JPH05210126A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JPH05210126A
JPH05210126A JP3202905A JP20290591A JPH05210126A JP H05210126 A JPH05210126 A JP H05210126A JP 3202905 A JP3202905 A JP 3202905A JP 20290591 A JP20290591 A JP 20290591A JP H05210126 A JPH05210126 A JP H05210126A
Authority
JP
Japan
Prior art keywords
light
electro
reflection
optic crystal
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3202905A
Other languages
Japanese (ja)
Inventor
Naritake Iwata
成健 岩田
Shinya Hasegawa
信也 長谷川
Tomoji Maeda
智司 前田
Mamoru Hokari
守 穂刈
Shigeo Kayashima
茂生 茅嶌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3202905A priority Critical patent/JPH05210126A/en
Publication of JPH05210126A publication Critical patent/JPH05210126A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Dot-Matrix Printers And Others (AREA)
  • Laser Beam Printer (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To execute nonmechanical scanning with light by small-sized constitution. CONSTITUTION:The space optical modulating element 10 is constituted of an electrooptical crystal 11 which changes the polarization direction of light by a voltage, a voltage impressing part 12 for impressing the voltage for controlling the rotatory polarization characteristic of the crystal 11 and a diffraction grating 13 of reflection type disposed behind the crystal. The space optical modulating elements 10a, 10b, 10c... are disposed in N layers in series and the state of impressing the energy to the respective space optical modulating elements is controlled according to scanning speeds, by which the optical routes for two directions are provided for one layer. The max. 2N pieces of the scanning points are thus scanned with the light on an image plane 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光走査装置に係わり、特
に回転ミラ−等の機械的機構を用いず光走査を行なう光
走査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning device, and more particularly to an optical scanning device for performing optical scanning without using a mechanical mechanism such as a rotary mirror.

【0002】[0002]

【従来の技術】レ−ザプリンタや、レ−ザプリンタ付き
ファクシミリ装置においては、レ−ザビ−ムで感光体を
走査すると共に、走査中にレ−ザビ−ムの発光をオン・
オフして感光体表面に露光記録(静電潜像を形成)し、
しかる後トナ−像の形成、転写、定着工程により用紙に
記録する。かかるレ−ザプリンタ等の走査・露光装置に
は、ポリゴンミラ−を回転することによりレ−ザビ−ム
の走査を行う機械的走査光学系が広く用いられている。
この走査光学系によれば、半導体レ−ザ等から出射され
たレ−ザビ−ム(発散ビ−ムである)のビ−ム径をコリ
メ−トレンズ等を介して絞ると共に、平行光に変換し、
しかる後、回転ポリゴンミラ−に照射して偏向し、偏向
後レ−ザビ−ムの走査速度をfθレンズ又はarcsinθレ
ンズ等で補正すると共に、感光体上に集光するようにし
ている。
2. Description of the Related Art In a laser printer or a facsimile machine equipped with a laser printer, a laser beam is used to scan a photosensitive member and the laser beam is turned on during scanning.
Turn off and record exposure (form an electrostatic latent image) on the surface of the photoconductor,
Then, the toner image is recorded on a sheet by the steps of forming, transferring and fixing. A mechanical scanning optical system that scans a laser beam by rotating a polygon mirror is widely used in a scanning / exposure device such as a laser printer.
According to this scanning optical system, the beam diameter of a laser beam (which is a divergent beam) emitted from a semiconductor laser or the like is narrowed down through a collimating lens or the like and converted into parallel light. Then
Thereafter, the rotary polygon mirror is irradiated and deflected, and the scanning speed of the deflected laser beam is corrected by an fθ lens or an arcsin θ lens and the light is condensed on the photoconductor.

【0003】しかし、ポリゴンミラ−を用いる方式で
は、コリメ−トレンズ、fθレンズ及び倒れ補正光学系
等の光学部品点を多数必要とし、しかも機械的走査系で
あるため、露光装置の小型化、コストの低減を阻む要因
になっている。
However, the method using the polygon mirror requires a large number of optical parts such as a collimating lens, an fθ lens, and a tilt correction optical system, and since it is a mechanical scanning system, the exposure apparatus can be downsized and the cost can be reduced. Has become a factor that prevents the reduction of

【0004】このため、LED等の発光素子を1ライン
分、所定密度(例えば16ドット/mm)で感光体ドラム
に対向して並べ、該感光体ドラムを回転すると共に、記
録すべき画像に応じて順次所定の発光素子を発光させて
感光体ドラム上にドットによる静電潜像を形成し、以後
電子写真プロセスにより普通紙に記録する非機械的走査
・露光装置が開発されている。
For this reason, light emitting elements such as LEDs are arranged in a line at a predetermined density (for example, 16 dots / mm) so as to face the photoconductor drum, and the photoconductor drum is rotated and at the same time, depending on the image to be recorded. Then, a non-mechanical scanning / exposure device has been developed in which a predetermined light emitting element is sequentially emitted to form an electrostatic latent image by dots on a photosensitive drum, and thereafter recording is performed on plain paper by an electrophotographic process.

【0005】図7はかかるLEDアレイ式電子写真プリ
ンタの概略構成図であり、1は感光体ドラム、2はLE
Dアレイヘッド、3は光変調信号発生器であり、LED
アレイヘッド2の各LEDからは、光変調信号発生器3
の出力に応じてオン/オフ変調された光ビ−ムが出射さ
れ、感光体ドラム1上に集光する。感光体ドラム1はL
EDアレイヘッド2の長手方向(主走査方向)と垂直の
矢印Y方向に回転するので、ドットによる静電潜像が感
光体ドラム1上に形成され、電子写真プロセスにより普
通紙に記録される。
FIG. 7 is a schematic configuration diagram of such an LED array type electrophotographic printer, in which 1 is a photosensitive drum and 2 is an LE.
D array head, 3 is a light modulation signal generator, LED
From each LED of the array head 2, a light modulation signal generator 3
A light beam which is on / off-modulated according to the output of is emitted and is condensed on the photosensitive drum 1. The photoconductor drum 1 is L
Since the ED array head 2 rotates in the direction of the arrow Y perpendicular to the longitudinal direction (main scanning direction), an electrostatic latent image by dots is formed on the photosensitive drum 1 and recorded on plain paper by an electrophotographic process.

【0006】[0006]

【発明が解決しようとする課題】LEDアレイ式のノン
メカニカルスキャナでは、2N個の走査点に対し、少な
くとも2 個のLED素子を主走査方向に直列に配列す
る必要があり、このため、走査点の増加に従い、装置の
奥行き方向が長くなり、装置が大型化する問題点があっ
た。
In the LED array type non-mechanical scanner, it is necessary to arrange at least two LED elements in series in the main scanning direction for 2 N scanning points. As the number of points increases, there is a problem that the depth direction of the device becomes longer and the device becomes larger.

【0007】以上から本発明の目的は、光をノンメカニ
カルに、かつ簡単な制御で走査することができ、しかも
小型化が可能な光走査装置を提供することである。
In view of the above, an object of the present invention is to provide an optical scanning device which can scan light non-mechanically and with simple control and which can be miniaturized.

【0008】[0008]

【課題を解決するための手段】図1は本発明の原理説明
図である。10,10a,10b,10c,10d・・は
空間光変調素子、11,11a,11b,11c,11d
・・は電気等の外部エネルギ−により光の偏光方向を変
化する結晶で、例えば液晶等の透過型の電気光学結晶、
12は電気光学結晶の偏光性を制御する電圧印加部、1
3,13a,13b,13c,13dc・・は入射光に対
して電気光学結晶の後方に配置され、光の偏光方向によ
り回折反射光、反射光(0次光)のいずれか一方の強度
を大きくする反射型回折格子、21は像面である。
FIG. 1 illustrates the principle of the present invention. 10, 10a, 10b, 10c, 10d ... are spatial light modulators, 11, 11a, 11b, 11c, 11d
.. is a crystal that changes the polarization direction of light by external energy such as electricity, for example, a transmissive electro-optic crystal such as liquid crystal,
Reference numeral 12 is a voltage application section for controlling the polarization property of the electro-optic crystal, 1
, 13a, 13b, 13c, 13dc ··· are arranged behind the electro-optic crystal with respect to the incident light, and the intensity of either the diffracted and reflected light or the reflected light (0th order light) is increased depending on the polarization direction of the light. A reflection type diffraction grating, and 21 is an image plane.

【0009】[0009]

【作用】電気光学結晶11は入射した直線偏光の偏光方
向を電圧印加の有無に応じて変化する。これは、電気光
学結晶11に印加する電圧を変化すると、結晶の配向が
変化し、配向変化に応じて透過光の偏光方向(垂直偏
光、水平偏光)が変るからである。一方、反射型回折格
子13は、偏光状態により回折効率が異なる性質があ
り、垂直偏光が入射されると回折光強度は小さく、従っ
て入射された垂直偏光をそのまま反射し、0次光(反射
光)として出射する。又、水平偏光が入射されると、回
折光強度は大きくなり入射された水平偏光を所定角度偏
向し、回折反射光として出射する。従って、電圧により
光の偏光方向を変化する透過型の電気光学結晶11と、
該結晶の偏光性を制御する電圧を印加する電圧印加部1
2と、結晶後方に配置された反射型回折格子13で空間
光変調素子を構成し、空間光変調素子10a,10b,1
0c,10d・・・をN層直列に配置して光走査装置を構成
する。
The electro-optic crystal 11 changes the polarization direction of the incident linearly polarized light according to the presence / absence of voltage application. This is because when the voltage applied to the electro-optic crystal 11 changes, the crystal orientation changes, and the polarization direction (vertical polarization, horizontal polarization) of the transmitted light changes according to the change in the orientation. On the other hand, the reflection type diffraction grating 13 has a property that the diffraction efficiency varies depending on the polarization state, and the intensity of the diffracted light is small when vertical polarized light is incident. Therefore, the incident vertical polarized light is reflected as it is, and the 0th order light (reflected light ) Is emitted as. When the horizontally polarized light is incident, the intensity of the diffracted light is increased and the incident horizontally polarized light is deflected by a predetermined angle and emitted as diffracted reflected light. Therefore, a transmissive electro-optic crystal 11 that changes the polarization direction of light according to a voltage,
Voltage application unit 1 for applying a voltage for controlling the polarization of the crystal
2 and the reflection type diffraction grating 13 arranged at the rear of the crystal constitute a spatial light modulator, and the spatial light modulators 10a, 10b, 1
0c, 10d, ... Are arranged in N layers in series to form an optical scanning device.

【0010】この光走査装置によれば、各空間光変調素
子への電圧印加状態を走査速度に応じて制御することに
より、1層に対して2方向の光反射経路を実現でき、こ
のため、像面21上で最大2N個の走査点に対して光の
走査をノンメカニカルで、しかも小型構成で行うことが
できる。
According to this optical scanning device, by controlling the voltage application state to each spatial light modulation element according to the scanning speed, it is possible to realize a two-direction light reflection path for one layer. It is possible to perform light scanning on a maximum of 2 N scanning points on the image plane 21 with a non-mechanical and compact structure.

【0011】又、電気エネルギ−により光の偏光方向を
変化する電気光学結晶を反射型にすると共に、回折格子
を透過型として反射型電気光学結晶の前方に配置し、反
射型電気光学結晶から反射して入射された光の偏光方向
により出射光の偏向方向を制御するようにすれば、各層
の反射型電気光学結晶への電圧印加状態に応じて各層に
対して2方向の光反射経路を実現でき、このため、最大
N個の走査点に対して光の走査をノンメカニカルで、
しかも小型構成で行うことができる。
Further, the electro-optic crystal which changes the polarization direction of light by electric energy is of a reflection type, and the diffraction grating is of a transmission type and is arranged in front of the reflection-type electro-optic crystal to reflect from the reflection-type electro-optic crystal. By controlling the polarization direction of the emitted light by the polarization direction of the incident light, a two-way light reflection path is realized for each layer according to the voltage application state to the reflective electro-optic crystal of each layer. Therefore, the scanning of light is non-mechanical for up to 2 N scanning points.
Moreover, it can be performed with a small configuration.

【0012】更に、最上位層の1つの透過型電気光学結
晶と、(N−1)層分の反射型電気光学結晶と、各電気
光学結晶の偏光性を制御するために電圧を印加する電圧
印加部と、ある層の電気光学結晶を透過して、あるいは
反射して入射した光の偏光方向により出射光の偏向方向
を制御して次の層の反射型電気光学結晶に入射する反射
型回折格子により光走査装置を構成すれば、各層の電気
光学結晶からの入射光に対して反射型回折格子において
2方向の光反射経路を実現でき、このため、最大2N
の走査点に対して光の走査をノンメカニカルで、しかも
小型構成で行うことができる。
Further, one transmissive electro-optical crystal of the uppermost layer, a reflective electro-optical crystal for (N-1) layers, and a voltage for applying a voltage to control the polarization of each electro-optical crystal. Reflection type diffraction that is incident on the reflection type electro-optic crystal of the next layer by controlling the deflection direction of the output light by the polarization direction of the light that is transmitted or reflected by the application part and the electro-optic crystal of one layer. If the optical scanning device is composed of the grating, it is possible to realize two-direction optical reflection paths in the reflection type diffraction grating for the incident light from the electro-optic crystal of each layer. Therefore, for a maximum of 2 N scanning points. It is possible to scan light with a non-mechanical and compact structure.

【0013】又、N個の反射領域を有すると共に、各反
射領域毎に電気エネルギ−により光の偏光方向を変化す
る反射型電気光学結晶と、該電気光学結晶の各反射領域
における偏光性を制御するために各反射領域に電圧を印
加する電圧印加部と、反射型電気光学結晶の所定反射領
域で反射して入射した光の偏光方向により出射光の偏向
方向を制御して反射型電気光学結晶の隣接反射領域に入
射するN層の反射型回折格子により光走査装置を構成す
れば、各層の反射型回折格子において2方向の光反射経
路を実現でき、このため、最大2N個の走査点に対して
光の走査をノンメカニカルで、しかも小型構成で行うこ
とができる。
Further, a reflection type electro-optical crystal having N reflection areas and changing the polarization direction of light by electric energy for each reflection area, and the polarization property of each reflection area of the electro-optical crystal are controlled. In order to achieve this, a voltage application unit that applies a voltage to each reflection region, and a reflection type electro-optic crystal that controls the deflection direction of outgoing light by the polarization direction of light that is reflected by a predetermined reflection region of the reflection-type electro-optic crystal and incident If an optical scanning device is configured with N layers of reflection type diffraction gratings that are incident on adjacent reflection regions of, the light reflection paths in two directions can be realized in the reflection type diffraction grating of each layer. Therefore, a maximum of 2 N scanning points can be realized. On the other hand, it is possible to perform light scanning with a non-mechanical and compact structure.

【0014】[0014]

【実施例】【Example】

(a) 空間光変調素子全体の構成 図2は空間光変調素子の構成図及び光路制御の説明図で
あり、10は空間光変調素子、11は電圧により光の偏
光方向を変化する透過型の電気光学結晶で、例えば液
晶、PLZT等の電気光学結晶、12は電気光学結晶の
偏光性を制御する電圧印加部、13は入射光に対して電
気光学結晶の後方に配置された反射型回折格子であり、
表面主走査方向に均一の凹凸形状(干渉縞)の空間周波
数をもつ表面レリ−フ型ホログラムに反射膜を形成した
ものであり、0次光は反射、回折光は反射回折する性質
を有している。
(a) Overall Configuration of Spatial Light Modulator FIG. 2 is a configuration diagram of the spatial light modulator and an explanatory view of optical path control. 10 is a spatial light modulator, and 11 is a transmissive type that changes the polarization direction of light by voltage. An electro-optic crystal, for example, an electro-optic crystal such as a liquid crystal or PLZT, 12 is a voltage application unit that controls the polarization of the electro-optic crystal, and 13 is a reflection type diffraction grating arranged behind the electro-optic crystal with respect to incident light. And
This is a surface relief type hologram having a uniform unevenness (interference fringes) spatial frequency in the surface main scanning direction, and a reflecting film is formed on the hologram. The 0th order light is reflected and the diffracted light is reflected and diffracted. ing.

【0015】電気光学結晶の光学的性質 液晶やPLZT等の電気光学結晶11は屈折率異方性を
有し、入射した直線偏光の偏光方向を電気光学結晶に印
加する電圧に応じて変える性質を有している。すなわ
ち、電気光学結晶11に印加する電圧を変化すると結晶
分子の配向が変化し、これに応じて透過光の偏光方向が
変わる。例えば、ねじれネマィック形液晶は、電圧無印
加時に垂直に入射した直線偏光(垂直偏光)を内部で9
0旋光して水平偏光として出射し、又、電圧印加時は
結晶内部で旋光せず垂直偏光のまま出射する。
Optical Properties of Electro-Optical Crystal The electro-optical crystal 11 such as liquid crystal or PLZT has a refractive index anisotropy and has a property of changing the polarization direction of incident linearly polarized light according to the voltage applied to the electro-optical crystal. Have That is, when the voltage applied to the electro-optic crystal 11 is changed, the orientation of the crystal molecules is changed, and the polarization direction of the transmitted light is changed accordingly. For example, in a twisted nematic liquid crystal, linearly polarized light (vertical polarized light) that enters vertically when no voltage is applied is
The light is rotated 0 and emitted as horizontal polarized light, and when voltage is applied, it is not rotated inside the crystal and is emitted as vertically polarized light.

【0016】反射型回折格子の光学的性質 回折格子は、入射光の波長、入射角が一定でも、入射光
の偏光状態(垂直偏向、水平偏向)により回折効率が異
なる性質があり、垂直偏光が入射されると、回折光強度
は小さく、0次光強度は大きくなる。従って、透過型回
折格子の場合には、入射された垂直偏光は0次光(透過
光)として透過する。又、水平偏光が入射されると、回
折光強度は大きくなり、入射された水平偏光は所定角度
偏向され、回折光として出射する。一方、反射型回折格
子13は上記の透過型回折格子に反射膜を形成したもの
であり、透過型回折格子における0次光は反射し、回折
光は反射回折する。
Optical Properties of Reflective Diffraction Grating The diffraction grating has a property that the diffraction efficiency varies depending on the polarization state (vertical polarization or horizontal polarization) of the incident light even if the wavelength and the incident angle of the incident light are constant. When incident, the diffracted light intensity is low and the 0th-order light intensity is high. Therefore, in the case of a transmissive diffraction grating, the incident vertically polarized light is transmitted as 0th order light (transmitted light). Further, when the horizontally polarized light is incident, the intensity of the diffracted light increases, and the incident horizontally polarized light is deflected by a predetermined angle and is emitted as diffracted light. On the other hand, the reflection type diffraction grating 13 is formed by forming a reflection film on the transmission type diffraction grating, and the 0th order light in the transmission type diffraction grating is reflected and the diffracted light is reflected and diffracted.

【0017】光経路制御 従って、透過型の電気光学結晶11と、該結晶の偏光性
を制御するための電圧印加部12と、結晶後方に配置さ
れ、入射光の偏光方向により反射光(0次光)、回折反
射光のいずれか一方の強度を大きくする反射型回折格子
13で空間光変調素子10を構成すれば、電気光学結晶
11への電圧印加を制御することにより、反射型回折格
子13から反射する光の経路を2方向に制御できる。
Optical path control Therefore, a transmission type electro-optic crystal 11, a voltage application section 12 for controlling the polarization of the crystal, and a voltage-applying section 12 disposed behind the crystal are provided. If the spatial light modulator 10 is configured by the reflection type diffraction grating 13 that increases the intensity of either light) or diffracted reflection light, the reflection type diffraction grating 13 is controlled by controlling the voltage application to the electro-optic crystal 11. The path of the light reflected from can be controlled in two directions.

【0018】例えば、透過型の電気光学結晶11に電圧
1を印加すると、電気光学結晶11は図2(b)に示すよ
うに、入射した垂直偏光をそのまま出射し、反射型回折
格子13は入射した垂直偏光を0次光(反射光)として
第1の方向に反射する。一方、電気光学結晶11に電圧
2を印加すると、電気光学結晶11は図2(c)に示すよ
うに、入射した垂直偏光を内部で900旋光して水平偏
光として出射し、反射型回折格子13は入射した水平偏
光を所定角度偏向し、回折反射光として第2の方向に反
射する。
For example, when a voltage V 1 is applied to the transmissive electro-optic crystal 11, the electro-optic crystal 11 directly emits the incident vertically polarized light as shown in FIG. The incident vertically polarized light is reflected in the first direction as 0th order light (reflected light). On the other hand, when the electro-optic crystal 11 applies a voltage V 2, the electro-optic crystal 11, as shown in FIG. 2 (c), is emitted as the horizontal polarized light by 90 0 optical rotation of the vertically polarized light incident internally reflective diffraction The grating 13 deflects the incident horizontal polarized light by a predetermined angle and reflects it in the second direction as diffracted reflected light.

【0019】(b) 光走査装置の実施例 図3は図2の空間光変調素子をN層直列に配置して最大
N個の走査点に対して光の走査をノンメカニカルで行
う本発明の光走査装置の実施例構成図である。尚、図3
(a)は正面から見た各空間光変調素子の概略配置を示
し、(b)は側面から見た概略配置を示す。
(B) Embodiment of Optical Scanning Device FIG. 3 shows an embodiment of the present invention in which the spatial light modulators of FIG. 2 are arranged in N layers in series and light scanning is performed non-mechanically at a maximum of 2 N scanning points. FIG. 3 is a configuration diagram of an embodiment of the optical scanning device of FIG. Incidentally, FIG.
(a) shows the schematic arrangement of each spatial light modulator as viewed from the front, and (b) shows the schematic arrangement as viewed from the side.

【0020】10a,10b,10c,10d・・は空
間光変調素子であり、11a,11b,11c,11d
・・は液晶等の透過型電気光学結晶、13a,13b,
13c,13d・・は反射型回折格子、21は像面、1
2は電圧印加部であり、各層(各空間光変調素子)にお
ける光経路を制御するために透過型電気光学結晶11
a,11b,11c,11d・・に印加する電圧を制御
するもの、23はレ−ザ光を発生する半導体レ−ザ(光
源)、24は入射したレ−ザ光を集光して像面21にレ
−ザビ−ムを結像するレンズ、25は半導体レ−ザ23
のオン・オフ制御を行うと共に、電圧印加部12へ走査
開始を指示する制御部である。
Reference numerals 10a, 10b, 10c, 10d, ... Are spatial light modulators, and 11a, 11b, 11c, 11d.
.. is a transmission type electro-optic crystal such as liquid crystal, 13a, 13b,
13c, 13d ... is a reflection type diffraction grating, 21 is an image plane, 1
Reference numeral 2 denotes a voltage application unit, which is used to control the light path in each layer (each spatial light modulator) and is used as a transmission electro-optic crystal 11
a for controlling the voltage applied to a, 11b, 11c, 11d, ..., 23 for a semiconductor laser (light source) that generates laser light, and 24 for converging incident laser light for image plane 21 is a lens for focusing the laser beam, and 25 is a semiconductor laser 23.
Is a control unit that controls the voltage application unit 12 to start scanning as well as performing on / off control.

【0021】レンズ24から出射したビ−ムは、電圧印
加状態に基づいて第1の空間変調素子10aで2つの光
経路,のうち1方向に反射し、ついで、第2の空間
変調素子10bで電圧印加状態に応じて2つの光経路の
うち1方向に反射し、以後同様に、第3、第4・・空間
変調素子10c,10d・・で順次所定の光経路方向に
反射して像面21上の所定の走査点P1,P2,P3,・
・・Pnに結像する。
The beam emitted from the lens 24 is reflected by the first spatial modulation element 10a in one of two optical paths based on the voltage application state, and then by the second spatial modulation element 10b. The light is reflected in one direction of the two light paths according to the voltage application state, and thereafter, similarly, is sequentially reflected in the predetermined light path direction by the third, fourth ... Spatial modulation elements 10c, 10d. 21 predetermined scanning points P 1 , P 2 , P 3 , ...
.. Image on Pn.

【0022】制御部25は、レ−ザプリンタに適用する
場合、イメ−ジデータに従って半導体レ−ザ23をオン
・オフ制御すると共に走査開始を電圧印加部12に指示
し、またバ−コ−ドリ−ダ等に適用する場合は、物品の
到来を検出してレ−ザダイオ−ド23をオン・オフする
と共に、走査開始を電圧印加部12に指示する。
When applied to a laser printer, the control unit 25 controls the semiconductor laser 23 to be turned on / off in accordance with the image data, instructs the voltage application unit 12 to start scanning, and also controls the barcode reader. In the case of applying to a feeder or the like, the arrival of an article is detected, the laser diode 23 is turned on / off, and the scanning start is instructed to the voltage application section 12.

【0023】電圧印加部12は、走査開始が指示される
と、像面21上の走査ポイントP1,P2,P3,・・・
Pnを走査速度に応じて順に走査するように各層の電気
光学結晶11a,11b,11c,11dへの電圧印加
状態を制御する。
When instructed to start scanning, the voltage applying section 12 scans points P 1 , P 2 , P 3 , ... On the image plane 21.
The voltage application state to the electro-optical crystals 11a, 11b, 11c and 11d of each layer is controlled so that Pn is sequentially scanned according to the scanning speed.

【0024】例えば、走査点P1へレ−ザビ−ムを結像
させるには、第1層の電気光学結晶11aに電圧V2
印加して入射光を回折反射させると共に他の層の電気光
学結晶11b,11c,11dへは電圧V1を印加して
入射光を反射させ、レ−ザビ−ムを走査点P1に結像す
る。
For example, in order to form an image of the laser beam at the scanning point P 1 , a voltage V 2 is applied to the electro-optic crystal 11a of the first layer to diffract and reflect the incident light and to generate electricity of the other layers. A voltage V 1 is applied to the optical crystals 11b, 11c, 11d to reflect the incident light, and the laser beam is imaged at the scanning point P 1 .

【0025】ついで、走査点P2へレ−ザビ−ムを位置
させるには、第1層の電気光学結晶11aに電圧V2
印加して入射光を回折反射させると共に、電気光学結晶
11b,11cに電圧V1を印加して入射光を反射さ
せ、さらに電気光学結晶11dに電圧V2を印加して入
射光を回折反射させ、レ−ザビ−ムを走査点P2に結像
する。
Next, in order to position the laser beam to the scanning point P 2 , a voltage V 2 is applied to the electro-optic crystal 11a of the first layer to diffract and reflect the incident light, and the electro-optic crystal 11b, A voltage V 1 is applied to 11c to reflect the incident light, and a voltage V 2 is applied to the electro-optic crystal 11d to diffract and reflect the incident light to form a laser beam at the scanning point P 2 .

【0026】以後、同様に各電気光学結晶へ印加する電
圧を制御すればレ−ザビ−ムは像面21上の最大2N
(N層とする)の走査点に対して光の走査をノンメカニ
カルで行うことができる。そして、この場合、レンズ2
4から像面21までの距離を全走査点において一定にで
きるため、全走査域において均一のビ−ム径を得ること
ができる。
Thereafter, if the voltage applied to each electro-optic crystal is controlled in the same manner, the laser beam scans light on a maximum of 2 N (N layer) scanning points on the image plane 21. It can be done non-mechanically. And in this case, the lens 2
Since the distance from 4 to the image plane 21 can be made constant at all scanning points, a uniform beam diameter can be obtained in all scanning areas.

【0027】(c) 光走査装置の第2の実施例 図3の構成では、電気光学結晶を透過型とし、回折格子
を反射型にしたが、電気光学結晶を反射型、回折格子を
透過型に構成することもできる。図4はかかる光走査装
置の構成図であり、図3と同一部分には同一符号を付し
ている。尚、図4(a)は正面から見た各空間光変調素子
の概略配置を示し、(b)は側面から見た概略配置を示
す。
(C) Second Embodiment of Optical Scanning Device In the configuration shown in FIG. 3, the electro-optic crystal is a transmission type and the diffraction grating is a reflection type. However, the electro-optic crystal is a reflection type and the diffraction grating is a transmission type. It can also be configured to. FIG. 4 is a configuration diagram of such an optical scanning device, and the same parts as those in FIG. 3 are denoted by the same reference numerals. Incidentally, FIG. 4A shows a schematic arrangement of each spatial light modulator as viewed from the front, and FIG. 4B shows a schematic arrangement as viewed from the side.

【0028】図中、10a′,10b′,10c′,1
0d′・・は空間光変調素子であり、11a′,11
b′,11c′,11d′・・は反射型電気光学結晶、
13a′,13b′,13c′,13d′・・は入射光
に対して反射型電気光学結晶の手前に配置された透過型
回折格子、21は像面、12は電圧印加部であり、各層
(各空間光変調素子)における光経路を制御するために
透過型電気光学結晶11a′,11b′,11c′,1
1d′・・に印加する電圧を制御するもの、23はレ−
ザ光を発生する半導体レ−ザ(光源)、24は入射した
レ−ザ光を集光して像面21にレ−ザビ−ムを結像する
レンズ、25は半導体レ−ザ23のオン・オフ制御を行
うと共に、電圧印加部12へ走査開始を指示する制御部
である。尚、走査制御動作は図3と略同様であるのでそ
の説明は省略する。
In the figure, 10a ', 10b', 10c ', 1
0d '... are spatial light modulators, and 11a', 11
b ', 11c', 11d '... are reflective electro-optic crystals,
13a ', 13b', 13c ', 13d' ... are transmission type diffraction gratings arranged in front of the reflection type electro-optic crystal with respect to incident light, 21 is an image plane, 12 is a voltage applying section, and each layer ( Transmission type electro-optic crystals 11a ', 11b', 11c ', 1 for controlling the light path in each spatial light modulator)
Controlling the voltage applied to 1d '...
A semiconductor laser (light source) that generates laser light, 24 is a lens that collects incident laser light and forms a laser beam on the image plane 21, and 25 is a semiconductor laser 23 that is turned on. The control unit performs off control and instructs the voltage application unit 12 to start scanning. The scanning control operation is substantially the same as that shown in FIG.

【0029】(d) 光走査装置の第3の実施例 図5は本発明の光走査装置の第3の実施例構成図であ
り、図5(a)では各素子の正面概略配置が示され、(b)で
は側面概略配置が示されている。
(D) Third Embodiment of Optical Scanning Device FIG. 5 is a block diagram of a third embodiment of the optical scanning device of the present invention. FIG. 5 (a) shows a schematic frontal arrangement of each element. , (B) shows a schematic side view layout.

【0030】31は電圧印加により光の偏光方向を変化
する最上位層の透過型電気光学結晶、32,33,3
4,35・・電気エネルギ−により光の偏光方向を変化
する(N−1)層分の反射型電気光学結晶、41はある
層の電気光学結晶を透過して、あるいは反射して入射し
た光の偏光方向により出射光の偏向方向を制御して次の
層の反射型電気光学結晶に入射する反射型回折格子であ
る。
Reference numeral 31 is a transmission type electro-optic crystal of the uppermost layer, which changes the polarization direction of light by applying a voltage, 32, 33, 3
4,35 ... Reflective electro-optic crystal for (N-1) layers, which changes the polarization direction of light by electric energy, 41 is light that is transmitted through or reflected by the electro-optic crystal of a certain layer Is a reflection type diffraction grating which controls the deflection direction of emitted light according to the polarization direction and enters the reflection type electro-optic crystal of the next layer.

【0031】又、21は反射型回折格子41と同一平面
上の像面、12は各層における電気光学結晶31〜35
・・に印加する電圧を制御する電圧印加部、23はレ−
ザ光を発生する半導体レ−ザ(光源)、24は入射した
レ−ザ光を集光して像面21にレ−ザビ−ムを結像する
レンズ、25は半導体レ−ザ23のオン・オフ制御を行
うと共に、電圧印加部12へ走査開始を指示する制御部
である。
Further, 21 is an image plane on the same plane as the reflection type diffraction grating 41, and 12 is electro-optic crystals 31 to 35 in each layer.
.. The voltage application unit for controlling the voltage applied to
A semiconductor laser (light source) that generates laser light, 24 is a lens that collects incident laser light and forms a laser beam on the image plane 21, and 25 is a semiconductor laser 23 that is turned on. The control unit performs off control and instructs the voltage application unit 12 to start scanning.

【0032】レンズ24から出射したビ−ムは、電圧印
加状態に基づいて第1層の透過型電気光学結晶31で偏
光方向を制御されて反射型回折格子41に入射する。反
射型回折格子41は、入射光の偏光状態により、2つの
光経路,のうち1方向に反射して第2層の反射型電
気光学結晶32に入射する。
The beam emitted from the lens 24 is incident on the reflection type diffraction grating 41, the polarization direction of which is controlled by the transmission type electro-optic crystal 31 of the first layer based on the voltage application state. The reflection type diffraction grating 41 reflects in one direction of two light paths depending on the polarization state of the incident light and enters the reflection type electro-optic crystal 32 of the second layer.

【0033】第2層の反射型電気光学結晶32は電圧印
加状態に基づいて入射光の偏光方向を制御して反射型回
折格子41に反射する。反射型回折格子41は、入射光
の偏光状態により、2つの光経路′,′のうち1方
向に反射して第3層の反射型電気光学結晶33に入射す
る。以後同様に、第3、第4反射型電気光学結晶33,
34・・で順次所定の光経路方向に反射して最終的に像
面21上の所定の走査点に結像する。
The reflective electro-optic crystal 32 of the second layer controls the polarization direction of the incident light on the basis of the voltage application state and reflects it on the reflective diffraction grating 41. The reflection type diffraction grating 41 reflects in one direction of the two optical paths ′ and ′ depending on the polarization state of the incident light and enters the reflection type electro-optic crystal 33 of the third layer. Thereafter, similarly, the third and fourth reflective electro-optic crystals 33,
At 34 ..., It is sequentially reflected in a predetermined optical path direction and finally an image is formed at a predetermined scanning point on the image plane 21.

【0034】制御部25は、レ−ザプリンタに適用する
場合、イメ−ジデータに従って半導体レ−ザ23をオン
・オフ制御すると共に走査開始を電圧印加部12に指示
し、またバ−コ−ドリ−ダ等に適用する場合は、物品の
到来を検出してレ−ザダイオ−ド23をオン・オフする
と共に、走査開始を電圧印加部12に指示する。
When applied to a laser printer, the control unit 25 controls the semiconductor laser 23 to be turned on / off in accordance with the image data, instructs the voltage application unit 12 to start scanning, and also controls the barcode reader. In the case of applying to a feeder or the like, the arrival of an article is detected, the laser diode 23 is turned on / off, and the scanning start is instructed to the voltage application section 12.

【0035】電圧印加部12は、制御部25から走査開
始が指示されると、像面21上の走査ポイントP1
2,P3,・・・Pnを走査速度に応じて順に走査する
ように各層の電気光学結晶31〜35への電圧印加状態
を制御する。
When the control unit 25 instructs the voltage application unit 12 to start scanning, the voltage application unit 12 scans the scanning points P 1 ,
The voltage application state to the electro-optic crystals 31 to 35 of each layer is controlled so that P 2 , P 3 , ... Pn are sequentially scanned according to the scanning speed.

【0036】例えば、走査点P1へレ−ザビ−ムを結像
させるには、第1層の透過型電気光学結晶31に電圧V
2を印加して反射型回折格子41で入射光を回折反射さ
せると共に、他の層の反射型電気光学結晶32〜35へ
は電圧V1を印加して反射型回折格子41で入射光を反
射させ、レ−ザビ−ムを走査点P1に結像する。
For example, in order to form an image of the laser beam at the scanning point P 1 , a voltage V is applied to the transmission type electro-optic crystal 31 of the first layer.
2 is applied to diffract and reflect the incident light by the reflective diffraction grating 41, and the voltage V 1 is applied to the reflective electro-optic crystals 32 to 35 of the other layers to reflect the incident light by the reflective diffraction grating 41. Then, the laser beam is imaged at the scanning point P 1 .

【0037】ついで、走査点P2へレ−ザビ−ムを位置
させるには、第1層の透過型電気光学結晶31に電圧V
2を印加して反射型回折格子41で入射光を回折反射さ
せると共に、電気光学結晶32〜34に電圧V1を印加
して反射型回折格子41で入射光を反射させ、さらに最
下層の反射型電気光学結晶35に電圧V2を印加して反
射型回折格子41で入射光を回折反射させ、レ−ザビ−
ムを走査点P2に結像する。
Then, in order to position the laser beam to the scanning point P 2 , the voltage V is applied to the transmission type electro-optic crystal 31 of the first layer.
2 is applied to diffract and reflect the incident light by the reflection type diffraction grating 41, and a voltage V 1 is applied to the electro-optic crystals 32 to 34 to reflect the incident light by the reflection type diffraction grating 41, and the reflection of the lowermost layer. A voltage V 2 is applied to the electro-optical crystal 35 to diffract and reflect incident light by the reflection type diffraction grating 41, and a laser beam is generated.
The image is formed on the scanning point P 2 .

【0038】以後、同様に各電気光学結晶へ印加する電
圧を制御すればレ−ザビ−ムは像面21上の最大2N
(N層とする)の走査点に対して光の走査をノンメカニ
カルで行うことができる。そして、この場合にも、レン
ズ24から像面21までの距離を全走査点において一定
にできるため、全走査域において均一のビ−ム径を得る
ことができる。
After that, if the voltage applied to each electro-optic crystal is controlled in the same manner, the laser beam scans light at a maximum of 2 N (N layer) scanning points on the image plane 21. It can be done non-mechanically. Also in this case, since the distance from the lens 24 to the image plane 21 can be made constant at all scanning points, a uniform beam diameter can be obtained in all scanning areas.

【0039】(e) 光走査装置の第4の実施例 図6は本発明の光走査装置の第4の実施例構成図であ
り、図6(a)には各素子の正面概略配置が示され、同図
(b)には側面概略配置が示されている。
(E) Fourth Embodiment of Optical Scanning Device FIG. 6 is a configuration diagram of a fourth embodiment of the optical scanning device of the present invention, and FIG. 6 (a) shows a schematic frontal arrangement of each element. And the same figure
(b) shows a schematic side view layout.

【0040】51はN個の反射領域51a,51b,5
1c,51d・・を有すると共に、各反射領域毎に電圧
により光の偏光方向を変化する反射型電気光学結晶であ
る。尚、各反射領域は電気的に絶縁されている。52
a,52bは反射型電気光学結晶51の2つの隣接反射
領域51a,51bでそれぞれ反射して入射した光の偏
光方向により出射光の偏向方向を変えて反射型電気光学
結晶51の隣接反射領域51b,51cに入射する第1
層の反射型回折格子、53a,53bは反射型電気光学
結晶51の2つの隣接反射領域51c,51dでそれぞ
れ反射して入射した光の偏光方向により出射光の偏向方
向を変えて反射型電気光学結晶51の隣接反射領域に入
射する第2層の反射型回折格子である。尚、図6では第
2層迄しか示してないが第3層、第4層、・・・が実際
には設けられ、最下位層の右側の反射型回折格子からの
光を像面上の最大2N個の走査点に順次結像して走査を
行うようになっている。
Reference numeral 51 denotes N reflection areas 51a, 51b, 5
The reflective electro-optic crystal has 1c, 51d, ... And changes the polarization direction of light by a voltage for each reflection region. Incidentally, each reflection area is electrically insulated. 52
a and 52b are adjacent reflection regions 51b of the reflection-type electro-optic crystal 51 in which the deflection direction of the emitted light is changed according to the polarization direction of the light that is reflected by the two adjacent reflection regions 51a and 51b of the reflection-type electro-optic crystal 51. , The first incident on 51c
Reflection diffraction gratings 53 a and 53 b are reflection electro-optics by changing the deflection direction of the outgoing light according to the polarization direction of the light reflected by two adjacent reflection regions 51 c and 51 d of the reflection electro-optic crystal 51. It is the reflection diffraction grating of the second layer which is incident on the adjacent reflection region of the crystal 51. Although only the second layer is shown in FIG. 6, the third layer, the fourth layer, ... Are actually provided, and the light from the reflection type diffraction grating on the right side of the lowest layer is reflected on the image plane. The scanning is performed by sequentially forming images at a maximum of 2 N scanning points.

【0041】21は反射型回折格子51と同一平面上の
像面、12は反射型電気光学結晶51における各反射領
域51a,51b,51c,51d・・・に印加する電
圧を制御する電圧印加部、23はレ−ザ光を発生する半
導体レ−ザ(光源)、24は入射したレ−ザ光を集光し
て像面21にレ−ザビ−ムを結像するレンズ、25は半
導体レ−ザ23のオン・オフ制御を行うと共に、電圧印
加部12へ走査開始を指示する制御部である。
Reference numeral 21 is an image plane on the same plane as the reflection type diffraction grating 51, and 12 is a voltage application section for controlling the voltage applied to each reflection area 51a, 51b, 51c, 51d ... In the reflection type electro-optic crystal 51. , 23 is a semiconductor laser (light source) that generates laser light, 24 is a lens that collects incident laser light and forms a laser beam on the image plane 21, and 25 is a semiconductor laser. A control unit that controls the voltage application unit 12 to start scanning, while performing on / off control of the Za 23.

【0042】レンズ24から出射したビ−ムは、反射型
電気光学結晶51の第1反射領域51aへの電圧印加状
態に基づいて偏光方向を制御されて第1層の第1反射型
回折格子52aに入射する。反射型回折格子52aは、
入射光の偏光状態により、2つの光経路,のうち1
方向に反射して反射型電気光学結晶51の第2反射領域
51bに入射する。
The beam emitted from the lens 24 has its polarization direction controlled based on the voltage application state to the first reflection region 51a of the reflection type electro-optic crystal 51, and the first reflection type diffraction grating 52a of the first layer. Incident on. The reflective diffraction grating 52a is
Depending on the polarization state of the incident light, one of two light paths
The light is reflected in the direction and enters the second reflective region 51b of the reflective electro-optic crystal 51.

【0043】反射型電気光学結晶51に入射した光は、
第2反射領域51bへの電圧印加状態に基づいて偏光方
向を制御されて第1層の第2の反射型回折格子52bに
入射する。反射型回折格子52bは、入射光の偏光状態
により、2つの光経路′,′のうち1方向に反射し
て反射型電気光学結晶51の第3反射領域51cに入射
する。以後同様に、第2層の第1、第2反射型回折格子
53a,53b、第3層の第1、第2反射型回折格子・
・で順次所定の光経路方向に反射して最終的に像面21
上の所定の走査点に結像する。
The light incident on the reflective electro-optic crystal 51 is
The polarization direction is controlled based on the voltage application state to the second reflection region 51b, and the light is incident on the second reflection type diffraction grating 52b of the first layer. The reflection type diffraction grating 52b reflects in one direction of the two optical paths ',' depending on the polarization state of the incident light and enters the third reflection region 51c of the reflection type electro-optic crystal 51. Thereafter, similarly, the first and second reflective diffraction gratings 53a and 53b of the second layer, the first and second reflective diffraction gratings of the third layer,
・ Sequentially reflects in the direction of the predetermined optical path, and finally the image plane 21
An image is formed at a predetermined scanning point above.

【0044】電圧印加部12は、制御部25から走査開
始が指示されると、像面21上の走査点P1,P2
3,・・・Pnを走査速度に応じて順に走査するように
反射型電気光学結晶51の各反射領域51a,51b,
51c,・・・への電圧印加状態を制御する。
When the control section 25 instructs the voltage application section 12 to start scanning, the scanning points P 1 , P 2 ,
Each of the reflection regions 51a, 51b of the reflection-type electro-optic crystal 51 so that P 3 , ... Pn are sequentially scanned according to the scanning speed.
The voltage application state to 51c, ... Is controlled.

【0045】例えば、走査点P1へレ−ザビ−ムを結像
させるには、反射型電気光学結晶51の第1反射領域5
1aに電圧V2を印加して第1層の第1反射型回折格子
52aで入射光を方向に回折反射させると共に、反射
型電気光学結晶51の他の反射領域51b,51c,5
1dへは電圧V1を印加して反射型回折格子52b,5
3a,53bで入射光を反射させ、レ−ザビ−ムを走査
点P1に結像する。
For example, in order to form an image of the laser beam on the scanning point P 1 , the first reflection area 5 of the reflection type electro-optic crystal 51 is formed.
A voltage V 2 is applied to 1a to diffract the incident light in a direction by the first reflection type diffraction grating 52a of the first layer, and the other reflection regions 51b, 51c, 5 of the reflection type electro-optic crystal 51.
A voltage V 1 is applied to 1d to apply reflection type diffraction gratings 52b, 5b.
Incident light is reflected by 3a and 53b, and the laser beam is imaged at the scanning point P 1 .

【0046】ついで、走査点P2へレ−ザビ−ムを位置
させるには、反射型電気光学結晶51の第1反射領域5
1aに電圧V2を印加して第1層の第1反射型回折格子
52aで入射光を方向に回折反射させると共に、反射
型電気光学結晶51の反射領域51b,51cへ電圧V
1を印加して反射型回折格子52b,53aで入射光を
反射させ、さらに反射領域51dへ電圧V2を印加して
最下層の第2反射型回折格子52dで入射光を回折反射
させ、レ−ザビ−ムを走査点P2に結像する。
Next, in order to position the laser beam to the scanning point P 2 , the first reflection area 5 of the reflection type electro-optic crystal 51 is used.
1a to apply a voltage V 2 to the first reflective diffraction grating 52a of the first layer to diffract and reflect the incident light in a direction, and to the reflective regions 51b and 51c of the reflective electro-optic crystal 51, a voltage V 2 is applied.
1 is applied to reflect the incident light on the reflection type diffraction gratings 52b and 53a, and a voltage V 2 is applied to the reflection area 51d to diffract and reflect the incident light on the second reflection type diffraction grating 52d in the lowermost layer. Image the beam at the scanning point P 2 .

【0047】以後、同様に反射型電気光学結晶51の各
反射領域へ印加する電圧を制御すればレ−ザビ−ムは像
面21上の最大2N個の走査点に対して光の走査をノン
メカニカルで行うことができる。そして、この場合に
も、レンズ24から像面21までの距離を全走査点にお
いて一定にできるため、全走査域において均一のビ−ム
径を得ることができる。
After that, if the voltage applied to each reflection region of the reflection type electro-optic crystal 51 is controlled in the same manner, the laser beam scans light at a maximum of 2 N scanning points on the image plane 21. It can be done non-mechanically. Also in this case, since the distance from the lens 24 to the image plane 21 can be made constant at all scanning points, a uniform beam diameter can be obtained in all scanning areas.

【0048】尚、図6の第4の実施例では、1層につき
第1、第2の2つの反射型回折格子を設けたが、1層に
つき1つの反射型回折格子をN層設けるようにして2N
個の走査点を走査するように構成しても良い。以上、本
発明を実施例により説明したが、本発明は請求の範囲に
記載した本発明の主旨に従い種々の変形が可能であり、
本発明はこれらを排除するものではない。
In the fourth embodiment shown in FIG. 6, two reflection diffraction gratings, the first and second reflection diffraction gratings, are provided for each layer, but one reflection diffraction grating is provided for each layer (N layers). 2 N
It may be configured to scan individual scanning points. Although the present invention has been described above with reference to the embodiments, the present invention can be variously modified according to the gist of the present invention described in the claims,
The present invention does not exclude these.

【0049】[0049]

【発明の効果】以上本発明によれば、電圧により光の偏
光方向を変化する電気光学結晶と、該結晶の偏光性を制
御する電圧を印加する電圧印加部と、結晶後方に配置さ
れた反射型回折格子で空間光変調素子を構成し、空間光
変調素子をN層直列に配置して光走査装置を構成するよ
うにしたから、各空間光変調素子への電圧印加状態を走
査速度に応じて制御することにより、1層に対して2方
向の光反射経路を実現でき、このため、像面上で最大2
N個の走査点に対して光の走査をノンメカニカルで、し
かも小型構成で行うことができる。
As described above, according to the present invention, an electro-optic crystal that changes the polarization direction of light according to a voltage, a voltage application section that applies a voltage that controls the polarization of the crystal, and a reflection element that is arranged behind the crystal. Since the spatial light modulation element is configured by the diffraction grating and the spatial light modulation elements are arranged in N layers in series to configure the optical scanning device, the voltage application state to each spatial light modulation element depends on the scanning speed. It is possible to realize a light reflection path in two directions for one layer by controlling the above-mentioned control.
It is possible to perform light scanning on N scanning points with a non-mechanical and compact structure.

【0050】又、本発明によれば、電気光学結晶を反射
型にすると共に、各回折格子を透過型として各反射型電
気光学結晶の前方に配置し、反射型電気光学結晶から反
射して入射された光の偏光方向により出射光の偏向方向
を制御するように構成したから、各層の反射型電気光学
結晶への電圧印加状態に応じて各層に対して2方向の光
反射経路を実現でき、このため、最大2N個の走査点に
対して光の走査をノンメカニカルで、しかも小型構成で
行うことができる。
Further, according to the present invention, the electro-optic crystal is of the reflection type, and the diffraction gratings are of the transmission type and are arranged in front of the reflection-type electro-optic crystals, and reflected from the reflection-type electro-optic crystal to enter. Since the configuration is such that the polarization direction of the emitted light is controlled by the polarization direction of the emitted light, a two-direction light reflection path can be realized for each layer according to the voltage application state to the reflective electro-optic crystal of each layer, For this reason, it is possible to perform light scanning on a maximum of 2 N scanning points with a non-mechanical and compact structure.

【0051】更に、本発明によれば、最上位層の1つの
透過型電気光学結晶と、(N−1)層分の反射型電気光
学結晶と、各電気光学結晶の偏光性を制御するために電
圧を印加する電圧印加部と、ある層の電気光学結晶を透
過して、あるいは反射して入射した光の偏光方向により
出射光の偏向方向を制御して次の層の反射型電気光学結
晶に入射する反射型回折格子により光走査装置を構成し
たから、各層の電気光学結晶からの入射光に対して反射
型回折格子において2方向の光反射経路を実現でき、こ
のため、最大2N個の走査点に対して光の走査をノンメ
カニカルで、しかも小型構成で行うことができる。
Further, according to the present invention, one transmission type electro-optical crystal of the uppermost layer, the reflection type electro-optical crystal of the (N-1) layer, and the polarization property of each electro-optical crystal are controlled. A voltage application unit that applies a voltage to the electro-optical crystal of one layer and a reflection-type electro-optical crystal of the next layer by controlling the deflection direction of outgoing light by the polarization direction of light that is transmitted through or reflected by the electro-optical crystal of a layer. because I constitute an optical scanning device by the reflection type diffraction grating is incident on, it can be realized in two directions of the optical reflection path in a reflective diffraction grating for incident light from each layer of the electro-optic crystal, Therefore, the maximum the 2 N It is possible to perform non-mechanical scanning of the light with respect to the scanning point of 1 with a small configuration.

【0052】又、本発明によれば、N個の反射領域を有
すると共に、各反射領域毎に電圧により光の偏光方向を
変化する反射型電気光学結晶と、反射型電気光学結晶の
所定反射領域で反射して入射した光の偏光方向により出
射光の偏向方向を制御して反射型電気光学結晶の隣接反
射領域に入射するN層の反射型回折格子により光走査装
置を構成したから、各層の反射型回折格子において2方
向の光反射経路を実現でき、このため、最大2N個の走
査点に対して光の走査をノンメカニカルで、しかも小型
構成で行うことができる。
Further, according to the present invention, the reflection type electro-optical crystal having N reflection areas and changing the polarization direction of light by the voltage for each reflection area, and the predetermined reflection area of the reflection type electro-optical crystal. Since the deflection direction of the outgoing light is controlled by the polarization direction of the light reflected by the incident light and the incident light is incident on the adjacent reflection region of the reflective electro-optic crystal, the optical scanning device is configured by the N-layer reflective diffraction grating. In the reflection type diffraction grating, light reflection paths in two directions can be realized, and therefore, it is possible to perform light scanning on a maximum of 2 N scanning points with a non-mechanical and compact structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】本発明の空間光変調素子の構成図及び光経路制
御の説明図である。
FIG. 2 is a configuration diagram of a spatial light modulator of the present invention and an explanatory diagram of optical path control.

【図3】本発明の光走査装置の実施例構成図である。FIG. 3 is a configuration diagram of an embodiment of an optical scanning device of the present invention.

【図4】本発明の光走査装置の第2の実施例構成図であ
る。
FIG. 4 is a configuration diagram of a second embodiment of the optical scanning device of the present invention.

【図5】本発明の光走査装置の第3の実施例構成図であ
る。
FIG. 5 is a configuration diagram of a third embodiment of the optical scanning device of the present invention.

【図6】本発明の光走査装置の第4の実施例構成図であ
る。
FIG. 6 is a configuration diagram of a fourth embodiment of the optical scanning device of the present invention.

【図7】LEDアレイ式電子写真プリンタの概略説明図
である。
FIG. 7 is a schematic explanatory view of an LED array type electrophotographic printer.

【符号の説明】 10、10a、10b、10c,10d・・空間光変調素
子 11、11a、11b、11c,11d・・透過型の電気
光学結晶 12・・電圧印加部 13、13a、13b、13c,13d・・反射型回折格
子 21・・像面
[Explanation of symbols] 10, 10a, 10b, 10c, 10d ··· spatial light modulator 11, 11a, 11b, 11c, 11d · · transmissive electro-optic crystal 12 · · voltage applying unit 13, 13a, 13b, 13c , 13d ・ ・ Reflective diffraction grating 21 ・ ・ Image plane

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G06K 15/14 H04N 1/04 104 Z 7251−5C (72)発明者 穂刈 守 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 茅嶌 茂生 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location G06K 15/14 H04N 1/04 104 Z 7251-5C (72) Inventor Mamoru Hokari Nakahara, Kawasaki City, Kanagawa Prefecture 1015 Kamiodanaka, Ku Ward, within Fujitsu Limited (72) Inventor Shigeo Kayashima 1015 Kamikodanaka, Nakahara Ward, Kawasaki City, Kanagawa Within Fujitsu Limited

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電気エネルギ−により光の偏光方向を変
化する透過型電気光学結晶と、該電気光学結晶の偏光性
を制御するために電圧を印加する電圧印加部と、電気光
学結晶後方に配置され、入射光の偏光方向により出射光
の偏光方向を制御する反射型回折格子を備え、電気光学
結晶への電圧印加状態に応じて反射型回折格子からの出
射光の偏向方向を制御する空間光変調素子を、N層直列
に配置すると共に、各空間変調素子の電圧印加状態を制
御して最大2N個の走査点に対して走査を行うことを特
徴とする光走査装置。
1. A transmissive electro-optic crystal that changes the polarization direction of light by electric energy, a voltage application section that applies a voltage to control the polarization of the electro-optic crystal, and a rear part disposed behind the electro-optic crystal. A spatial light that has a reflective diffraction grating that controls the polarization direction of outgoing light according to the polarization direction of incident light, and that controls the deflection direction of outgoing light from the reflective diffraction grating according to the voltage application state to the electro-optic crystal. An optical scanning device characterized in that modulation elements are arranged in N layers in series, and the voltage application state of each spatial modulation element is controlled to perform scanning for a maximum of 2 N scanning points.
【請求項2】 電気エネルギ−により光の偏光方向を変
化する反射型電気光学結晶と、該電気光学結晶の偏光性
を制御するために電圧を印加する電圧印加部と、電気光
学結晶の前方に配置され、反射型電気光学結晶から反射
して入射された光の偏光方向により出射光の偏向方向を
制御する透過型回折格子を備え、電気光学結晶への電圧
印加状態に応じて透過型回折格子からの出射光の偏向方
向を制御する空間光変調素子を、N層直列に配置すると
共に、各空間変調素子の電圧印加状態を制御して最大2
N個の走査点に対して走査を行うことを特徴とする光走
査装置。
2. A reflective electro-optic crystal that changes the polarization direction of light by electric energy, a voltage application section that applies a voltage to control the polarization property of the electro-optic crystal, and a front part of the electro-optic crystal. The transmission type diffraction grating is disposed and controls the deflection direction of the emitted light by the polarization direction of the light reflected from the reflection type electro-optical crystal and incident, and the transmission type diffraction grating is provided according to the voltage application state to the electro-optical crystal. The spatial light modulators for controlling the direction of deflection of the light emitted from are arranged in N layers in series, and the voltage application state of each spatial modulator is controlled to a maximum of 2
An optical scanning device characterized by performing scanning on N scanning points.
【請求項3】 電気エネルギ−により光の偏光方向を変
化する最上位層の1つの透過型電気光学結晶と、電気エ
ネルギ−により光の偏光方向を変化する(N−1)層分
の反射型電気光学結晶と、各電気光学結晶の偏光性を制
御するために電圧を印加する電圧印加部と、ある層の電
気光学結晶を透過して、あるいは反射して入射した光の
偏光方向により出射光の偏向方向を制御して次の層の反
射型電気光学結晶に入射する反射型回折格子を備え、最
下位層の反射型電気光学結晶からの光を像面上の最大2
N個の走査点に順次結像して走査を行うことを特徴とす
る光走査装置。
3. A transmissive electro-optic crystal of the uppermost layer which changes the polarization direction of light by electric energy, and a reflection type (N-1) layer which changes the polarization direction of light by electric energy. Electro-optical crystals, a voltage application unit that applies a voltage to control the polarization of each electro-optical crystal, and outgoing light depending on the polarization direction of light that is transmitted through or reflected by the electro-optical crystal of a certain layer. It is equipped with a reflection type diffraction grating that controls the deflection direction of the incident light to enter the reflection type electro-optic crystal of the next layer, and the light from the reflection type electro-optic crystal of the lowermost layer can be used up to
An optical scanning device characterized by sequentially forming an image on N scanning points to perform scanning.
【請求項4】 N個の反射領域を有すると共に、各反射
領域毎に電気エネルギ−により光の偏光方向を変化する
反射型電気光学結晶と、該電気光学結晶の各反射領域に
おける偏光性を制御するために各反射領域に電圧を印加
する電圧印加部と、反射型電気光学結晶の所定反射領域
で反射して入射した光の偏光方向により出射光の偏向方
向を制御して反射型電気光学結晶の隣接反射領域に入射
する複数の反射型回折格子を備え、最下位層の反射型回
折格子からの光を像面上の最大2N個の走査点に順次結
像して走査を行うことを特徴とする光走査装置。
4. A reflection type electro-optic crystal having N reflection areas and changing the polarization direction of light by electric energy for each reflection area, and controlling the polarizability in each reflection area of the electro-optic crystal. In order to achieve this, a voltage application unit that applies a voltage to each reflection region, and a reflection type electro-optic crystal that controls the deflection direction of outgoing light by the polarization direction of light that is reflected by a predetermined reflection region of the reflection-type electro-optic crystal and incident Is equipped with a plurality of reflection type diffraction gratings that are incident on adjacent reflection regions of the above, and the light from the reflection type diffraction grating of the lowest layer is sequentially imaged at a maximum of 2 N scanning points on the image plane for scanning. Characteristic optical scanning device.
JP3202905A 1991-08-13 1991-08-13 Optical scanner Withdrawn JPH05210126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3202905A JPH05210126A (en) 1991-08-13 1991-08-13 Optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3202905A JPH05210126A (en) 1991-08-13 1991-08-13 Optical scanner

Publications (1)

Publication Number Publication Date
JPH05210126A true JPH05210126A (en) 1993-08-20

Family

ID=16465129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3202905A Withdrawn JPH05210126A (en) 1991-08-13 1991-08-13 Optical scanner

Country Status (1)

Country Link
JP (1) JPH05210126A (en)

Similar Documents

Publication Publication Date Title
US4686542A (en) High speed, high resolution raster output scanner
US6084626A (en) Grating modulator array
EP0155844B1 (en) Pulse imaging system
US5018808A (en) Method and apparatus for beam displacement in a light beam scanner
US5291318A (en) Holographic member for a real-time clock in a raster output scanner
Urbach et al. Laser scanning for electronic printing
US4432598A (en) Image reading and recording apparatus and photodeflector therefor
US5363126A (en) Device and apparatus for high speed tracking in a raster output scanner
US4733252A (en) Beam splitter for multibeam A/O modulators and printer systems
EP0123425B1 (en) Multi-channel electro-optic printer
US5289001A (en) Laser beam scanning apparatus having a variable focal distance device and the variable focal distance device for use in the apparatus
WO1989012369A1 (en) Multi-beam laser scanner system
US5113202A (en) Electronic single pass, two color printing system
US4060322A (en) Image information handling device
WO1982004369A1 (en) Light valve apparatus
US5039183A (en) Holographic laser scanner
EP0589651B1 (en) Optical device having an electrically variable refractive index for scan line skew correction in electrostatographic printing machines
US7248278B1 (en) Apparatus and method for laser printing using a spatial light modulator
JPH05210126A (en) Optical scanner
JP2000507004A (en) Optical device with increased angular scanning range
JPS6137606B2 (en)
JPH05210125A (en) Space optical modulating element and optical scanner
JP5000393B2 (en) Image forming apparatus
JPS6350683B2 (en)
JP2927527B2 (en) Optical scanning device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112