure 30 of the pattern and further to make the depth large with respect to the pitch.

【0047】またこの場合においても、上述の実施例1
と同様に、主面1S上にプロトン交換法等により光導波
路を形成して光導波路デバイスを作成することができ、
高光変換効率のSHG素子を得ることができる。
Also in this case, the first embodiment described above is also used.
Similarly, an optical waveguide can be formed on the main surface 1S by a proton exchange method or the like to prepare an optical waveguide device,
An SHG element with high light conversion efficiency can be obtained.

【0048】実施例4 図2を参照して説明する。図2において、図1に対応す
る部分には同一符号を付して重複説明を省略する。この
例では、基板10に凸部即ちリッジ6が形成されて成
る。このリッジ6の長手方向は基板10の矢印dで示す
自発分極方向に直交するように選定され、その長手方向
の側壁面が、分極の正側より成る側面1Aと、負側より
成る側面1Bとにより構成される。この側面1A及び1
B上と、これらに隣接する上側面1E上にわたって後述
する製造工程によってAl等より成る第1の電極1及び
第2の電極2が櫛歯状パターンとして形成される。この
とき、櫛歯部は両上側面1E上から両側面1A及び1B
にわたって形成されるようになし、更に両側面1A及び
1B上の櫛歯先端部が主面1Sの両端に対向して配置さ
れるようになす。そしてこのリッジ6の幅方向の厚さT
は200μm以下に選定され、第1及び第2の電極1及
び2間の間隔が200μm以下となるように選定され
る。
Fourth Embodiment A description will be given with reference to FIG. 2, parts corresponding to those in FIG. 1 are designated by the same reference numerals, and duplicate description will be omitted. In this example, a convex portion, that is, a ridge 6 is formed on the substrate 10. The longitudinal direction of the ridge 6 is selected so as to be orthogonal to the spontaneous polarization direction indicated by the arrow d of the substrate 10, and the side wall surfaces in the longitudinal direction thereof are a side surface 1A composed of the positive side of polarization and a side surface 1B composed of the negative side. It is composed of This side surface 1A and 1
A first electrode 1 and a second electrode 2 made of Al or the like are formed as a comb-teeth pattern over B and the upper side surface 1E adjacent thereto by a manufacturing process described later. At this time, the comb-teeth part is located on both side surfaces 1A and 1B from both upper side surfaces 1E
The comb-teeth tips on both side surfaces 1A and 1B are arranged opposite to both ends of the main surface 1S. The thickness T of the ridge 6 in the width direction
Is selected to be 200 μm or less, and the distance between the first and second electrodes 1 and 2 is selected to be 200 μm or less.

【0049】このような構成において、第1の電極1側
が正電位、第2の電極2側が負電位となるように電圧を
印加して、リッジ6に分極反転領域3を形成し、各櫛歯
先端部のパターンに対応するパターンの分極反転構造3
0を得ることができた。
In such a structure, a voltage is applied so that the first electrode 1 side has a positive potential and the second electrode 2 side has a negative potential to form the polarization inversion region 3 in the ridge 6, and each comb tooth is formed. Polarization inversion structure 3 of the pattern corresponding to the pattern of the tip
I was able to get 0.

【0050】上述したように基板10にリッジ6を形成
し、更にその長手方向の側面1A及び1Bに所要のパタ
ーンの電極1及び2を作成する方法の一例を図8A〜D
に示す。図8Aに示すように、基板10の分極反転を形
成すべき主面1S上にレジスト31を全面的に塗布、ベ
ークした後、Ni,Cr等より成るマスク層32を蒸
着、スパッタリング等によって被着し、更にこの上にレ
ジスト33を塗布、ベークした後リッジ6を形成すべき
所要の部分にレジスト33が残るように、即ちこの場合
矢印dで示す分極方向に所要の幅Tを有し、図8の紙面
に対して直交する方向を長手方向とするパターンにフォ
トリソグラフィ等の適用によって露光現像してパターニ
ングする。
8A to 8D, an example of a method of forming the ridge 6 on the substrate 10 as described above and further forming the electrodes 1 and 2 having a desired pattern on the side surfaces 1A and 1B in the longitudinal direction thereof.
Shown in. As shown in FIG. 8A, a resist 31 is entirely applied and baked on the main surface 1S where the polarization inversion of the substrate 10 is to be formed, and then a mask layer 32 made of Ni, Cr or the like is deposited by vapor deposition, sputtering or the like. Then, after coating and baking the resist 33 thereon, the resist 33 remains in a required portion where the ridge 6 is to be formed, that is, in this case, has a required width T in the polarization direction indicated by the arrow d. A pattern having a longitudinal direction perpendicular to the paper surface of No. 8 is exposed, developed and patterned by application of photolithography or the like.

【0051】そして図8Bに示すように、RIE(反応
性イオンエッチング)等の異方性エッチングによりレジ
スト33をマスクとして、マスク層32とレジスト31
をパターニングする。
Then, as shown in FIG. 8B, the mask layer 32 and the resist 31 are formed by anisotropic etching such as RIE (reactive ion etching) using the resist 33 as a mask.
Pattern.

【0052】続いて図8Cに示すように、RIE等の異
方性エッチングによってマスク層32をマスクとして基
板10を主面1S上からエッチングして、側面1A及び
1Bと、これに隣接する上側面1Eとを露出させ、リッ
ジ7を構成する。このときこの基板10に対するエッチ
ングの深さを制御してリッジ6の高さを2μm程度とな
す。
Subsequently, as shown in FIG. 8C, the substrate 10 is etched from the main surface 1S by using the mask layer 32 as a mask by anisotropic etching such as RIE, and the side surfaces 1A and 1B and the upper side surface adjacent thereto. 1E is exposed to form the ridge 7. At this time, the height of the ridge 6 is set to about 2 μm by controlling the etching depth with respect to the substrate 10.

【0053】そして更に図8Dに示すように、Al,A
u,Pt,K,Li等の例えばAlより成る金属層34
をリッジ6上を覆って全面的に蒸着、スパッタリング等
によって被着形成する。
Further, as shown in FIG. 8D, Al, A
Metal layer 34 made of, for example, Al such as u, Pt, K, Li
Are covered and formed on the entire surface of the ridge 6 by vapor deposition, sputtering or the like.

【0054】次にRIE等の異方性エッチングによって
上述の図2に示す櫛歯状パターンにこの金属層34をパ
ターニングした後、アセトン等の溶剤に浸してレジスト
21を除去することにより、図8Eに示すように、リッ
ジ6上の金属層34のみをリフトオフして、側面1A及
び1Bからそれぞれ上側面1Eに隣接する櫛歯状の第1
の電極1及び第2の電極2を形成することができる。
Next, after patterning the metal layer 34 into the comb-like pattern shown in FIG. 2 by anisotropic etching such as RIE, the resist 21 is removed by immersing it in a solvent such as acetone, and the like shown in FIG. 8E. As shown in FIG. 7, only the metal layer 34 on the ridge 6 is lifted off, and the first comb-shaped first adjacent side surfaces 1A and 1B are adjacent to the upper side surface 1E.
The electrode 1 and the second electrode 2 can be formed.

【0055】この場合、上述した分極反転形成のための
電圧印加工程の前或いは後に、プロトン交換法等によっ
てリッジ6に導波路を形成し、第1の電極1及び第2の
電極2を除去してSHG素子を得ることができる。
In this case, a waveguide is formed in the ridge 6 by a proton exchange method or the like before or after the voltage application step for forming the polarization inversion described above, and the first electrode 1 and the second electrode 2 are removed. Thus, an SHG element can be obtained.

【0056】このように、基板10にリッジ6を形成し
て、その側面1A及び1Bに電極を被着して電圧印加を
施す場合は、自発分極に対して平行ではない電界成分、
即ち分極反転に直接影響のない電界成分を大幅に減少さ
せることができる。LN結晶等の基板10は、この自発
分極の生じる方向に平行でない電界成分が材料に与える
応力が大であるため、このような電界成分を減少させる
ことによって、基板10の結晶破壊を更に確実に回避す
ることができる。
In this way, when the ridge 6 is formed on the substrate 10 and the electrodes are attached to the side surfaces 1A and 1B to apply a voltage, an electric field component which is not parallel to the spontaneous polarization,
That is, it is possible to greatly reduce the electric field component that does not directly affect the polarization reversal. The substrate 10 such as an LN crystal has a large stress exerted on the material by an electric field component that is not parallel to the direction in which the spontaneous polarization occurs. Therefore, by reducing such an electric field component, the crystal breakdown of the substrate 10 can be more reliably performed. It can be avoided.

【0057】またこのような構成によって分極反転を形
成する場合、各分極反転領域3をリッジ6の全厚さにわ
たって形成することができる。従って導波路の深さを適
切に選定することによって、この導波路の全厚さ或いは
それ以上の深さにわたって、かつ結晶破壊を殆ど生じる
ことなく分極反転構造30を形成することができて、こ
れをSHG素子として用いる場合はSHG効率等の光変
換効率を高めることができる。
When the domain inversion is formed by such a structure, each domain inversion region 3 can be formed over the entire thickness of the ridge 6. Therefore, by properly selecting the depth of the waveguide, it is possible to form the domain-inverted structure 30 over the entire thickness of the waveguide or a depth greater than that, and with almost no crystal destruction. When used as an SHG element, light conversion efficiency such as SHG efficiency can be improved.

【0058】実施例5 図9の略線的拡大斜視図を参照して説明する。図9にお
いて、図2に対応する部分には同一符号を付して重複説
明を省略する。この場合においても、図2において説明
した実施例4における基板10全体を、図1において説
明した実施例1と同様に、容器8中の絶縁液9に浸漬し
た状態で電圧印加を行うものである。この場合において
も、リッジ6上の幅即ち第1の電極1及び第2の電極2
間の間隔Tを7μm以上200μm以下に選定して構成
し、また上述の各例と同様に、図4において領域Aの範
囲内の電界に選定して電圧印加を行った。この場合も第
1の電極1及び第2の電極2の櫛歯先端部間に、この櫛
歯パターンに対応するパターンの分極反転構造30が形
成されて、この上に光導波路(図示せず)を形成するこ
とによって、高光変換効率のSHG素子を得ることがで
きた。またこのように絶縁液9中において電界印加を行
うことによって、上述の実施例1と同様に電極1及び2
間の放電を確実に回避することができた。
Embodiment 5 Description will be given with reference to the schematic enlarged perspective view of FIG. In FIG. 9, parts corresponding to those in FIG. 2 are designated by the same reference numerals, and redundant description will be omitted. Also in this case, the voltage is applied while the entire substrate 10 in Example 4 described in FIG. 2 is immersed in the insulating liquid 9 in the container 8 as in Example 1 described in FIG. .. Also in this case, the width on the ridge 6, that is, the first electrode 1 and the second electrode 2
The interval T between them was selected to be 7 μm or more and 200 μm or less, and the voltage was applied by selecting the electric field within the region A in FIG. 4 as in the above-mentioned examples. Also in this case, a polarization inversion structure 30 having a pattern corresponding to the comb tooth pattern is formed between the comb tooth tips of the first electrode 1 and the second electrode 2, and an optical waveguide (not shown) is formed thereon. By forming the, it was possible to obtain an SHG element with high light conversion efficiency. Further, by applying an electric field in the insulating liquid 9 in this manner, the electrodes 1 and 2 are formed in the same manner as in the first embodiment.
It was possible to reliably avoid the discharge during the period.

【0059】実施例6 図10の略線的拡大斜視図を参照して説明する。この場
合は矢印dで示す面内方向に単分域化されたニオブ酸リ
チウムより成る基板10を用いた例で、主面1S上の分
極の負側にフォトリソグラフィ等の適用によってAl等
より成る櫛歯状パターンの第1の電極1が被着形成さ
れ、一方分極の正側の側面1B上には全面的にAl等よ
り成る第2の電極2が蒸着、スパッタリング等により被
着形成されて成る。5は電源である。この場合において
も、基板10全体を、容器8中のフロリナート(住友3
M社製、商品名)等のフロン系耐高電圧液、又はシリコ
ンオイルなどの絶縁液9に浸漬した状態で電圧印加を行
うものである。このとき、第1の電極1のピッチPは2
μm、幅Wは1μm、主面1S上の各電極1及び2の先
端部間の距離Lは100μm、ニオブ酸リチウム10の
厚さTは1mmであり、このような構成において、第1
の電極1側が負電位、第2の電極2側が正電位となるよ
うに、電圧を2.6kVとし、100μsの幅のパルス
電圧を2回以上の例えば5回印加して、結晶破壊等をほ
とんど生じることなく第1の電極1の櫛歯パターンに対
応するパターンの分極反転構造30を得ることができ
る。
Embodiment 6 Description will be given with reference to the schematic enlarged perspective view of FIG. In this case, the substrate 10 made of lithium niobate single-domained in the in-plane direction indicated by the arrow d is used, and the negative side of the polarization on the main surface 1S is made of Al or the like by applying photolithography or the like. A first electrode 1 having a comb-shaped pattern is deposited and formed, while a second electrode 2 made of Al or the like is entirely deposited and formed on the side surface 1B on the positive side of polarization by vapor deposition, sputtering or the like. Become. 5 is a power supply. Even in this case, the entire substrate 10 is covered with the Fluorinert (Sumitomo 3
The voltage is applied in a state of being immersed in a CFC-based high voltage resistant liquid such as manufactured by M Co., etc. or an insulating liquid 9 such as silicon oil. At this time, the pitch P of the first electrodes 1 is 2
μm, the width W is 1 μm, the distance L between the tips of the electrodes 1 and 2 on the main surface 1S is 100 μm, and the thickness T of the lithium niobate 10 is 1 mm.
The voltage is set to 2.6 kV so that the electrode 1 side has a negative potential and the second electrode 2 side has a positive potential, and a pulse voltage with a width of 100 μs is applied twice or more, for example, five times, so that crystal destruction or the like is almost eliminated It is possible to obtain the domain-inverted structure 30 having a pattern corresponding to the comb-teeth pattern of the first electrode 1 without occurring.

【0060】実施例7 図11の略線的拡大斜視図を参照して説明する。図11
において、図10に対応する部分には同一符号を付して
重複説明を省略する。この場合はニオブ酸リチウムより
成る基板10の分極の正側の側面1Aに櫛歯状パターン
の第1の電極を、更に分極の負側の主面1S上に櫛歯状
パターンの第2の電極2をそれぞれ蒸着、スパッタリン
グ等により被着した後フォトリソグラフィ等の適用によ
って形成した例で、これら各電極1及び2の櫛歯先端部
が、主面1S上と側面1Aとにわたって相対向するよう
にパターニングされるようになす。この場合において
も、基板10全体を、容器8中の絶縁液9に浸漬した状
態で電圧印加を行うものである。このような構成におい
て、第1の電極1側が正電位、第2の電極2側が負電位
となるように電圧を印加して、第1の電極1及び第2の
電極2の櫛歯パターンに対応するパターンの分極反転構
造30を形成した。この場合においても、櫛歯先端部の
幅及びピッチ、電圧の大きさを実施例6と同様に選定し
て、結晶破壊等をほとんど生じることなく分極反転構造
30を得ることができた。
Embodiment 7 Description will be given with reference to a schematic enlarged perspective view of FIG. 11
In FIG. 10, parts corresponding to those in FIG. In this case, the first electrode having the comb-teeth pattern is formed on the side surface 1A on the positive polarization side of the substrate 10 made of lithium niobate, and the second electrode having the comb-teeth pattern is formed on the main surface 1S on the negative polarization side. 2 is an example formed by applying photolithography or the like after being deposited by vapor deposition, sputtering, etc., so that the comb-teeth tips of the electrodes 1 and 2 face each other on the main surface 1S and the side surface 1A. It is patterned. Also in this case, the voltage is applied while the entire substrate 10 is immersed in the insulating liquid 9 in the container 8. In such a configuration, a voltage is applied so that the first electrode 1 side has a positive potential and the second electrode 2 side has a negative potential, which corresponds to the comb tooth pattern of the first electrode 1 and the second electrode 2. A domain-inverted structure 30 having such a pattern was formed. Also in this case, the width and pitch of the tips of the comb teeth and the magnitude of the voltage were selected in the same manner as in Example 6, and the domain-inverted structure 30 could be obtained with almost no crystal destruction.

【0061】実施例8 図12の略線的拡大斜視図を参照して説明する。この場
合は、矢印dで示す方向に単分域化されたニオブ酸リチ
ウムより成る基板10を用いた例で、その一主面1S上
の分極方向に第1の電極1及び第2の電極2を配置す
る。この場合Al等より成る第1の電極1及び第2の電
極2は共に例えば蒸着、スパッタリング等により被着形
成した後、フォトリソグラフィ等の適用によって櫛歯状
にパターニングされて形成され、その櫛歯先端部の幅W
が例えば1μm、ピッチPが例えば2μm、各電極1及
び2の櫛歯先端部間の距離Lは100μm、基板10の
厚さTは1mm程度とされ、かつ各電極1及び2の櫛歯
先端部が対向するように配置されて成る。
Example 8 Description will be given with reference to the schematic enlarged perspective view of FIG. In this case, the substrate 10 made of lithium niobate single-domained in the direction indicated by the arrow d is used as an example, and the first electrode 1 and the second electrode 2 are arranged in the polarization direction on the one main surface 1S. To place. In this case, the first electrode 1 and the second electrode 2 made of Al or the like are both formed by depositing by vapor deposition, sputtering, etc., and then patterned by applying photolithography or the like into a comb tooth shape. Width W at the tip
Is 1 μm, the pitch P is, for example, 2 μm, the distance L between the comb tooth tips of the electrodes 1 and 2 is 100 μm, the thickness T of the substrate 10 is about 1 mm, and the comb tooth tips of the electrodes 1 and 2 are Are arranged so as to face each other.

【0062】この場合においても、基板10全体を、容
器8中の絶縁液9に浸漬した状態で電圧印加を行うもの
である。このような構成において、150℃以上の温度
下において、第1の電極1及び第2の電極2間に、基板
10の自発分極の負側の第1の電極1が負電位、正側の
第2の電極2が正電位となるように、電圧を2.6kV
として、100μsの幅のパルス電圧を2回以上の例え
ば5回印加して、第1の電極1の櫛歯先端部から延長す
る分極反転領域3を形成し、第1の電極1の櫛歯先端部
のパターンに対応するパターンの周期的な分極反転構造
30を、結晶破壊等をほとんど生じることなく形成する
ことができた。また、電極1及び2間の放電を確実に回
避することができた。
Also in this case, the voltage is applied while the entire substrate 10 is immersed in the insulating liquid 9 in the container 8. In such a configuration, under the temperature of 150 ° C. or higher, the first electrode 1 on the negative side of the spontaneous polarization of the substrate 10 has a negative potential and the first electrode on the positive side between the first electrode 1 and the second electrode 2. The voltage is 2.6 kV so that the second electrode 2 has a positive potential.
As a pulse voltage having a width of 100 μs is applied twice or more, for example, five times to form the polarization inversion region 3 extending from the tip of the comb tooth of the first electrode 1, and the tip of the comb tooth of the first electrode 1 is formed. The periodic domain-inverted structure 30 having a pattern corresponding to the partial pattern could be formed with almost no crystal destruction. Moreover, the discharge between the electrodes 1 and 2 could be reliably avoided.

【0063】尚、上述の各例においてはニオブ酸リチウ
ムLN基板に分極反転構造を形成して光導波路デバイス
を得ようとするものであるが、この場合、その電極間の
距離を7μm以上とすることによって、より確実に導波
光の光源である半導体レーザとのカップリング効率を良
好にすることができた。即ち、図3に示すように、光導
波路11の幅Wgは3μm程度とされるが、光源である
半導体レーザのニアーフィールドパターンの直径は6μ
m程度以上であり、導波路端面12においてその幅を拡
げることにより、カップリング効率の向上をはかること
ができる。この場合、電極間距離を7μm以上程度とし
ておくことによって、確実に導波路端面12の近傍にお
いても分極反転構造30が形成されることとなって、変
換効率を損ねることなくこのようなカップリング効率の
向上をはかることが可能となる。
In each of the above-mentioned examples, the polarization inversion structure is formed on the lithium niobate LN substrate to obtain the optical waveguide device. In this case, the distance between the electrodes is set to 7 μm or more. As a result, the coupling efficiency with the semiconductor laser, which is the light source of the guided light, can be improved more reliably. That is, as shown in FIG. 3, the width Wg of the optical waveguide 11 is about 3 μm, but the diameter of the near-field pattern of the semiconductor laser, which is the light source, is 6 μm.
It is about m or more, and by increasing the width of the waveguide end face 12, the coupling efficiency can be improved. In this case, by setting the distance between the electrodes to be about 7 μm or more, the domain-inverted structure 30 can be reliably formed even in the vicinity of the waveguide end face 12, and such coupling efficiency can be achieved without impairing the conversion efficiency. It is possible to improve.

【0064】またこの場合、電極間距離を大として、分
極反転構造を形成する領域をより幅広とすることによっ
て、導波路形成にあたってそのパターニングの位置合わ
せ裕度を大とすることができて作製が容易となり、また
複数の導波路の形成が可能となる。
Further, in this case, by increasing the distance between the electrodes and widening the region where the domain-inverted structure is formed, it is possible to increase the alignment margin of the patterning when forming the waveguide, and it is possible to fabricate. This facilitates the formation of a plurality of waveguides.

【0065】更に分極反転周期をÅ単位で精度良く形成
することが難しいが、例えは一方の電極の先端部が他方
の電極の先端部に対し斜めになるようにパターニング
し、電極間距離を小から大へ徐々に変えることによっ
て、導波方向に関しては各分極反転領域の幅及びピッチ
を微小量変化させ、前述のSHG素子における疑似位相
整合を確実に行うようにすることができる。この場合に
おいても、電極間距離を7μm以上、10〜100μm
程度とすることによって、パターニングを容易にするこ
とができる。
Further, it is difficult to accurately form the polarization inversion period in units of Å, but for example, patterning is performed so that the tip of one electrode is oblique to the tip of the other electrode, and the distance between electrodes is reduced. By gradually changing from a large value to a large value, the width and the pitch of each polarization inversion region can be slightly changed in the waveguide direction, and the quasi phase matching in the SHG element described above can be surely performed. Even in this case, the distance between the electrodes is 7 μm or more and 10 to 100 μm.
By adjusting the degree, patterning can be facilitated.

【0066】次に、以下の実施例9〜16においては、
タンタル酸リチウム基板上に分極反転構造を形成する場
合について説明する。 実施例9 図1を参照して説明する。この場合タンタル酸リチウム
より成る基板10が厚さ方向に全面的に単分域化されて
成る場合で、その分極の正側の主面1S上にAl,Au
等より成る第1の電極1が例えば櫛歯状パターンにパタ
ーニングされ、分極の負側の裏面1R上には全面的に第
2の電極2が被着されて成る。
Next, in Examples 9 to 16 below,
A case where a domain inversion structure is formed on a lithium tantalate substrate will be described. Example 9 A description will be given with reference to FIG. In this case, when the substrate 10 made of lithium tantalate is formed into a single domain in the entire thickness direction, Al, Au is formed on the main surface 1S on the positive side of the polarization.
The first electrode 1 made of, for example, is patterned into a comb-tooth pattern, and the second electrode 2 is entirely deposited on the back surface 1R on the negative side of polarization.

【0067】そしてこの例では、基板10全体を、容器
8中のフロリナート(住友3M社製、商品名)等のフロ
ン系耐高電圧液やシリコンオイルなどの絶縁液9に浸漬
した状態で分極の正側即ち第1の電極1側を正電位、分
極の負側即ち第2の電極2側を負電位として電圧を印加
し、第1の電極1の櫛歯パターンに対応するパターンの
分極反転構造を形成した。このとき基板10に印加され
る電界は図5において説明した領域Bの範囲内、即ち反
転電界の15kV程度以上で、破壊電界未満の電界に選
定することが望ましい。
In this example, the entire substrate 10 is polarized while being immersed in the container 8 in a fluorocarbon high-voltage resistant liquid such as Fluorinert (manufactured by Sumitomo 3M Co., Ltd.) or an insulating liquid 9 such as silicon oil. A voltage is applied with the positive side, that is, the first electrode 1 side as a positive potential, and the negative side of polarization, that is, the second electrode 2 side, as a negative potential, and a voltage is applied, and the polarization inversion structure of the pattern corresponding to the comb tooth pattern of the first electrode 1 is applied. Formed. At this time, the electric field applied to the substrate 10 is preferably selected within the range of the region B described in FIG. 5, that is, the reversal electric field of about 15 kV or more and less than the breakdown electric field.

【0068】この場合、基板10の厚さを100μm、
電圧を2.6kVとして100μsの幅のパルスを5回
印加することにより、3.6μm程度の微細な周期の分
極反転構造30を得ることができ、更に、各電極1及び
2の櫛歯部にわたって即ち基板10の全厚さにわたって
分極反転領域が形成され、そのピッチPに対して深さを
大とすることができた。またこのように絶縁液9中にお
いて電圧を印加することによって、電極1及び2間の放
電を確実に回避することができて、結晶破壊を生じるこ
となく制御性よく分極反転構造を得ることができた。
In this case, the thickness of the substrate 10 is 100 μm,
By applying a pulse having a width of 100 μs five times with a voltage of 2.6 kV, a domain-inverted structure 30 having a fine period of about 3.6 μm can be obtained, and further, the comb-teeth portion of each electrode 1 and 2 can be obtained. That is, the domain-inverted regions were formed over the entire thickness of the substrate 10, and the depth could be increased with respect to the pitch P thereof. Further, by applying the voltage in the insulating liquid 9 as described above, the discharge between the electrodes 1 and 2 can be surely avoided, and the polarization inversion structure can be obtained with good controllability without causing crystal breakdown. It was

【0069】そしてこのような基板10に対し、図3に
示すように、主面1S上に光導波路11を形成して光導
波路デバイスを作成した。この光導波路11は、例えば
プロトン交換法により、即ち例えばTa等より成るマス
クを導波路11を形成する部分以外にフォトリソグラフ
ィ等の適用によりパターニング形成し、これをマスクと
して20分程度260℃に加熱したりん酸に浸漬して形
成することができる。そしてこのマスクを除去した後光
導波路の端面12を光学研磨して光導波路デバイス即ち
SHG素子を得ることができる。
Then, as shown in FIG. 3, an optical waveguide 11 was formed on the main surface 1S of the substrate 10 to prepare an optical waveguide device. This optical waveguide 11 is patterned by, for example, a proton exchange method, that is, a mask made of, for example, Ta, is applied to the portion other than the portion where the waveguide 11 is formed by patterning by photolithography or the like, and this is used as a mask and heated to 260 ° C. for about 20 minutes. It can be formed by dipping in phosphoric acid. Then, after removing the mask, the end face 12 of the optical waveguide is optically polished to obtain an optical waveguide device, that is, an SHG element.

【0070】この場合、屈折率変化等の特性の変動がな
く、且つそのピッチに対して深さが大とされた周期的な
分極反転構造30が得られることから、確実に疑似位相
整合がなされて、高い光変換効率を有するSHG素子を
得ることができる。
In this case, since there is no change in characteristics such as a change in the refractive index and the periodic domain-inverted structure 30 having a large depth with respect to the pitch can be obtained, the quasi-phase matching is surely performed. As a result, an SHG element having high light conversion efficiency can be obtained.

【0071】実施例10 図6を参照して説明する。図6において、図1に対応す
る部分には同一符号を付して示す。この場合においても
基板10が厚さ方向に全面的に単分域化されて成ると共
に、この厚さが700μm以下とされて、その分極の正
側の主面1S上にAl等より成る第1の電極1が櫛歯状
パターンにパターニングされ、この場合分極の負側の裏
面1R上にも同様にAl等より成る櫛歯状パターンの第
2の電極2が、その櫛歯部が主面1S上と裏面1R上と
で相対向して基板10を挟み込むように被着形成されて
成る。そして上述の実施例1と同様に、分極の正側即ち
第1の電極1側を正電位、分極の負側即ち第2の電極2
側を負電位として電圧を印加し、第1の電極1の櫛歯パ
ターンに対応するパターンの分極反転構造30を形成し
た。この場合においても、電界の大きさを実施例1と同
様に選定して、結晶破壊を生じることなく、且つ各電極
1及び2の櫛歯部にわたって即ち基板10の全厚さにわ
たって分極反転構造30が形成され、そのピッチに対し
て深さを大とすることができた。
Tenth Embodiment A description will be given with reference to FIG. 6, parts corresponding to those in FIG. 1 are designated by the same reference numerals. In this case as well, the substrate 10 is formed into a single domain over the entire surface in the thickness direction, the thickness is set to 700 μm or less, and the first surface made of Al or the like is formed on the main surface 1S on the positive side of the polarization. Electrode 1 is patterned in a comb-teeth pattern, and in this case, the second electrode 2 in the comb-teeth pattern made of Al or the like is also formed on the back surface 1R on the negative side of the polarization, and the comb-teeth portion is the main surface 1S. The upper surface and the back surface 1R are formed so as to face each other so as to sandwich the substrate 10 therebetween. Then, as in the first embodiment, the positive side of polarization, that is, the first electrode 1 side is a positive potential, and the negative side of polarization, that is, the second electrode 2 is.
A voltage was applied with the side being a negative potential, and a domain-inverted structure 30 having a pattern corresponding to the comb-teeth pattern of the first electrode 1 was formed. Also in this case, the magnitude of the electric field is selected in the same manner as in Example 1 so that the crystal inversion does not occur and the domain-inverted structure 30 is formed over the comb teeth of each of the electrodes 1 and 2, that is, over the entire thickness of the substrate 10. Was formed, and the depth could be increased with respect to the pitch.

【0072】またこの場合においても、上述の実施例1
と同様に、主面1S上にプロトン交換法等により光導波
路を形成して光導波路デバイスを作成することができ、
高光変換効率のSHG素子を得ることができる。
Also in this case, the first embodiment described above is also used.
Similarly, an optical waveguide can be formed on the main surface 1S by a proton exchange method or the like to prepare an optical waveguide device,
An SHG element with high light conversion efficiency can be obtained.

【0073】実施例11 図7を参照して説明する。図7において、図6に対応す
る部分には同一符号を付して重複説明を省略する。この
場合は基板10の裏面1R上に全面的に第2の電極2を
被着形成した例で、この例においても、上述の実施例5
と同様に、第1の電極1のパターンに対応するパターン
の分極反転構造30を得ることができ、更にそのピッチ
に対して深さを大とすることができた。
Embodiment 11 An explanation will be given with reference to FIG. In FIG. 7, parts corresponding to those in FIG. 6 are designated by the same reference numerals, and redundant description will be omitted. In this case, the second electrode 2 is entirely formed on the back surface 1R of the substrate 10 by this method.
Similarly to the above, the domain-inverted structure 30 having a pattern corresponding to the pattern of the first electrode 1 could be obtained, and the depth could be increased with respect to the pitch.

【0074】またこの場合においても、上述の実施例1
と同様に、主面1S上にプロトン交換法等により光導波
路を形成して光導波路デバイスを作成することができ、
高光交換効率のSHG素子を得ることができる。
Also in this case, the first embodiment described above is also used.
Similarly, an optical waveguide can be formed on the main surface 1S by a proton exchange method or the like to prepare an optical waveguide device,
It is possible to obtain an SHG element with high light exchange efficiency.

【0075】実施例12 図2を参照して説明する。図2において、図1に対応す
る部分には同一符号を付して重複説明を省略する。この
例では、基板10に凸部即ちリッジ6が形成され、この
リッジ6の長手方向は基板10の矢印dで示す自発分極
方向に直交するように選定され、その長手方向の側壁面
が、分極の正側より成る側面1Aと、負側より成る側面
1Bとにより構成される。この側面1A及び1B上と、
これらに隣接する上側面1E上にわたって前述の図8A
〜Eにおいて説明した製造工程によってAl等より成る
第1の電極1及び第2の電極2が櫛歯状パターンとして
形成される。このとき、櫛歯部は両上側面1E上から両
側面1A及び1Bにわたって形成されるようになし、更
に両側面1A及び1B上の櫛歯先端部が主面1Sの両端
に対向して配置されるようになす。そしてこのリッジ6
の幅方向の厚さTは700μm以下に選定され、第1及
び第2の電極1及び2間の間隔が700μm以下となる
ように選定される。
Embodiment 12 A description will be given with reference to FIG. 2, parts corresponding to those in FIG. 1 are designated by the same reference numerals, and duplicate description will be omitted. In this example, a convex portion, that is, a ridge 6 is formed on the substrate 10, the longitudinal direction of the ridge 6 is selected so as to be orthogonal to the spontaneous polarization direction indicated by the arrow d of the substrate 10, and the side wall surface in the longitudinal direction is polarized. 1A on the positive side and 1B on the negative side. On this side surface 1A and 1B,
8A described above over the upper side surface 1E adjacent to these.
The first electrode 1 and the second electrode 2 made of Al or the like are formed as a comb-shaped pattern by the manufacturing steps described in E to E. At this time, the comb teeth are formed so as to extend from both upper side surfaces 1E to both side surfaces 1A and 1B, and the tip ends of the comb teeth on both side surfaces 1A and 1B are arranged to face both ends of the main surface 1S. To do so. And this ridge 6
The thickness T in the width direction is selected to be 700 μm or less, and the distance between the first and second electrodes 1 and 2 is selected to be 700 μm or less.

【0076】このような構成において、第1の電極1側
が正電位、第2の電極2側が負電位となるように電圧を
印加して、リッジ6に分極反転領域3を形成し、各櫛歯
先端部のパターンに対応するパターンの分極反転構造3
0を得ることができた。
In such a structure, a voltage is applied so that the first electrode 1 side has a positive potential and the second electrode 2 side has a negative potential to form the polarization inversion region 3 on the ridge 6, and each comb tooth is formed. Polarization inversion structure 3 of the pattern corresponding to the pattern of the tip
I was able to get 0.

【0077】そしてこの場合においても、上述した分極
反転形成のための電圧印加工程の前或いは後に、プロン
ト交換法等によってリッジ6に導波路を形成し、第1の
電極1及び第2の電極2を除去してSHG素子を得るこ
とができる。
Also in this case, a waveguide is formed in the ridge 6 by the Pronto exchange method or the like before or after the voltage application step for forming the polarization inversion, and the first electrode 1 and the second electrode 2 are formed. Can be removed to obtain an SHG element.

【0078】このように、基板10にリッジ6を形成し
て、その側面1A及び1Bに電極を被着して電圧印加を
施す場合は、自発分極に対して平行でない電界成分、即
ち分極反転に直接影響のない電界成分を大幅に減少させ
ることができる。LT結晶においても、この自発分極の
生じる方向に平行でない電界成分が材料に与える応力が
大であるため、このような電界成分を減少させることに
よって、基板10の結果破壊を更に確実に回避すること
ができる。
As described above, when the ridge 6 is formed on the substrate 10 and electrodes are applied to the side surfaces 1A and 1B to apply a voltage, an electric field component which is not parallel to the spontaneous polarization, that is, a polarization inversion, is generated. It is possible to greatly reduce the electric field component that has no direct influence. Even in the LT crystal, the electric field component that is not parallel to the direction in which the spontaneous polarization occurs exerts a large stress on the material. Therefore, by reducing such electric field component, the destruction of the substrate 10 as a result can be more surely avoided. You can

【0079】またこのような構成によって分極反転を形
成する場合、各分極反転領域3をリッジ6の全厚さにわ
たって形成することができる。従ってこの場合において
も前述の実施例4と同様に、導波路の深さを適切に選定
することによって、導波路の全厚さ或いはそれ以上の深
さにわたって、かつ結晶破壊を殆ど生じることなく分極
反転構造30を形成することができて、これをSHG素
子として用いる場合はSHG効率等の光変換効率を高め
ることができる。
When the domain inversion is formed by such a structure, each domain inversion region 3 can be formed over the entire thickness of the ridge 6. Therefore, also in this case, as in the case of the above-mentioned fourth embodiment, by appropriately selecting the depth of the waveguide, polarization can be achieved over the entire thickness of the waveguide or more, and with almost no crystal breakage. The inversion structure 30 can be formed, and when this is used as an SHG element, the light conversion efficiency such as SHG efficiency can be improved.

【0080】実施例13 図9を参照して説明する。図9において、図2に対応す
る部分には同一符号を付して重複説明を省略する。この
場合においても、図2において説明した実施例12にお
ける基板10全体を、図1において説明した実施例9と
同様に、容器8中の絶縁液9に浸漬した状態で電圧印加
を行うものである。そしてリッジ6上の幅即ち第1の電
極1及び第2の電極2間の間隔Tを700μm以下に選
定して構成し、また上述の各例と同様に、図5において
領域Bの範囲内の電界に選定して電圧印加を行った。こ
の場合も第1の電極1及び第2の電極2の櫛歯先端部間
に、この櫛歯パターンに対応するパターンの分極反転構
造30が形成されて、この上に光導波路(図示せず)を
形成することによって、高光変換効率のSHG素子を得
ることができた。またこのように絶縁液9中において電
界印加を行うことによって、上述の実施例1と同様に電
極1及び2間の放電を確実に回避することができた。
Embodiment 13 A description will be given with reference to FIG. In FIG. 9, parts corresponding to those in FIG. 2 are designated by the same reference numerals, and redundant description will be omitted. Also in this case, the voltage is applied while the entire substrate 10 in Example 12 described in FIG. 2 is immersed in the insulating liquid 9 in the container 8 as in Example 9 described in FIG. .. Then, the width on the ridge 6, that is, the interval T between the first electrode 1 and the second electrode 2 is selected to be 700 μm or less, and as in each of the above-described examples, within the range of the region B in FIG. A voltage was applied by selecting the electric field. Also in this case, a polarization inversion structure 30 having a pattern corresponding to the comb tooth pattern is formed between the comb tooth tips of the first electrode 1 and the second electrode 2, and an optical waveguide (not shown) is formed thereon. By forming the, it was possible to obtain an SHG element with high light conversion efficiency. Further, by applying the electric field in the insulating liquid 9 as described above, it was possible to surely avoid the discharge between the electrodes 1 and 2 as in the first embodiment.

【0081】実施例14 図10を参照して説明する。この場合は矢印dで示す面
内方向に単分域化されたタンタル酸リチウムより成る基
板10を用いた例で、主面1S上の分極の負側にフォト
リソグラフィ等の適用によってAl等より成る櫛歯状パ
ターンの第1の電極1が被着形成され、一方電極の正側
の側面1B上には全面的にAl等より成る第2の電極2
が蒸着、スパッタリング等により被着形成されて成る。
この場合においても、基板10全体を、容器8中のフロ
リナート(住友3M社製、商品名)等のフロン系耐高電
圧やシリコンオイルなどの絶縁液9に浸漬した状態で電
圧印加を行うものである。
Embodiment 14 A description will be given with reference to FIG. In this case, the substrate 10 made of lithium tantalate single-domained in the in-plane direction indicated by the arrow d is used, and the negative side of polarization on the main surface 1S is made of Al or the like by application of photolithography or the like. A first electrode 1 having a comb-like pattern is deposited and formed, and a second electrode 2 made of Al or the like is entirely formed on the positive side surface 1B of the one electrode.
Is formed by vapor deposition, sputtering, or the like.
Also in this case, the voltage is applied while the entire substrate 10 is immersed in the fluorocarbon high withstand voltage such as Fluorinert (trade name, manufactured by Sumitomo 3M Co., Ltd.) in the container 8 or the insulating liquid 9 such as silicon oil. is there.

【0082】このとき、第1の電極1のピッチPは2μ
m、幅Wは1μm、主面1S上の各電極1および2の櫛
歯先端部間の距離Lは200μm、基板10の厚さTは
1mmであり、このような構成において、第1の電極1
側が負電位、第2の電極2側が正電位となるように、電
圧を5.2kVとして、100μsの幅のパルス電圧を
2回以上の例えば5回印加して、結晶破壊等をほとんど
生じることなく第1の電極1の櫛歯パターンに対応する
パターンの分極反転構造30を得ることができる。
At this time, the pitch P of the first electrodes 1 is 2 μm.
m, the width W is 1 μm, the distance L between the tip ends of the comb teeth of each of the electrodes 1 and 2 on the main surface 1S is 200 μm, and the thickness T of the substrate 10 is 1 mm. 1
With a voltage of 5.2 kV so that the side of the second electrode 2 has a negative potential and the side of the second electrode 2 has a positive potential, a pulse voltage having a width of 100 μs is applied twice or more, for example, five times, and crystal destruction or the like hardly occurs. It is possible to obtain the domain-inverted structure 30 having a pattern corresponding to the comb tooth pattern of the first electrode 1.

【0083】実施例15 図11を参照して説明する。図11において、図10に
対応する部分には同一符号を付して重複説明を省略す
る。この場合はタンタル酸リチウムより成る基板10の
分極の正側の側面1A上に、櫛歯状パターンの第1の電
極1を、更に分極の負側の主面1S上に櫛歯状パターン
の第2の電極2をそれぞれ蒸着、スパッタリング等によ
り被着した後フォトリソグラフィ等の適用によって形成
した例で、これら各電極1及び2の櫛歯先端部が主面1
S上と側面1A上とにわたって相対向するようにパター
ニングされるようになす。この場合においても、基板1
0全体を、容器8中の絶縁液9に浸漬した状態で電圧印
加を行うものである。このような構成において、第1の
電極1側が正電位、第2の電極2側が負電位となるよう
に電圧を印加して、第1の電極1及び第2の電極2の櫛
歯パターンに対応するパターンの分極反転構造30を形
成した。この場合においても、櫛歯先端部の幅及びピッ
チ、電圧の大きさを実施例14と同様に選定して、結晶
破壊等をほとんど生じることなく分極反転構造30を得
ることができた。
Embodiment 15 A description will be given with reference to FIG. 11, parts corresponding to those in FIG. 10 are designated by the same reference numerals, and redundant description will be omitted. In this case, the first electrode 1 having the comb-teeth pattern is formed on the side surface 1A on the positive polarization side of the substrate 10 made of lithium tantalate, and the first electrode 1 having the comb-teeth pattern is formed on the main surface 1S on the negative polarization side. In the example in which two electrodes 2 are deposited by vapor deposition, sputtering or the like and then formed by application of photolithography or the like, the tip end portions of the comb teeth of each of the electrodes 1 and 2 are the main surface 1
Patterning is performed so as to face each other over S and the side surface 1A. Even in this case, the substrate 1
The voltage is applied in a state where the whole 0 is immersed in the insulating liquid 9 in the container 8. In such a configuration, a voltage is applied so that the first electrode 1 side has a positive potential and the second electrode 2 side has a negative potential, which corresponds to the comb tooth pattern of the first electrode 1 and the second electrode 2. A domain-inverted structure 30 having such a pattern was formed. Also in this case, the width and pitch of the tips of the comb teeth and the magnitude of the voltage were selected in the same manner as in Example 14, and the domain-inverted structure 30 could be obtained with almost no crystal destruction.

【0084】実施例16 図12を参照して説明する。この場合は、矢印dで示す
面内方向に単分域化されたタンタル酸リチウムより成る
基板10を用いた例で、その一主面1S上の分極方向に
第1の電極1及び第2の電極2を配置する。この場合A
l等より成る第1の電極1及び第2の電極2は共に例え
ば蒸着、スパッタリング等により被着形成した後、フォ
トリソグラフィ等の適用によって櫛歯状にパターニング
されて形成され、その櫛歯先端部の幅Wが例えば1μ
m、ピッチPが例えば2μm、各電極1及び2の櫛歯先
端部間の距離Lは200μm、基板10の厚さTは1m
m程度とされ、かつ各電極1及び2の櫛歯先端部が対向
するように配置されてなる。
Embodiment 16 A description will be given with reference to FIG. In this case, the substrate 10 made of lithium tantalate single-domained in the in-plane direction indicated by the arrow d is used as an example, and the first electrode 1 and the second electrode 1 in the polarization direction on the one main surface 1S are used. The electrode 2 is arranged. In this case A
The first electrode 1 and the second electrode 2 made of 1 or the like are both formed by deposition by vapor deposition, sputtering, etc., and then patterned into a comb tooth shape by application of photolithography, etc. Width W is, for example, 1μ
m, the pitch P is, for example, 2 μm, the distance L between the tips of the comb teeth of the electrodes 1 and 2 is 200 μm, and the thickness T of the substrate 10 is 1 m.
The distance between the electrodes 1 and 2 is about m, and the tips of the comb teeth of the electrodes 1 and 2 are arranged to face each other.

【0085】この場合においても、基板10全体を、容
器8中の絶縁液9に浸漬した状態で電圧印加を行うもの
である。このような構成において、150℃以上の温度
下において、第1の電極1及び第2の電極2間に、基板
10の自発分極の負側の第1の電極1が負電位、正側の
第2の電極2が正電位となるように、電圧を5.2kV
として、200μsの幅のパルス電圧を2回以上の例え
ば5回印加して、第1の電極1の櫛歯先端部から延長す
る分極反転領域3を形成し、第1の電極1の櫛歯先端部
のパターンに対応するパターンの周期的な分極反転構造
30を、結晶破壊等をほとんど生じることなく形成する
ことができた。また、電極1及び2間の放電を確実に回
避することができた。
Also in this case, the voltage is applied while the entire substrate 10 is immersed in the insulating liquid 9 in the container 8. In such a configuration, under the temperature of 150 ° C. or higher, the first electrode 1 on the negative side of the spontaneous polarization of the substrate 10 has a negative potential and the first electrode on the positive side between the first electrode 1 and the second electrode 2. The voltage is set to 5.2 kV so that the second electrode 2 has a positive potential.
As a pulse voltage having a width of 200 μs is applied twice or more, for example, five times to form the polarization inversion region 3 extending from the tip of the comb tooth of the first electrode 1, and the tip of the comb tooth of the first electrode 1 is formed. The periodic domain-inverted structure 30 having a pattern corresponding to the partial pattern could be formed with almost no crystal destruction. Moreover, the discharge between the electrodes 1 and 2 could be reliably avoided.

【0086】尚、上述の実施例においては、15kV/
mm以上の電界を印加して分極反転構造を形成したが、
印加電界の上限、即ち結晶破壊を生じる電界の上限とし
ては、結晶基板試料毎の化学組成比の微量な相違、また
は電界の印加時間等によって大きく異なる。しかしなが
ら確実に結晶破壊を回避し、かつ微細なピッチ、幅で精
度良く分極反転構造を形成するためには、100kV/
mm以下とすることが望ましい。
In the above embodiment, 15 kV /
A domain-inverted structure was formed by applying an electric field of mm or more.
The upper limit of the applied electric field, that is, the upper limit of the electric field that causes crystal breakage, varies greatly depending on the minute difference in the chemical composition ratio of each crystal substrate sample or the application time of the electric field. However, in order to surely avoid crystal destruction and form a domain-inverted structure with a fine pitch and width with high precision, 100 kV /
It is desirable to set it to mm or less.

【0087】尚、上述した各実施例1〜16において
は、基板10上に直接的に電極を被着形成した場合であ
るが、各例共に、この電極と基板10との間に絶縁層を
設けて電圧印加を行ってもよい。
In each of Examples 1 to 16 described above, the electrode is directly formed on the substrate 10, but in each example, an insulating layer is provided between the electrode and the substrate 10. It may be provided and voltage may be applied.

【0088】また、電圧印加に先立って、基板に対して
プロトン交換、電子線等の荷電粒子照射を行う場合は、
基板内の分極が反転し易くなり、分極反転に必要な電圧
値を低減化することができる。
When the substrate is subjected to proton exchange and irradiation of charged particles such as an electron beam prior to voltage application,
The polarization in the substrate is easily inverted, and the voltage value required for the polarization inversion can be reduced.

【0089】更に、印加する電界としては、例えば徐々
に振幅が減衰する波形パターンの交流成分を加えた直流
電圧を用いる場合は、基板内の分極に攪乱を与え、これ
によって分極を反転し易くすることもできる。更にパル
ス電圧を用いてその幅及び印加回数を適切に選定するこ
とによって、所要の幅及び深さの分極反転領域を形成す
ることができる。
Further, as the applied electric field, for example, when a DC voltage added with an AC component of a waveform pattern whose amplitude is gradually attenuated is used, the polarization in the substrate is disturbed, thereby facilitating the inversion of the polarization. You can also Further, by properly selecting the width and the number of times of application using the pulse voltage, it is possible to form the domain-inverted region having the required width and depth.

【0090】[0090]

【発明の効果】上述したように、本発明ニオブ酸リチウ
ム及びタンタル酸リチウムの分極制御方法によれば、電
界を印加する電極間の間隔を適切に選定し、反転電界以
上で破壊電界以下の電界を印加することによって、確実
に結晶破壊を生じることなく電極間の間隔に対応する深
さの分極反転構造を確実に形成することができる。
As described above, according to the method for controlling the polarization of lithium niobate and lithium tantalate according to the present invention, the distance between the electrodes to which the electric field is applied is appropriately selected, and the electric field of the reversal electric field or more and the breakdown electric field or less is set. By applying, it is possible to reliably form a domain-inverted structure having a depth corresponding to the distance between the electrodes without causing crystal breakdown.

【0091】例えば厚さ方向に単分域化されたLN又は
LT基板に対して本発明を適用する場合は、その深さ方
向に良好な形状制御性をもって分極反転構造を形成する
ことができる。一方、面内方向に単分域化されたLNは
LT基板に対しても分極の正側を正電位、負側を負電位
として適切な電界を印加することにより確実に分極反転
を形成することができ、特に例えば基板上にリッジ等の
凸部を形成して、これを挟むように電極を被着して電圧
を印加する場合は、その凸部の厚さに応じた長さの分極
反転構造を得ることができて、分極反転構造の形状制御
性を向上することができる。
For example, when the present invention is applied to an LN or LT substrate having a single domain in the thickness direction, a domain-inverted structure can be formed with good shape controllability in the depth direction. On the other hand, the LN that is single-domained in the in-plane direction can surely form the polarization inversion by applying an appropriate electric field to the LT substrate with the positive side of the polarization being the positive potential and the negative side being the negative potential. In particular, for example, when a convex portion such as a ridge is formed on a substrate and electrodes are applied so as to sandwich the convex portion and a voltage is applied, polarization inversion of a length corresponding to the thickness of the convex portion is performed. The structure can be obtained, and the shape controllability of the domain-inverted structure can be improved.

【0092】従ってこのような制御方法を用いて分極反
転構造を形成し、更に光導波路を形成して光導波路デバ
イスを構成する本発明光導波路デバイスの製造方法によ
れば、疑似位相整合を確実に行うことができて、高い光
変換効率のSHG素子を得ることができる。
Therefore, according to the method of manufacturing an optical waveguide device of the present invention in which the polarization inversion structure is formed by using such a control method and the optical waveguide is further formed to constitute the optical waveguide device, the quasi phase matching is surely performed. It is possible to obtain an SHG device having high light conversion efficiency.

【0093】また本発明光導波路デバイスは上述の本発
明製造方法により結晶破壊、汚染等を生じることなく形
成し得るものであり、c軸方向に幅及びピッチに比して
大なる深さの分極反転構造を有して成り、高光変換効率
のSHG素子、光変調器等の光導波路デバイスを実現す
ることができる。
The optical waveguide device of the present invention can be formed by the above-described manufacturing method of the present invention without causing crystal breakage, contamination, etc., and has a polarization depth greater than the width and pitch in the c-axis direction. It is possible to realize an optical waveguide device such as an SHG element and an optical modulator which has an inversion structure and has a high light conversion efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】分極制御方法の一例の一製造工程を示す構成図
である。
FIG. 1 is a configuration diagram showing one manufacturing process of an example of a polarization control method.

【図2】分極制御方法の他の例の一製造工程を示す略線
的拡大斜視図である。
FIG. 2 is a schematic linear enlarged perspective view showing a manufacturing process of another example of the polarization control method.

【図3】本発明光導波路デバイスの一例の略線的拡大斜
視図である。
FIG. 3 is an enlarged schematic perspective view of an example of the optical waveguide device of the present invention.

【図4】ニオブ酸リチウムの分極反転電界及び結晶破壊
電界の基板厚依存性を示す図である。
FIG. 4 is a diagram showing substrate thickness dependence of a polarization reversal electric field and a crystal breakdown electric field of lithium niobate.

【図5】タンタル酸リチウムの分極反転電界及び結晶破
壊電界の基板厚依存性を示す図である。
FIG. 5 is a diagram showing substrate thickness dependence of a polarization reversal electric field and a crystal breakdown electric field of lithium tantalate.

【図6】分極制御方法の他の例の一製造工程を示す略線
的拡大斜視図である。
FIG. 6 is an enlarged schematic perspective view showing a manufacturing process of another example of the polarization control method.

【図7】分極制御方法の他の例の一製造工程を示す略線
的拡大斜視図である。
FIG. 7 is a schematic linear enlarged perspective view showing another manufacturing process of the polarization control method.

【図8】分極制御方法の他の例の工程図である。FIG. 8 is a process chart of another example of the polarization control method.

【図9】分極制御方法の他の例の一製造工程を示す略線
的拡大斜視図である。
FIG. 9 is a schematic linear perspective view showing a manufacturing process of another example of the polarization control method.

【図10】分極制御方法の他の例の一製造工程を示す略
線的拡大斜視図である。
FIG. 10 is a schematic linear enlarged perspective view showing another manufacturing process of the polarization control method.

【図11】分極制御方法の他の例の一製造工程を示す略
線的拡大斜視図である。
FIG. 11 is an enlarged schematic perspective view showing a manufacturing process of another example of the polarization control method.

【図12】分極制御方法の他の例の一製造工程を示す略
線的拡大斜視図である。
FIG. 12 is a schematic linear enlarged perspective view showing another manufacturing process of the polarization control method.

【図13】プロトン交換による分極制御方法の一例の一
工程図である。
FIG. 13 is a process chart of an example of a polarization control method by proton exchange.

【図14】プロトン交換法による分極反転領域の略線的
拡大断面図である。
FIG. 14 is an enlarged schematic cross-sectional view of a domain-inverted region by a proton exchange method.

【符号の説明】[Explanation of symbols]

1 第1の電極 2 第2の電極 1S 主面 1R 裏面 3 分極反転領域 5 電源 8 容器 9 絶縁液 10 基板 11 光導波路 12 導波路端面 30 分極反転構造 1 1st electrode 2 2nd electrode 1S Main surface 1R Back surface 3 Polarization inversion region 5 Power supply 8 Container 9 Insulating liquid 10 Substrate 11 Optical waveguide 12 Waveguide end face 30 Polarization inversion structure

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G02F 1/37 7246−2K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location G02F 1/37 7246-2K

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 単分域化されたニオブ酸リチウムより成
る基板に、所定の分極反転構造を形成するニオブ酸リチ
ウムの分極制御方法において、 上記基板の分極方向に第1及び第2の電極が配置され、
少なくとも上記第1の電極は最終的に得る分極反転構造
のパターンに対応するパターンに形成され、 上記第1及び第2の電極間の距離が200μm以下とさ
れ、 これら第1及び第2の電極間に、上記基板の自発分極の
負側を負電位、正側を正電位となるように電圧を印加し
て分極反転構造を形成するようにしたことを特徴とする
ニオブ酸リチウムの分極制御方法。
1. A method for controlling the polarization of lithium niobate, wherein a predetermined domain-inverted structure is formed on a substrate made of single-domain lithium niobate, wherein the first and second electrodes are arranged in a polarization direction of the substrate. Placed,
At least the first electrode is formed in a pattern corresponding to the finally obtained pattern of the domain-inverted structure, the distance between the first and second electrodes is 200 μm or less, and the distance between the first and second electrodes is at least 200 μm. A method for controlling polarization of lithium niobate, wherein a polarization inversion structure is formed by applying a voltage so that the negative side of the spontaneous polarization of the substrate is a negative potential and the positive side thereof is a positive potential.
【請求項2】 面内方向に単分域化されたニオブ酸リチ
ウムより成る基板に、所定の分極反転構造を形成するニ
オブ酸リチウムの分極制御方法において、 上記基板の一主面上の分極方向に第1及び第2の電極が
配置され、少なくとも上記第1の電極は最終的に得る分
極反転構造のパターンに対応するパターンとして上記第
1及び第2の電極間の距離が7μm〜200μmとなる
ように形成され、 150℃以下の温度下において、 上記第1及び第2の電極間に、上記基板の自発分極の負
側を負電位、正側を正電位となるように電圧を印加して
分極反転構造を形成するようにしたことを特徴とするニ
オブ酸リチウムの分極制御方法。
2. A method for controlling the polarization of lithium niobate, which comprises forming a predetermined domain-inverted structure on a substrate made of lithium niobate that is single-domained in the in-plane direction, comprising: A first electrode and a second electrode, and at least the first electrode has a pattern corresponding to the pattern of the finally obtained domain-inverted structure, and the distance between the first and second electrodes is 7 μm to 200 μm. And a voltage is applied between the first and second electrodes so that the negative side of the spontaneous polarization of the substrate is a negative potential and the positive side is a positive potential. A polarization control method for lithium niobate, characterized in that a polarization inversion structure is formed.
【請求項3】 上記第1及び第2の電極間に印加する電
圧は15kV/mm以上であることを特徴とする上記請
求項1または請求項2に記載のニオブ酸リチウムの分極
制御方法。
3. The method for controlling polarization of lithium niobate according to claim 1 or 2, wherein the voltage applied between the first and second electrodes is 15 kV / mm or more.
【請求項4】 上記第1及び第2の電極間に印加する電
圧は少なくとも2以上のパルスからなることを特徴とす
る上記請求項1または請求項2または請求項3に記載の
ニオブ酸リチウムの分極制御方法。
4. The lithium niobate according to claim 1, 2 or 3, wherein the voltage applied between the first and second electrodes comprises at least two pulses. Polarization control method.
【請求項5】 上記基板全体を絶縁液に浸漬した状態で
上記第1及び第2の電極間に電圧を印加することを特徴
とする上記請求項1または請求項2または請求項3また
は請求項4に記載のニオブ酸リチウムの分極制御方法。
5. The voltage is applied between the first and second electrodes in a state where the entire substrate is immersed in an insulating liquid, wherein the voltage is applied between the first electrode and the second electrode. 4. The method for controlling the polarization of lithium niobate according to item 4.
【請求項6】 上記請求項1または請求項2または請求
項3または請求項4または請求項5に記載のニオブ酸リ
チウムの分極制御方法により分極反転構造を形成するこ
とを特徴とする光導波路デバイスの製造方法。
6. An optical waveguide device, characterized in that a polarization inversion structure is formed by the method of controlling the polarization of lithium niobate according to claim 1, claim 2, claim 3, claim 4, or claim 5. Manufacturing method.
【請求項7】 c軸方向に単分域化されたニオブ酸リチ
ウムより成る基板に光導波路が形成されて成り、この光
導波路による光導波方向に関して周期的に分極反転構造
が形成されて成り、上記分極反転構造のc軸方向の厚さ
が200μm以下とされたことを特徴とする光導波路デ
バイス。
7. An optical waveguide is formed on a substrate made of lithium niobate single-domained in the c-axis direction, and a domain-inverted structure is periodically formed in the optical waveguide direction by the optical waveguide. An optical waveguide device, wherein the thickness of the domain-inverted structure in the c-axis direction is 200 μm or less.
【請求項8】 単分域化されたタンタル酸リチウムより
成る基板に、所定の分極反転構造を形成するタンタル酸
リチウムの分極制御方法において、 上記基板の分極方向に第1及び第2の電極が配置され、
少なくとも上記第1の電極は最終的に得る分極反転構造
のパターンに対応するパターンに形成され、 上記第1及び第2の電極間の距離が700μm以下とさ
れ、 これら第1及び第2の電極間に、上記基板の自発分極の
負側を負電位、正側を正電位となるように電圧を印加し
て分極反転構造を形成するようにしたことを特徴とする
タンタル酸リチウムの分極制御方法。
8. A method of controlling the polarization of lithium tantalate in which a predetermined domain-inverted structure is formed on a substrate made of single-domain lithium tantalate, wherein the first and second electrodes are arranged in the polarization direction of the substrate. Placed,
At least the first electrode is formed in a pattern corresponding to the finally obtained pattern of the domain-inverted structure, the distance between the first and second electrodes is 700 μm or less, and the distance between the first and second electrodes is at least 700 μm. In the method of controlling polarization of lithium tantalate, a voltage is applied so that the negative side of the spontaneous polarization of the substrate is a negative potential and the positive side of the substrate is a positive potential to form a polarization inversion structure.
【請求項9】 面内方向に単分域化されたタンタル酸リ
チウムより成る基板に、所定の分極反転構造を形成する
タンタル酸リチウムの分極制御方法において、 上記基板の一主面上の分極方向に第1及び第2の電極が
配置され、少なくとも上記第1の電極は最終的に得る分
極反転構造のパターンに対応するパターンとして上記第
1及び第2の電極間の距離が700μm以下となるよう
に形成され、 150℃以上の温度下において、 これら第1及び第2の電極間に、上記基板の自発分極の
負側を負電位、正側を正電位となるように電圧を印加し
て分極反転構造を形成するようにしたことを特徴とする
タンタル酸リチウムの分極制御方法。
9. A method of controlling the polarization of lithium tantalate in which a predetermined domain-inverted structure is formed on a substrate made of lithium tantalate single-domained in the in-plane direction, the polarization direction on one main surface of the substrate. A first electrode and a second electrode, and at least the first electrode has a pattern corresponding to the pattern of the finally obtained domain-inverted structure so that the distance between the first and second electrodes is 700 μm or less. At a temperature of 150 ° C. or higher, a voltage is applied between the first and second electrodes such that the negative side of the spontaneous polarization of the substrate is a negative potential and the positive side is a positive potential. A polarization control method for lithium tantalate, which is characterized in that an inverted structure is formed.
【請求項10】 上記第1及び第2の電極間に印加する
電圧は15kV/mm以上であることを特徴とする上記
請求項8または請求項9に記載のタンタル酸リチウムの
分極制御方法。
10. The method for controlling polarization of lithium tantalate according to claim 8, wherein the voltage applied between the first and second electrodes is 15 kV / mm or more.
【請求項11】 上記第1及び第2の電極間に印加する
電圧は少なくとも2以上のパルスからなることを特徴と
する上記請求項8または請求項9または請求項10に記
載のタンタル酸リチウムの分極制御方法。
11. The lithium tantalate according to claim 8, wherein the voltage applied between the first and second electrodes comprises at least two pulses. Polarization control method.
【請求項12】 上記基板全体を絶縁液に浸漬した状態
で上記第1及び第2の電極間に電圧を印加することを特
徴とする上記請求項8または請求項9または請求項10
または請求項11に記載のタンタル酸リチウムの分極制
御方法。
12. The method according to claim 8, wherein a voltage is applied between the first and second electrodes in a state where the entire substrate is immersed in an insulating liquid.
Alternatively, the method for controlling the polarization of lithium tantalate according to claim 11.
【請求項13】 上記請求項8または請求項9または請
求項10または請求項11または請求項12に記載のタ
ンタル酸リチウムの分極制御方法により分極反転構造を
形成することを特徴とする光導波路デバイスの製造方
法。
13. An optical waveguide device, wherein a polarization inversion structure is formed by the method for controlling the polarization of lithium tantalate according to claim 8, claim 9, claim 10, claim 11, or claim 12. Manufacturing method.
【請求項14】 c軸方向に単分域化されたタンタル酸
リチウムより成る基板に光導波路が形成されて成り、こ
の光導波路による光導波方向に関して周期的に分極反転
構造が形成されて成り、上記分極反転構造のc軸方向の
厚さが700μm以下とされたことを特徴とする光導波
路デバイス。
14. An optical waveguide is formed on a substrate made of lithium tantalate single-domained in the c-axis direction, and a domain-inverted structure is periodically formed in the optical waveguide direction by the optical waveguide. An optical waveguide device, wherein the polarization inversion structure has a thickness in the c-axis direction of 700 μm or less.
JP22435092A 1991-11-19 1992-08-24 Method for controlling polarization of lithium niobate and lithium tantalate, method for manufacturing optical waveguide device using the same, and optical waveguide device Expired - Lifetime JP3303346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22435092A JP3303346B2 (en) 1991-11-19 1992-08-24 Method for controlling polarization of lithium niobate and lithium tantalate, method for manufacturing optical waveguide device using the same, and optical waveguide device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-303488 1991-11-19
JP30348891 1991-11-19
JP22435092A JP3303346B2 (en) 1991-11-19 1992-08-24 Method for controlling polarization of lithium niobate and lithium tantalate, method for manufacturing optical waveguide device using the same, and optical waveguide device

Publications (2)

Publication Number Publication Date
JPH05210132A true JPH05210132A (en) 1993-08-20
JP3303346B2 JP3303346B2 (en) 2002-07-22

Family

ID=26525999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22435092A Expired - Lifetime JP3303346B2 (en) 1991-11-19 1992-08-24 Method for controlling polarization of lithium niobate and lithium tantalate, method for manufacturing optical waveguide device using the same, and optical waveguide device

Country Status (1)

Country Link
JP (1) JP3303346B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0863117A3 (en) * 1997-03-04 1998-10-07 Ngk Insulators, Ltd. A process for forming a microstructure in a substrate of a ferroelectric single crystal
WO1998046813A1 (en) * 1997-04-17 1998-10-22 The Secretary Of State For Defence Etching method
JP2003057699A (en) * 2001-08-15 2003-02-26 Ngk Insulators Ltd Method for forming periodical polarization inversion structure
US6529309B2 (en) 2000-05-22 2003-03-04 Fuji Photo Film Co., Ltd. Production method of light wavelength converting element
KR20050052915A (en) * 2003-12-01 2005-06-07 전자부품연구원 Domain inverting method of lithium niobate substrate using asymmetrical electrode conductivity
JP2008176335A (en) * 1999-11-09 2008-07-31 National Institute For Materials Science Wavelength conversion element consisting of lithium tantalate single crystal
US8050524B2 (en) 2008-09-26 2011-11-01 Fujitsu Limited Optical device and method related thereto

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108166065A (en) * 2017-12-12 2018-06-15 南京大学 A kind of method for preparing lithium niobate single crystal thin film domain structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0863117A3 (en) * 1997-03-04 1998-10-07 Ngk Insulators, Ltd. A process for forming a microstructure in a substrate of a ferroelectric single crystal
US6117346A (en) * 1997-03-04 2000-09-12 Ngk Insulators, Ltd. Process for forming a microstructure in a substrate of a ferroelectric single crystal
WO1998046813A1 (en) * 1997-04-17 1998-10-22 The Secretary Of State For Defence Etching method
GB2339554A (en) * 1997-04-17 2000-02-02 Secr Defence Etching method
GB2339554B (en) * 1997-04-17 2001-11-28 Secr Defence Etching method
US6344150B1 (en) 1997-04-17 2002-02-05 Qinetiq Limited Etching method
JP2008176335A (en) * 1999-11-09 2008-07-31 National Institute For Materials Science Wavelength conversion element consisting of lithium tantalate single crystal
JP4569911B2 (en) * 1999-11-09 2010-10-27 独立行政法人物質・材料研究機構 Wavelength conversion element made of lithium tantalate single crystal
US6529309B2 (en) 2000-05-22 2003-03-04 Fuji Photo Film Co., Ltd. Production method of light wavelength converting element
JP2003057699A (en) * 2001-08-15 2003-02-26 Ngk Insulators Ltd Method for forming periodical polarization inversion structure
KR20050052915A (en) * 2003-12-01 2005-06-07 전자부품연구원 Domain inverting method of lithium niobate substrate using asymmetrical electrode conductivity
US8050524B2 (en) 2008-09-26 2011-11-01 Fujitsu Limited Optical device and method related thereto

Also Published As

Publication number Publication date
JP3303346B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
EP1355186B1 (en) Method of manufacturing an optical wavelength conversion device
US5519802A (en) Method for making devices having a pattern poled structure and pattern poled structure devices
EP0532969B1 (en) Process for fabricating an optical device for generating a second harmonic optical beam
Kintaka et al. High-efficiency LiNbO/sub 3/waveguide second-harmonic generation devices with ferroelectric-domain-inverted gratings fabricated by applying voltage
JPH06242478A (en) Formation of domain inversion structure of ferroelectric substance
US6542285B1 (en) Backswitch poling method for domain patterning of ferroelectric materials
JPH08220578A (en) Manufacture of polarization inversion area, and light wavelength converting element utilizing that and its manufacture
JP3303346B2 (en) Method for controlling polarization of lithium niobate and lithium tantalate, method for manufacturing optical waveguide device using the same, and optical waveguide device
JP3397433B2 (en) Polarization inversion layer forming method and optical wavelength conversion element
JP3277515B2 (en) Polarization reversal control method
JPH1172809A (en) Optical wavelength conversion element and its production, optical generator using this element and optical pickup, diffraction element as well as production of plural polarization inversion part
JP3364268B2 (en) Method of forming domain-inverted layer
JP4081398B2 (en) Optical wavelength conversion element
JP3946092B2 (en) Method for forming periodically poled structure
JP4764964B2 (en) Method for forming minute periodic polarization reversal structure and minute periodic polarization reversal structure
JP3428156B2 (en) Polarization reversing device and method for manufacturing nonlinear optical element
JPH08271941A (en) Production of optical device
JPH06174908A (en) Production of waveguide type diffraction grating
JP2890781B2 (en) Fabrication method of optical waveguide
JPH05289135A (en) Light wavelength conversion element and its manufacture
JP3398144B2 (en) Method for manufacturing domain-inverted region
JP3429502B2 (en) Method for manufacturing domain-inverted region
JPH10206810A (en) Ridge type optical waveguide element and its manufacture
JPH04280234A (en) Control method of polarization inversion
JPH09292637A (en) Second harmonic generating element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11