JPH0521011B2 - - Google Patents

Info

Publication number
JPH0521011B2
JPH0521011B2 JP60245741A JP24574185A JPH0521011B2 JP H0521011 B2 JPH0521011 B2 JP H0521011B2 JP 60245741 A JP60245741 A JP 60245741A JP 24574185 A JP24574185 A JP 24574185A JP H0521011 B2 JPH0521011 B2 JP H0521011B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
oxygen
polymer
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60245741A
Other languages
Japanese (ja)
Other versions
JPS62106820A (en
Inventor
Akira Oomori
Hisafumi Yasuhara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP60245741A priority Critical patent/JPS62106820A/en
Publication of JPS62106820A publication Critical patent/JPS62106820A/en
Publication of JPH0521011B2 publication Critical patent/JPH0521011B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、主として空気中の酸素の濃縮に使用
される含フツ素重合体からなる気体分離膜材料に
関する。 〔従来の技術〕 空気から酸素富化空気を得るために、高分子材
料からなる気体分離膜を使用することが、従来か
ら提案されている。この気体分離膜の材料として
は、例えばアクリル酸フルオロアルキルの重合体
がある(特開昭59−6905号公報参照)が、これは
機械的強度が不足しているので破れやすく、実用
的なものではない。 〔発明の目的〕 本発明者らは、種々のアクリル酸エステル系の
重合体から気体分離膜を作り、機械的強度や酸素
を濃縮する能力の大きいものを探したところ、α
位にフツ素を有するアクリル酸フルオロアルキル
を主成分とする重合体がこれらの特性に優れてい
ることを見出し本発明に達した。 本発明の目的は、実用的な新規気体分離膜材料
を提供することである。 〔発明の構成〕 本発明の要旨は、一般式: (式中、Rfは炭素数2〜10のフルオロアルキル
基を示す。) で表わされる構造単位50〜100重量%、一般式: (式中、R1は水素、炭素数2〜10のヒドロキシ
アルキル基、炭素数2〜10のヒドロキシフルオロ
アルキル基または炭素数3〜10のグリシジルアル
キル基、Xは水素、塩素、フツ素、メチル基また
は炭素数1〜3のフルオロアルキル基を示す。) で表わされる構造単位0〜50重量%および一般
式: (式中、R2は炭素数2〜10のフルオロアルキル
基、Yは水素、塩素、メチル基または炭素数1〜
3のフルオロアルキル基を示す。) で表わされる構造単位0〜50重量%の重合体から
なる気体分離膜材料に存する。 前記構造単位(a)が前記量比重合体に含有される
と、この重合体からなる気体分離膜の機械的強度
や酸素透過性がよい。構造単位(a)が含有される好
ましい量比は70〜100重量%である。 構造単位(b)が官能基のカルボキシル基、ヒドロ
キシル基および/またはグリシジル基を含む場
合、この官能基を後記の架橋剤と反応させて重合
体を架橋し、重合体に気体分離膜として十分な強
度を与えることができる。官能基を含む構造単位
(b)が重合体に含有される好ましい量比は10重量%
以下である。 構造単位(c)は、気体分離膜の機械的強度を損な
わない上記範囲で重合体に含ませてもよい。 上記重合体は、一般式: (式中、Rfは前記と同じ。) で表わされる単量体を単独重合するか、または単
量体(a′)50重量%以上100重量%未満と一般
式: (式中、XおよびR1は前記と同じ。) で表わされる単量体および/または一般式: (式中、YおよびR2は前記と同じ。) で表わされる単量体を残部共重合して得ることが
できる。 気体分離膜の酸素透過性等の特性を損なわない
範囲でなら、他のエチレン性単量体を共重合して
もよい。 重合方法は、通常のラジカル重合の溶液、懸
濁、乳化、塊状重合等いずれでもよいが、通常は
重合で生成したポリマーを改めて溶媒に溶解させ
る必要のない溶液重合が採用される。 溶液および懸濁重合で通常使用される溶媒は、
フツ素系の溶媒で、例えばヘキサフルオロタキシ
レン、1,1,2−トリクロロ−1,2,2−ト
リフルオロエタン、1,2,4,4−テトラクロ
ロ−1,1,2,3,3,4−ヘキサフルオロブ
タン等が挙げられる。炭化水素系の溶媒も使用す
ることができる。フツ素系の溶媒と炭化水素系の
溶媒を混合して使用することもできる。 重合開始剤は、溶液、懸濁および塊状重合では
ベンゾイルパーオキサイド、ジクミルパーオキサ
イド、ターシアリブチルパーオキシイソブチレー
ト、ジイソプロピルパーオキシジカーボネート等
の有機過酸化物、アゾビスイソブチロニトリル、
アゾビスバレロニトリル等のアゾ化合物等が例示
できる。乳化重合では、過硫酸アンモニウム、過
硫酸カリ等の酸化剤、またはこれらの酸化剤、亜
硫酸ソーダ等の還元剤および硫酸鉄()等の遷
移金属の塩類の三者の組合せからなるレドツクス
開始剤が例示できる。 重合開始剤は、通常全単量体に対し0.01〜5重
量%の量比で使用される。 重合温度は、いずれも重合方法でも0〜150℃
である。 前記各重合法で調製した共重合体は、前記溶液
重合で使用する溶媒に溶解し、なお溶液重合で調
製した共重合体は、すでに溶媒に溶解しているの
で、適宜濃縮または希釈し、重合体を架橋する場
合は架橋剤を添加して、通常の薄膜を調製する方
法、例えばバーコーター法、スピンコーター法、
ヤングミユアー法、デイツプ法等でガラス、金属
等の平滑板上やポリテトラフルオロエチレン多孔
体等の多孔質支持体上に、通常膜厚が0.1〜50μm
になるように製膜する。普通ガラス、金属等の平
滑板上に製膜した重合体は、重合体を架橋する場
合は架橋剤と反応させた後、板上より剥離し適当
な多孔質の支持体上に固定して、また多孔質の支
持体上に製膜したものは、架橋する場合は架橋剤
と反応させた後、その支持体ごと気体分離膜とし
て使用する。 前記架橋剤は、共重合体に含有される官能基が
カルボキシル基の場合、二個以上のアミノ基、グ
リシジル基またはイソシアネート基を有する化合
物で、例えばエチレンジアミン、ヘキサメチレン
ジアミン、ブチレンジグリシジルエーテル、式: で表わされる化合物、ヘキサメチレンジイソシア
ネート三量体、トリレンジイソシアネート等が挙
げられる。官能基がヒドロキシル基の場合、上記
イソシアネート化合物の他、二個以上の酸ハライ
ドを有する化合物、例えばヘキサメチレンジカル
ボニルクロライド等も用いられる。官能基がグリ
シジル基の場合、前記アミノ基を有する化合物の
他、ルイス酸例えばBF3、HCl等、光を照射する
ことによつてBF3を発生する式:
[Industrial Application Field] The present invention relates to a gas separation membrane material made of a fluorine-containing polymer that is mainly used for concentrating oxygen in the air. [Prior Art] It has been proposed in the past to use gas separation membranes made of polymeric materials to obtain oxygen-enriched air from air. The material for this gas separation membrane is, for example, a polymer of fluoroalkyl acrylate (see Japanese Patent Laid-Open No. 59-6905), but this is easily broken due to lack of mechanical strength, making it impractical. isn't it. [Purpose of the Invention] The present inventors made gas separation membranes from various acrylic ester polymers and searched for membranes with high mechanical strength and ability to condense oxygen.
The present invention was achieved by discovering that a polymer mainly composed of fluoroalkyl acrylate having fluorine at the position thereof is excellent in these properties. An object of the present invention is to provide a practical new gas separation membrane material. [Structure of the Invention] The gist of the present invention is the general formula: (In the formula, Rf represents a fluoroalkyl group having 2 to 10 carbon atoms.) 50 to 100% by weight of structural units represented by the general formula: (In the formula, R 1 is hydrogen, a hydroxyalkyl group having 2 to 10 carbon atoms, a hydroxyfluoroalkyl group having 2 to 10 carbon atoms, or a glycidyl alkyl group having 3 to 10 carbon atoms, and X is hydrogen, chlorine, fluorine, methyl group or a fluoroalkyl group having 1 to 3 carbon atoms.) 0 to 50% by weight of structural units represented by and general formula: (In the formula, R 2 is a fluoroalkyl group having 2 to 10 carbon atoms, Y is hydrogen, chlorine, a methyl group, or a fluoroalkyl group having 1 to 10 carbon atoms.
3 shows the fluoroalkyl group. ) The gas separation membrane material consists of a polymer containing 0 to 50% by weight of structural units represented by When the structural unit (a) is contained in the specific polymer, the gas separation membrane made of this polymer has good mechanical strength and oxygen permeability. The preferred amount ratio of structural unit (a) contained is 70 to 100% by weight. When the structural unit (b) contains a carboxyl group, a hydroxyl group, and/or a glycidyl group as a functional group, this functional group is reacted with a crosslinking agent described below to crosslink the polymer, and the polymer has sufficient properties as a gas separation membrane. It can give strength. Structural units containing functional groups
The preferred amount ratio of (b) contained in the polymer is 10% by weight.
It is as follows. The structural unit (c) may be included in the polymer within the above range so as not to impair the mechanical strength of the gas separation membrane. The above polymer has the general formula: (In the formula, Rf is the same as above.) Either the monomer represented by the formula is homopolymerized, or the monomer (a') is 50% by weight or more and less than 100% by weight and the general formula: (In the formula, X and R 1 are the same as above.) Monomer and/or general formula represented by: (In the formula, Y and R 2 are the same as above.) It can be obtained by copolymerizing the remaining monomers. Other ethylenic monomers may be copolymerized as long as the properties such as oxygen permeability of the gas separation membrane are not impaired. The polymerization method may be any of the usual radical polymerization solutions, suspensions, emulsifications, bulk polymerizations, etc., but usually solution polymerization is employed, which does not require the polymer produced by polymerization to be dissolved in a solvent again. Solvents commonly used in solution and suspension polymerizations are:
Fluorine-based solvents, such as hexafluorotaxylene, 1,1,2-trichloro-1,2,2-trifluoroethane, 1,2,4,4-tetrachloro-1,1,2,3, Examples include 3,4-hexafluorobutane. Hydrocarbon solvents can also be used. A mixture of a fluorine-based solvent and a hydrocarbon-based solvent can also be used. In solution, suspension and bulk polymerization, the polymerization initiator is an organic peroxide such as benzoyl peroxide, dicumyl peroxide, tertiary butyl peroxyisobutyrate, diisopropyl peroxydicarbonate, azobisisobutyronitrile,
Examples include azo compounds such as azobisvaleronitrile. In emulsion polymerization, a redox initiator consisting of an oxidizing agent such as ammonium persulfate or potassium persulfate, or a combination of these oxidizing agents, a reducing agent such as sodium sulfite, and a salt of a transition metal such as iron sulfate is exemplified. can. The polymerization initiator is usually used in an amount of 0.01 to 5% by weight based on the total monomers. Polymerization temperature is 0 to 150℃ for all polymerization methods.
It is. The copolymers prepared by each of the above polymerization methods are dissolved in the solvent used in the solution polymerization, and since the copolymers prepared by solution polymerization are already dissolved in the solvent, they are concentrated or diluted as appropriate and then polymerized. When crosslinking the coalescence, a crosslinking agent is added to prepare a normal thin film, such as bar coater method, spin coater method,
The film thickness is usually 0.1 to 50 μm on a smooth plate such as glass or metal or a porous support such as porous polytetrafluoroethylene using the Young-Miller method or the dip method.
Form a film so that When a polymer film is formed on a smooth plate of ordinary glass or metal, etc., if the polymer is crosslinked, it is reacted with a crosslinking agent, then peeled off from the plate and fixed on a suitable porous support. In addition, when a film formed on a porous support is crosslinked, it is reacted with a crosslinking agent and then used together with the support as a gas separation membrane. When the functional group contained in the copolymer is a carboxyl group, the crosslinking agent is a compound having two or more amino groups, glycidyl groups, or isocyanate groups, such as ethylenediamine, hexamethylene diamine, butylene diglycidyl ether, etc. : Examples include compounds represented by the following, hexamethylene diisocyanate trimer, tolylene diisocyanate, and the like. When the functional group is a hydroxyl group, in addition to the above-mentioned isocyanate compounds, compounds having two or more acid halides, such as hexamethylene dicarbonyl chloride, can also be used. When the functional group is a glycidyl group, in addition to the above-mentioned amino group-containing compound, a Lewis acid such as BF 3 , HCl, etc., which generates BF 3 upon irradiation with light:

〔実施例〕〔Example〕

実施例 1〜3 第1表に示す単量体(a′)100g、酢酸エチル
200g、アゾビスイソブチロニトリル0.015gおよ
びラウリルメルカプタン0.6gをガラス製オート
クレーブに入れ、ドライアイス−メタノールの寒
剤で冷却し、脱気した。 その後、50℃まで加熱し、重合を開始した。撹
拌しながら該温度に24時間保つた。 反応混合物に酢酸エチルを加えて混合し、固形
分濃度が7重量%になるようにした。得られた溶
液をドクターナイフでガラス板上に100μmの厚
さるなるように塗布し、風乾した。乾燥膜をガラ
ス板から剥離し、気体分離膜試料を作つた。 得られた試料について、酸素と窒素の透過係数
(単位:c.c.・cm/cm2・sec・cmHg)と酸素の窒素
に対する分離係数を下記条件を採用してASTM
D1434V法で求めた。 第1表に酸素の透過係数と分離係数(対窒素)
を示す。 使用気体:窒素79容量%および酸素21容量%の標
準混合ガス。 圧力:一次圧5Kg/cm2、二次圧1Kg/cm2(いずれ
も絶対圧力)。 気体透過量:4c.c.。 時間:上記気体透過に要した時間。 面積:135cm2。 膜厚:支持体に付着した重合体重量を秤量し、こ
の値を重合体付着面積と重合体比重で除した
値。 実施例 4〜5 第1表に示す単量体(a′)100g、酢酸エチル
200g、アゾビスイソブチロニトリル0.015gおよ
びラウリルメルカプタン0.6gをガラス製オート
クレーブに入れ、ドライアイス−メタノールの寒
剤で冷却し、脱気した。 その後、50℃まで加熱し、重合を開始した。撹
拌しながら該温度に24時間保つた。 得られた反応混合物に酢酸エチル3133gを加え
た。この溶液をポリプロピレン製の多孔体(ポリ
プラスチツク社製ジユラガード)上に毎分2000回
転で回転するスピンコーターで塗布し、ついで該
多孔体を150mmφに裁断し、気体分離膜試料を作
つた。実施例1〜3と同じ条件で酸素と窒素の透
過係数と酸素の窒素に対する分離係数を求めた。 第1表に酸素の透過係数と分離係数(対窒素)
を示す。 実施例 6〜10 第1表に示す単量体(a′)および単量体(b′)
合計100gを実施例1の単量体(a′)にかえて使
用した他は前記実施例1と同じ方法で重合を行つ
た。 得られた反応混合物を前記実施例1と同様に希
釈し、この溶液100重量部あたり1.5重量部のヘキ
サメチレンジイソシアネート三量体を添加し、前
記実施例4〜5と同様の方法で製膜した。その
後、室温で7日間放置し、共重合体を架橋した。
前記実施例4〜5と同じ大きさの試料を作り前記
と同じ条件で酸素と窒素の透過係数と酸素の窒素
に対する分散係数を求めた。 第1表に酸素の透過係数と分離係数(対窒素)
を示す。 実施例 11 第1表に示す単量体(a′)および単量体(b′)
合計100gを単量体(a′)にかえて使用した他は
前記実施例1〜3と同じ方法で気体分離膜試料を
作り、前記と同じ条件で酸素と窒素の透過係数と
酸素の窒素に対する分離係数を求めた。 第1表に酸素の透過係数と分離係数(対窒素)
を示す。 実施例 12 第1表に示す単量体(a′)および単量体(c′)
合計100gを単量体(a′)にかえて使用した他は
前記実施例1〜3と同じ方法で気体分離膜試料を
作り、前記と同じ条件で酸素と窒素の透過係数と
酸素の窒素に対する分離係数を求めた。 第1表に酸素の透過係数と分離係数(対窒素)
を示す。 比較例 1〜6 300mlの四つ口フラスコに水100mlとポリビニル
アルコール0.1gを入れ、窒素を通じながら撹拌
して、ポリビニルアルコールを水に溶解させた。
得られた溶液に第2表に示す含フツ素単量体30
g、ドデシルメルカプタン0.15gおよびラウロイ
ルパーオキサイド0.15gを加え、混合物を撹拌し
ながら60℃に4時間保ち、該メタクリレートを重
合させた。 その後、生成した重合体を濾過し、水で洗浄
し、50℃で24時間真空乾燥した。 得られた乾燥重合体の内の10gをアセトン90g
に溶解させ、溶液をガラス板上に250μmの厚さ
になるようにキヤストし、風乾した。乾燥した重
合体膜を剥離しようとするとひびわれが生じきれ
いな膜は得られなかつた。そこで重合後の反応混
合物を実施例4〜5と同じ方法で多孔体上に塗布
し、気体分離膜試料を作り、前記と同じ条件で酸
素と窒素の透過係数と酸素の窒素に対する分離係
数を求めた。第2表に酸素の透過係数と分離係数
(対窒素)を示す。なお、重合体膜は、非常にク
ラツクが入りやすく、注意して測定を行わなけれ
ばならなかつた。 後記の第1表および第2表の単量体:〜
は、それぞれ次の化合物を指す。 CH2=CFCOOCH2CF3 CH2=CFCOOCH2(CF22H CH2=CFCOOCH2(CF22F CH2=CFCOOCH2(CF24H CH2=CFCOOCH2(CF24F CH2=CFCOOCH2CH(OH)−CH2(CF24F CH2=CFCOOCH2CH(OH)−CH2
(CF22CF(CF32 CH2=CFCOOCH2CH2OH CH2=CFCOOH
Examples 1 to 3 100 g of monomer (a') shown in Table 1, ethyl acetate
200 g, azobisisobutyronitrile 0.015 g, and lauryl mercaptan 0.6 g were placed in a glass autoclave, cooled with a dry ice-methanol cryogen, and degassed. Thereafter, it was heated to 50°C to start polymerization. The temperature was maintained for 24 hours with stirring. Ethyl acetate was added to the reaction mixture and mixed so that the solid content concentration was 7% by weight. The resulting solution was applied onto a glass plate to a thickness of 100 μm using a doctor knife and air-dried. The dried membrane was peeled off from the glass plate to prepare a gas separation membrane sample. For the obtained sample, the permeability coefficients of oxygen and nitrogen (unit: cc・cm/cm 2・sec・cmHg) and the separation coefficient of oxygen for nitrogen were determined by ASTM using the following conditions.
Obtained using the D1434V method. Table 1 shows the oxygen permeability coefficient and separation coefficient (versus nitrogen).
shows. Gas used: Standard gas mixture of 79% nitrogen and 21% oxygen by volume. Pressure: Primary pressure 5Kg/cm 2 , secondary pressure 1Kg/cm 2 (both absolute pressure). Gas permeation amount: 4c.c. Time: Time required for the above gas permeation. Area: 135cm2 . Film thickness: The value obtained by weighing the weight of the polymer attached to the support and dividing this value by the area of polymer attachment and the specific gravity of the polymer. Examples 4-5 100 g of monomer (a') shown in Table 1, ethyl acetate
200 g, azobisisobutyronitrile 0.015 g, and lauryl mercaptan 0.6 g were placed in a glass autoclave, cooled with a dry ice-methanol cryogen, and degassed. Thereafter, it was heated to 50°C to start polymerization. The temperature was maintained for 24 hours with stirring. 3133 g of ethyl acetate was added to the resulting reaction mixture. This solution was applied onto a polypropylene porous body (Jyuraguard manufactured by Polyplastics Co., Ltd.) using a spin coater rotating at 2,000 revolutions per minute, and then the porous body was cut to a size of 150 mm to prepare a gas separation membrane sample. The permeability coefficients of oxygen and nitrogen and the separation coefficient of oxygen with respect to nitrogen were determined under the same conditions as in Examples 1 to 3. Table 1 shows the oxygen permeability coefficient and separation coefficient (versus nitrogen).
shows. Examples 6-10 Monomer (a') and monomer (b') shown in Table 1
Polymerization was carried out in the same manner as in Example 1 except that monomer (a') in Example 1 was used in a total of 100 g. The obtained reaction mixture was diluted in the same manner as in Example 1, 1.5 parts by weight of hexamethylene diisocyanate trimer was added per 100 parts by weight of this solution, and a film was formed in the same manner as in Examples 4 and 5. . Thereafter, the copolymer was left to stand at room temperature for 7 days to crosslink.
Samples of the same size as in Examples 4 and 5 were prepared, and the permeability coefficients of oxygen and nitrogen and the dispersion coefficient of oxygen with respect to nitrogen were determined under the same conditions as above. Table 1 shows the oxygen permeability coefficient and separation coefficient (versus nitrogen).
shows. Example 11 Monomer (a') and monomer (b') shown in Table 1
Gas separation membrane samples were prepared in the same manner as in Examples 1 to 3 above, except that a total of 100 g was used instead of monomer (a'), and the permeability coefficients of oxygen and nitrogen and the permeability coefficients of oxygen and nitrogen were determined under the same conditions as above. The separation coefficient was determined. Table 1 shows the oxygen permeability coefficient and separation coefficient (versus nitrogen).
shows. Example 12 Monomer (a') and monomer (c') shown in Table 1
Gas separation membrane samples were prepared in the same manner as in Examples 1 to 3 above, except that a total of 100 g was used instead of monomer (a'), and the permeability coefficients of oxygen and nitrogen and the permeability coefficients of oxygen and nitrogen were determined under the same conditions as above. The separation coefficient was determined. Table 1 shows the oxygen permeability coefficient and separation coefficient (versus nitrogen).
shows. Comparative Examples 1 to 6 100 ml of water and 0.1 g of polyvinyl alcohol were placed in a 300 ml four-necked flask and stirred while passing nitrogen through the flask to dissolve the polyvinyl alcohol in the water.
The fluorine-containing monomer 30 shown in Table 2 was added to the obtained solution.
g, 0.15 g of dodecyl mercaptan and 0.15 g of lauroyl peroxide were added and the mixture was kept at 60° C. for 4 hours with stirring to polymerize the methacrylate. Thereafter, the produced polymer was filtered, washed with water, and vacuum dried at 50°C for 24 hours. Add 10g of the obtained dry polymer to 90g of acetone.
The solution was cast onto a glass plate to a thickness of 250 μm and air-dried. When attempting to peel off the dried polymer film, cracks appeared and a clean film could not be obtained. Therefore, the reaction mixture after polymerization was applied onto a porous body in the same manner as in Examples 4 and 5 to prepare a gas separation membrane sample, and the permeability coefficients of oxygen and nitrogen and the separation coefficient of oxygen to nitrogen were determined under the same conditions as above. Ta. Table 2 shows the oxygen permeability coefficient and separation coefficient (versus nitrogen). It should be noted that polymer membranes are extremely susceptible to cracks, so measurements had to be carried out with care. Monomers in Tables 1 and 2 below: ~
refer to the following compounds, respectively. CH 2 = CFCOOCH 2 CF 3 CH 2 = CFCOOCH 2 (CF 2 ) 2 H CH 2 = CFCOOCH 2 (CF 2 ) 2 F CH 2 = CFCOOCH 2 (CF 2 ) 4 H CH 2 = CFCOOCH 2 (CF 2 ) 4 F CH 2 = CFCOOCH 2 CH(OH)−CH 2 (CF 2 ) 4 F CH 2 = CFCOOCH 2 CH(OH)−CH 2
(CF 2 ) 2 CF (CF 3 ) 2 CH 2 = CFCOOCH 2 CH 2 OH CH 2 = CFCOOH

【式】 xi CH2=CFCOOCH3 xii CH2=CH(CH3)COOCH2(CF22H CH2=CH(CH3)COOCH2(CF28H CH2=C(CH3)COOC(CF32CF2-CH
(CF32 CH2=C(CH3)COOC(CF32CF2
CF24H CH2=C(CH3)COOCH2CH(OCO−
CH3)CH2(CF27CF(CF32 CH2=C(CH3)COOCH2CH(OH)−
(CF27CF(CF32 CH2=C(CH3)COOCH2(CF22F
[Formula] xi CH 2 = CFCOOCH 3 xii CH 2 = CH (CH 3 ) COOCH 2 (CF 2 ) 2 H CH 2 = CH (CH 3 ) COOCH 2 (CF 2 ) 8 H CH 2 = C (CH 3 ) COOC(CF 3 ) 2 CF 2- CH
(CF 3 ) 2 CH 2 =C(CH 3 )COOC(CF 3 ) 2 CF 2
CF 2 ) 4 H CH 2 =C(CH 3 )COOCH 2 CH(OCO−
CH 3 ) CH 2 (CF 2 ) 7 CF (CF 3 ) 2 CH 2 =C(CH 3 )COOCH 2 CH(OH)−
(CF 2 ) 7 CF (CF 3 ) 2 CH 2 =C(CH 3 ) COOCH 2 (CF 2 ) 2 F

【表】【table】

〔発明の効果〕〔Effect of the invention〕

α位にフツ素を有するアクリル酸フルオロアル
キルの重合体からなる本発明の材料より製造され
る気体分離膜は、従来の気体分離膜に比べ機械的
強度に優れ、しかも酸素の濃縮能力も良好なもの
である。
The gas separation membrane manufactured from the material of the present invention, which is made of a polymer of fluoroalkyl acrylate having fluorine at the α-position, has superior mechanical strength compared to conventional gas separation membranes, and also has a good oxygen concentrating ability. It is something.

Claims (1)

【特許請求の範囲】 1 一般式: (式中、Rfは炭素数2〜10のフルオロアルキル
基を示す。) で表わされる構造単位50〜100重量%、一般式: (式中、R1は水素、炭素数1〜10のアルキル基、
炭素数2〜10のヒドロキシアルキル基、炭素数2
〜10のヒドロキシフルオロアルキル基または炭素
数3〜10のグリシジルアルキル基、Xは水素、塩
素、フツ素、メチル基または炭素数1〜3のフル
オロアルキル基を示す。) で表わされる構造単位0〜50重量%および一般
式: (式中、R2は炭素数2〜10のフルオロアルキル
基、Yは水素、塩素、メチル基または炭素数1〜
3のフルオロアルキル基を示す。) で表わされる構造単位0〜50重量%の重合体から
なる気体分離膜材料。
[Claims] 1. General formula: (In the formula, Rf represents a fluoroalkyl group having 2 to 10 carbon atoms.) 50 to 100% by weight of structural units represented by the general formula: (In the formula, R 1 is hydrogen, an alkyl group having 1 to 10 carbon atoms,
Hydroxyalkyl group having 2 to 10 carbon atoms, 2 carbon atoms
-10 hydroxyfluoroalkyl group or C3-C10 glycidyl alkyl group, X represents hydrogen, chlorine, fluorine, methyl group or C1-3 fluoroalkyl group. ) Structural units represented by 0 to 50% by weight and general formula: (In the formula, R 2 is a fluoroalkyl group having 2 to 10 carbon atoms, Y is hydrogen, chlorine, a methyl group, or a fluoroalkyl group having 1 to 10 carbon atoms.
3 shows the fluoroalkyl group. ) A gas separation membrane material consisting of a polymer containing 0 to 50% by weight of structural units represented by:
JP60245741A 1985-11-01 1985-11-01 Material for gas separation membrane Granted JPS62106820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60245741A JPS62106820A (en) 1985-11-01 1985-11-01 Material for gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60245741A JPS62106820A (en) 1985-11-01 1985-11-01 Material for gas separation membrane

Publications (2)

Publication Number Publication Date
JPS62106820A JPS62106820A (en) 1987-05-18
JPH0521011B2 true JPH0521011B2 (en) 1993-03-23

Family

ID=17138110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60245741A Granted JPS62106820A (en) 1985-11-01 1985-11-01 Material for gas separation membrane

Country Status (1)

Country Link
JP (1) JPS62106820A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116725A (en) * 1986-11-05 1988-05-21 Daikin Ind Ltd Gas separating membrane
JPS63278913A (en) * 1987-05-09 1988-11-16 Daikin Ind Ltd Fluorine-containing polymer latex and its application
DE102016110869A1 (en) 2016-06-14 2017-12-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Closure device for closing an access opening in a motor vehicle body

Also Published As

Publication number Publication date
JPS62106820A (en) 1987-05-18

Similar Documents

Publication Publication Date Title
US4666991A (en) Fluorine-containing graft copolymer and adhesive and composite membrane made thereof
EP0180913B1 (en) Fluorine-containing polymer for gas separating membrane
JPH0239529B2 (en)
JPS6260406B2 (en)
JPH0250769B2 (en)
JPH0198606A (en) Polymer particle and preparation thereof
JPH06329787A (en) Acrylic-group-containing perfluoropolyether coating material
EP0279331B1 (en) Alpha-fluoroacrylic acid salt polymer and its use
JPH0521011B2 (en)
JPH02103210A (en) Substituted (2-haloalkoxy-1,1,2- trifluoroethoxy)styrene polymer, and its preparation and use
US4832712A (en) Gas separating membrane
US5077362A (en) Vinylidene fluoride copolymer and process for producing the same
JPH0389925A (en) Gas separation membrane
JP2688663B2 (en) Gas separation membrane and manufacturing method thereof
JP3240695B2 (en) Itaconic acid diester monomer and its polymer
JPH0780977B2 (en) Chlorotrifluoroethylene copolymer
JPH0389926A (en) Gas separation membrane
JPH0389924A (en) Gas separation membrane
JP3077329B2 (en) Antithrombotic polymer composition and method for producing the same
JPS63190616A (en) Gas separating membrane
JP2959060B2 (en) Separation membrane
JP2536461B2 (en) Chlorotrifluoroethylene copolymer
JPS5892450A (en) Macromolecular dense membrane for separation of gas
JPS60220106A (en) Gas separation membrane material
JPH0466606B2 (en)