JPH0520937Y2 - - Google Patents

Info

Publication number
JPH0520937Y2
JPH0520937Y2 JP1987108897U JP10889787U JPH0520937Y2 JP H0520937 Y2 JPH0520937 Y2 JP H0520937Y2 JP 1987108897 U JP1987108897 U JP 1987108897U JP 10889787 U JP10889787 U JP 10889787U JP H0520937 Y2 JPH0520937 Y2 JP H0520937Y2
Authority
JP
Japan
Prior art keywords
spring
stepped
pressure
chamber
damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987108897U
Other languages
Japanese (ja)
Other versions
JPS6414971U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987108897U priority Critical patent/JPH0520937Y2/ja
Publication of JPS6414971U publication Critical patent/JPS6414971U/ja
Application granted granted Critical
Publication of JPH0520937Y2 publication Critical patent/JPH0520937Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Safety Valves (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は液圧回路などの圧力調整に用いるリリ
ーフ弁に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a relief valve used for pressure regulation in a hydraulic circuit or the like.

〔従来の技術〕[Conventional technology]

リリーフ弁始動時における回路液圧を時間と共
に漸増するようにしたリリーフ弁の一例を第10
図について説明する。図において、弁本体51内
にポペツト52とばね座53を進退可能に嵌挿
し、その間に介装せるばね54によりポペツト5
2をシート55に、ばね座53を液室56の後壁
を形成するプラグ57に当接し、又、一端部をポ
ペツト52に嵌挿し他端部をばね座53に貫挿し
て供給通路58の圧油によりプラグ57に当接す
るロツド59には、プラグ57側を盲とした長孔
60とその奥部に連通する横孔61を形成し、ば
ね座53には横孔61と連通する環状溝63及び
環状溝63と液室56とを連通する通路64を形
成している。(例えば実開昭57−100675号広報参
照) このようなリリーフ弁は、供給通路58の油圧
力がリリーフ弁のばね54の弾発力に打ち勝つ
と、ポペツト52がばね54に抗してシート55
から離れ、リリーフ作用を開始する。又、一方で
はポペツト52の偏心孔65、ロツド59の軸方
向の長孔60、横孔61、環状溝63、通路64
を経て液室56に導入された供給通路58の圧油
が供給通路58の圧力上昇に対応してばね座53
をばね54に抗して移動させる。これによりばね
54は次第に圧縮されリリーフ圧力は上昇する
が、その際ばね座53の移動によりロツド59の
横孔61が環状溝63により絞られていくため液
室56への圧油流入量が次第に減少し、リリーフ
圧力は比較的緩やかに上昇する。
An example of a relief valve in which the circuit hydraulic pressure at the time of starting the relief valve is gradually increased over time is shown in the 10th example.
The diagram will be explained. In the figure, a poppet 52 and a spring seat 53 are fitted into a valve body 51 so as to be movable back and forth, and a spring 54 interposed therebetween allows the poppet 5 to be moved back and forth.
2 to the seat 55, the spring seat 53 to the plug 57 forming the rear wall of the liquid chamber 56, and one end inserted into the poppet 52 and the other end inserted through the spring seat 53 to open the supply passage 58. The rod 59 that contacts the plug 57 with pressure oil has a long hole 60 that is blind on the plug 57 side and a horizontal hole 61 that communicates with the deep part of the hole 60, and the spring seat 53 has an annular groove that communicates with the horizontal hole 61. 63 and a passage 64 that communicates between the annular groove 63 and the liquid chamber 56 is formed. (For example, see Utility Model Publication No. 57-100675.) In such a relief valve, when the hydraulic pressure of the supply passage 58 overcomes the elastic force of the spring 54 of the relief valve, the poppet 52 resists the spring 54 and the seat 55
The body moves away from the body and begins to act as a relief. Also, on the one hand, the eccentric hole 65 of the poppet 52, the axially elongated hole 60 of the rod 59, the horizontal hole 61, the annular groove 63, and the passage 64.
Pressure oil in the supply passage 58 introduced into the liquid chamber 56 through the spring seat 53 responds to the pressure increase in the supply passage 58.
is moved against the spring 54. As a result, the spring 54 is gradually compressed and the relief pressure increases, but at this time, the horizontal hole 61 of the rod 59 is narrowed by the annular groove 63 due to the movement of the spring seat 53, so the amount of pressure oil flowing into the liquid chamber 56 gradually decreases. The relief pressure increases relatively slowly.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

ところでこのリリーフ弁は、液室56への圧油
流入量を漸減させるため、ばね座53の環状溝6
3でロツド59の横孔61を絞るようにしている
から、ロツド59の長孔60は先止まりの細孔
で、且つ周上に横孔61を必要とするため孔加工
が面倒となる。又、所定の昇圧特性を得るために
は、液室56への圧油流入量を規制する開口面積
がそれに見合つて変化するように弁本体51、プ
ラグ57、環状溝63と通孔64とを有するばね
座53及び横孔61と長孔60とを有するロツド
59の4点の部品の軸方向の寸法精度を出さねば
ならない。このため、加工が難しい。
By the way, this relief valve has an annular groove 6 in the spring seat 53 in order to gradually reduce the amount of pressure oil flowing into the liquid chamber 56.
3 to narrow the horizontal hole 61 of the rod 59, the elongated hole 60 of the rod 59 is a small hole with no end, and the horizontal hole 61 is required on the circumference, making hole machining troublesome. In addition, in order to obtain a predetermined pressure increase characteristic, the valve body 51, plug 57, annular groove 63, and through hole 64 are designed so that the opening area that regulates the amount of pressure oil flowing into the liquid chamber 56 changes accordingly. Dimensional accuracy in the axial direction must be achieved for four parts: the spring seat 53, and the rod 59, which has the horizontal hole 61 and the elongated hole 60. For this reason, processing is difficult.

本考案は前記の点に鑑みてなされたもので、ロ
ツド等の加工及び絞り通路等の形成が容易でしか
もリリーフ弁作動時の昇圧が略直線的でゆるやか
となるリリーフ弁の提供を目的とする。
The present invention has been made in view of the above points, and aims to provide a relief valve which is easy to process rods, etc. and form a throttle passage, etc., and in which the pressure rise is approximately linear and gradual when the relief valve is operated. .

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するための本考案の構成を第1
図を用いて説明する。
The first configuration of the present invention to achieve this purpose is
This will be explained using figures.

プランジヤの絞り孔からの供給側の圧液をばね
受け部背後の液室に導く手段と、この圧液の供給
によりばねを圧縮して設定圧力を調整するばね受
け部と、このばね受け部のばね圧縮方向の移動速
度を遅らす手段とを備えたリリーフ弁において、
前記ばね受け部を弁本体5の段付シリンダ部6に
嵌挿する段付ばね受けピストン部7となし、この
段付ばね受けピストン部7と段付シリンダ部6と
で段付箇所にダンピング室8を形成し、このダン
ピング室8を前記液室2又はばね室9に段付シリ
ンダ部6と段付ばね受けピストン部7とで形成し
た絞り通路10又は10′を介して連通すると共
に、プランジヤ3の絞り孔19と前記液室2と
を、一端部をプランジヤ3に嵌挿し他端部を段付
ばね受けピストン部7に貫挿したロツド11の貫
通孔20で連通したことを特徴とするものであ
る。
A means for guiding pressure fluid on the supply side from the throttle hole of the plunger to a liquid chamber behind the spring receiver, a spring receiver that compresses the spring by supplying this pressure fluid and adjusts the set pressure, and a spring receiver for adjusting the set pressure. In the relief valve, the relief valve is equipped with a means for slowing down the movement speed in the spring compression direction,
The spring receiving portion is formed into a stepped spring receiving piston portion 7 that is fitted into the stepped cylinder portion 6 of the valve body 5, and the stepped spring receiving piston portion 7 and the stepped cylinder portion 6 form a damping chamber at the stepped portion. 8, the damping chamber 8 is communicated with the liquid chamber 2 or the spring chamber 9 via a throttle passage 10 or 10' formed by a stepped cylinder section 6 and a stepped spring receiving piston section 7, and a plunger The throttle hole 19 of No. 3 and the liquid chamber 2 are communicated through a through hole 20 of a rod 11 whose one end is fitted into the plunger 3 and the other end is inserted through the stepped spring receiving piston portion 7. It is something.

〔作用〕[Effect]

供給通路1の液圧がばね4の弾発力に打ち勝つ
とプランジヤ3がリフトし、リリーフ弁はリリー
フ作用を開始する。又、一方では液室2に供給通
路1の圧液が流入し、この圧液が供給側液圧の上
昇に対応して段付ばね受けピストン部7をばね4
に抗して移動させる。これによりばね4は圧縮さ
れリリーフ圧力は昇圧するが、このリリーフ圧力
は、後ほど本案リリーフ弁の作動原理で説明する
ように、最終設定圧力に至るまで略直線で且つゆ
るやかな昇圧となる。
When the hydraulic pressure in the supply passage 1 overcomes the elastic force of the spring 4, the plunger 3 lifts and the relief valve starts its relief action. On the other hand, the pressure fluid in the supply passage 1 flows into the fluid chamber 2, and this pressure fluid moves the stepped spring receiver piston part 7 against the spring 4 in response to the rise in supply side fluid pressure.
move against. As a result, the spring 4 is compressed and the relief pressure increases, but as will be explained later in the operating principle of the relief valve of the present invention, the relief pressure increases approximately linearly and gradually until it reaches the final set pressure.

ところで、本考案では供給側圧液を液室2へ導
くロツド11の孔は貫通孔だけでよいからパイプ
を使用できる。又、ダンピング室8につながる絞
り通路10,10′は段付シリンダ部6と段付ば
ね受けピストン部7の摺動面21,22,27,
28に形成するので、絞り通路10,10′位置
の寸法精度は弁本体5、段付ばね受けピストン部
7及びロツド11を係止するプラグ12の3点の
部品によつて出すことができる。
By the way, in the present invention, the rod 11 that guides the supply side pressure liquid to the liquid chamber 2 only needs to have a through hole, so a pipe can be used. The throttle passages 10 and 10' connected to the damping chamber 8 are connected to the sliding surfaces 21, 22, 27 of the stepped cylinder section 6 and the stepped spring receiving piston section 7, respectively.
28, the dimensional accuracy of the position of the throttle passages 10, 10' can be achieved by three parts: the valve body 5, the stepped spring receiving piston part 7, and the plug 12 that locks the rod 11.

次に、本案リリーフ弁の作動原理を説明する。 Next, the operating principle of the relief valve of the present invention will be explained.

プランジヤ3とシート17のシート部面積を
S1、ロツド11の断面積をS2、段付ばね受けピス
トン部7の大径部断面積をS3、小径部断面積をS4
とする。
The seat area of plunger 3 and seat 17 is
S 1 is the cross-sectional area of the rod 11, S 2 is the cross-sectional area of the large diameter portion of the stepped spring bearing piston portion 7, and S 4 is the cross-sectional area of the small diameter portion.
shall be.

又、プランジヤ3の上流部圧力(即ちリリーフ
圧力)をPA、貫通孔20及び液室2の圧力(差
動室圧力)をPB、ばね4の初期荷重をF1とし、
段付ばね受けピストン部7がストロークエンドに
達した時の荷重をF2とする。
Further, the upstream pressure of the plunger 3 (i.e. relief pressure) is P A , the pressure in the through hole 20 and the liquid chamber 2 (differential chamber pressure) is P B , the initial load of the spring 4 is F 1 ,
Let F 2 be the load when the stepped spring bearing piston part 7 reaches the stroke end.

まず、供給通路1がタンク圧から加圧される場
合を考える。供給通路1は初めタンク圧であり、
貫通孔20及び液室2もタンク圧であるため、段
付ばね受けピストン部7はばね4によりプラグ1
2に押し付けられた状態にある。
First, consider the case where the supply passage 1 is pressurized from tank pressure. Supply passage 1 is initially at tank pressure;
Since the through hole 20 and the liquid chamber 2 are also at tank pressure, the stepped spring receiving piston part 7 is pressed against the plug 1 by the spring 4.
It is in a state where it is pressed against 2.

いま、段付ばね受けピストン部7にダンピング
力が作用していない場合、貫通孔20及び液室2
の圧力PBは、ばね4の初期荷重F1に対する段付
ばね受けピストン部7の力学的平衡により、 PB1(S4−S2)=F1 PB1=F1/(S4−S2) この時のリリーフ圧力PA1は PA1S1=F1+PB1S2 PA1=(F1+PB1S2)/S1 このPA1は昇圧開始圧力である。段付ばね受け
ピストン部7にダンピング力が作用していなけれ
ば、ΔP=PA−PBの圧力差で絞り19を通つて貫
通孔20及び液室2に圧油が流入し、それによつ
て段付ばね受けピストン部7は下方へ移動させら
れる。段付ばね受けピストン部7がストロークエ
ンドに達する直前の液室2の圧力PBをPB2とする
と、 PB2(S4−S2)=F2 PB2=F2/(S4−S2) この時のリリーフ圧力は PA2=(F2+PB2S2)/S1 ところが、段付ばね受けピストン部7がストロ
ークエンドに達した瞬間、貫通孔20及び液室2
の圧力PBとリリーフ圧力PAは同圧力になるため、
リリーフ圧力PAは急激に上昇する。
If no damping force is currently acting on the stepped spring receiver piston portion 7, the through hole 20 and the liquid chamber 2
Due to the mechanical balance of the stepped spring bearing piston part 7 with respect to the initial load F 1 of the spring 4, the pressure P B of is calculated as follows: P B1 (S 4 − S 2 )=F 1 2 ) The relief pressure P A1 at this time is P A1 S 1 = F 1 + P B1 S 2 P A1 = (F 1 + P B1 S 2 )/S 1 This P A1 is the pressure increase start pressure. If no damping force is acting on the stepped spring receiver piston part 7, pressure oil will flow into the through hole 20 and the liquid chamber 2 through the throttle 19 with a pressure difference of ΔP = P A - P B , thereby causing The stepped spring receiver piston portion 7 is moved downward. If the pressure P B in the liquid chamber 2 just before the stepped spring bearing piston part 7 reaches the stroke end is P B2 , then P B2 (S 4 - S 2 ) = F 2 P B2 = F 2 / (S 4 - S 2 ) The relief pressure at this time is P A2 = (F 2 + P B2 S 2 )/S 1 However, at the moment when the stepped spring receiver piston part 7 reaches the stroke end, the through hole 20 and the liquid chamber 2
Since the pressure P B and the relief pressure P A are the same,
Relief pressure P A increases rapidly.

即ち、第6図及び第7図に示す如き圧力上昇過
程をとる。
That is, the pressure increases as shown in FIGS. 6 and 7.

このような状態では、到底ゆるやかな昇圧とは
いえない。このため、本考案においては、段付ば
ね受けピストン部7と段付シリンダ部6とで段付
箇所にダンピング室8を設けることによつて段付
ばね受けピストン部7にダンピング室8の背圧を
作用させる。
In such a state, it cannot be said that the pressure rise is gradual. Therefore, in the present invention, by providing the damping chamber 8 at the stepped portion of the stepped spring receiving piston section 7 and the stepped cylinder section 6, the back pressure of the damping chamber 8 is applied to the stepped spring receiving piston section 7. to act.

即ち、段付ばね受けピストン部7がストローク
するに従つて大きなダンピング力が段付ばね受け
ピストン部7に作用するように、ダンピング室8
とばね室9との間に絞り通路10またはダンピン
グ室8と液室2との間に絞り通路10′を形成し
ている。この時のダンピング室8の背圧をPC
する。
That is, the damping chamber 8 is arranged such that as the stepped spring receiving piston section 7 strokes, a large damping force acts on the stepped spring receiving piston section 7.
A throttle passage 10 is formed between the damping chamber 8 and the spring chamber 9, or a throttle passage 10' is formed between the damping chamber 8 and the liquid chamber 2. The back pressure in the damping chamber 8 at this time is defined as P C.

PA,PB,PC各圧力の時間変化を表わす方程式
は以下のようになる PA(t)…リリーフ圧力の時間関数 PB(t)…差動室圧力の時間関数 PC(t)…ダンピング室8の圧力の時間関数 F (t)…ばね4の弾発力の時間関数 X …段付ばね受けピストン部7のストロ
ーク量 プランジヤ3に働く力学的平衡式 S1PA(t)=S2PB(t)+F(t) ……(1) 段付ばね受けピストン部7に働く力学的平衡式 (S3−S2)PB(t)=(S3−S4)PC(t)+F(t) ……(2) 絞り19から液室2へ流入する流量の時間関数
をQ(t)とすると、 ダンピング絞りが絞り通路10(第3図)の方
式の場合 Q(t)=(S3−S2)dx/dt ……(3) ダンピング絞りが絞り通路10′(第5図)の
方式の場合 Q(t)=(S4−S2)dx/dt ……(3) 絞り19がオリフイスとすると、ベルヌーイの
式より PA(t)−PB(t)=ρ{Q(t)}2/2C2F2……(4) ただし、Cは流量係数、ρは作動油密度 又、ばね4の弾発力の時間関数F(t)は、ばね定
数をkとすると、 F(t)=F1+kdx ……(5) 以上〜式から、PA(t),PB(t),PC(t),F(t),
Q(t)の5変数が求められる。そして得られた結果
から以下のように結論できる。
The equations expressing the time changes in each pressure of P A , P B , and P C are as follows: P A (t)...Time function of relief pressure P B (t)...Time function of differential chamber pressure P C (t )... Time function of the pressure in the damping chamber 8 F (t)... Time function of the elastic force of the spring 4 )=S 2 P B (t) + F(t) ……(1) Dynamic equilibrium equation acting on the stepped spring receiver piston part 7 (S 3 −S 2 )P B (t)=(S 3 −S 4 ) P C (t) + F(t) ...(2) If the time function of the flow rate flowing from the throttle 19 to the liquid chamber 2 is Q(t), then the damping throttle is In the case Q(t)=(S 3 −S 2 )dx/dt...(3) When the damping orifice is of the throttle passage 10′ (Fig. 5) Q(t)=(S 4 −S 2 )dx /dt...(3) If the diaphragm 19 is an orifice, then from Bernoulli's equation, P A (t)−P B (t)=ρ{Q(t)} 2 /2C 2 F 2 ...(4) However, C is the flow coefficient, and ρ is the hydraulic oil density.Also, the time function F(t) of the elastic force of the spring 4 is, if the spring constant is k, F(t)=F 1 +kdx...(5) Above ~ Equation From, P A (t), P B (t), P C (t), F(t),
Five variables of Q(t) are found. The following conclusions can be drawn from the obtained results.

PA(t)及びPB(t)が最終設定圧力まで上昇するの
に要する時間は、段付ばね受けピストン部7がス
トロークを開始してからストローク端に達するま
での時間であるが、これは絞り19を通つて圧油
が液室2へ流入する流量Q(t)に支配される(
式)。
The time required for P A (t) and P B (t) to rise to the final set pressure is the time from when the stepped spring receiver piston section 7 starts its stroke until it reaches the stroke end. is controlled by the flow rate Q(t) of pressure oil flowing into the liquid chamber 2 through the throttle 19 (
formula).

一方、流量Q(t)はPA(t)とPB(t)の差圧に支配さ
れている(式)。
On the other hand, the flow rate Q(t) is governed by the differential pressure between P A (t) and P B (t) (formula).

式より PA(t)−PB(t)=(S2PB(t)+F(t))/S1−PB(t)=
F(t)/S1−(1−S2/S1)PB(t) 一方、PB(t)は式より明らかなように、ダン
ピングが作用しているとき、即ち、PC(t)が作用
している時、求められるPB(t)はダンピングがな
い時と比べ大きくなる。又、前式で1−S2/S1
0であるので、ダンピングが作用している時、即
ち、PC(t)が作用している時はPA(t)−PB(t)が小さ
くなる。
From the formula, P A (t)−P B (t)=(S 2 P B (t)+F(t))/S 1 −P B (t)=
F(t)/S 1 −(1−S 2 /S 1 )P B (t) On the other hand, as is clear from the equation, P B (t) is when damping is acting, that is, P C ( t) is acting, the required P B (t) becomes larger than when there is no damping. Also, in the previous equation, 1-S 2 /S 1 >
Since it is 0, when damping is acting, that is, when P C (t) is acting, P A (t) - P B (t) becomes small.

従つて、段付ばね受けピストン部7にダンピン
グが作用している時は、液室2へ流入する流量の
時間関数Q(t)が小さくなる。
Therefore, when damping is acting on the stepped spring receiver piston portion 7, the time function Q(t) of the flow rate flowing into the liquid chamber 2 becomes small.

即ち、段付ばね受けピストン部7がストローク
を開始してからストローク端に達するのに要する
時間は、ダンピングが作用している場合の方が長
くなる。又、絞り通路10または10′を適切に
選ぶことによつて昇圧過程において、PB(t)及び
PA(t)は第8図及び第9図に示す如く最終設定圧
力Psetに至るまでなめらかに連続するようにでき
る。
That is, the time required for the stepped spring receiver piston portion 7 to reach the stroke end after starting the stroke is longer when damping is acting. In addition, by appropriately selecting the throttle passage 10 or 10', P B (t) and
P A (t) can be made to continue smoothly until reaching the final set pressure Pset as shown in FIGS. 8 and 9.

このように、最終設定圧力に至るまでの昇圧時
間tdはダンピングがない時の昇圧時間t0と比べて
td>t0となり、且つ、最終設定圧力に至るまで略
直線的でゆるやかな昇圧となるようにすることが
できる。
In this way, the pressure increase time td until reaching the final set pressure is compared to the pressure increase time t 0 when there is no damping.
It is possible to satisfy td>t 0 and to increase the pressure substantially linearly and gradually until the final set pressure is reached.

〔実施例〕〔Example〕

本考案の実施例を図面に基づいて説明する。第
1図において、弁本体5は本実施例ではバブルケ
ーシング13とこれに装着したスリーブ14から
なり、スリーブ14には供給通路1及び戻り通路
16を形成すると共に、供給通路1側にシート1
7を設け他端部にプラグ12を固着する。シート
17とプラグ12との間のスリーブ14内にはス
リーブ14に摺動自在に嵌挿したプランジヤ3、
ばね4、スリーブ14の段付シリンダ部6に進退
自在に密嵌した段付ばね受けピストン部7及び一
端部をプランジヤ3に嵌挿し他端部を段付ばね受
けピストン部7に貫挿したロツド11を備え、ば
ね4によりプランジヤ3をシート17に、段付ば
ね受けピストン部7をプラグ12に当接してい
る。プラグ12は段付ばね受けピストン部7とス
リーブ14とロツド11とで液室2を形成する。
プランジヤ3にはロツド11を嵌挿する孔部18
とこの孔部を供給通路1に連通する絞り孔19と
を設け、ロツド11にはプランジヤ3の孔部18
と液室2とを連通する貫通孔20を設けている。
Embodiments of the present invention will be described based on the drawings. In FIG. 1, the valve body 5 is composed of a bubble casing 13 and a sleeve 14 attached to the bubble casing 13. The sleeve 14 has a supply passage 1 and a return passage 16, and a seat 1 is formed on the supply passage 1 side.
7 and a plug 12 is fixed to the other end. Inside the sleeve 14 between the seat 17 and the plug 12 is a plunger 3 which is slidably inserted into the sleeve 14.
Spring 4, a stepped spring receiving piston part 7 tightly fitted into the stepped cylinder part 6 of the sleeve 14 so as to be freely movable and retractable, and a rod having one end fitted into the plunger 3 and the other end inserted through the stepped spring receiving piston part 7. 11, the plunger 3 is brought into contact with the seat 17 by the spring 4, and the stepped spring receiving piston part 7 is brought into contact with the plug 12. The plug 12 forms a liquid chamber 2 with the stepped spring receiving piston portion 7, the sleeve 14, and the rod 11.
The plunger 3 has a hole 18 into which the rod 11 is inserted.
and a throttle hole 19 communicating this hole with the supply passage 1, and the rod 11 is provided with a hole 18 of the plunger 3.
A through hole 20 is provided that communicates the liquid chamber 2 with the liquid chamber 2 .

段付ばね受けピストン部7は段付シリンダ部6
とで段付箇所にダンピング室8を形成している。
このダンピング室8には第2図に示すように、段
付シリンダ部6と段付ばね受けピストン部7の小
径側摺動面21と22に形成した深さのごく浅い
環状溝23と24を連接し、この環状溝24とば
ね室9とを段付ばね受けピストン部7に形成した
放射方向の小孔25と軸方向の孔部26とで接続
することにより、段付ばね受けピストン部7がば
ね4を圧縮する方向へ移動した場合に、第3図に
示す如くダンピング室8が環状溝24と摺動面2
1とで形成された絞り通路10を介してばね室4
と連通する。又、第1図に仮想線で示すようにダ
ンピング室8を液室2に接続してもよい。この場
合は、第4図に示すように段付シリンダ部6と段
付ばね受けピストン部7の大径側摺動面27と2
8が液室2と連接する箇所に深さのごく浅い環状
溝29と30を形成し、この環状溝30とダンピ
ング室8とを段付ばね受けピストン部7に形成し
た通孔31により接続することにより、段付ばね
受けピストン部7がばね4を圧縮する方向へ移動
した場合に第5図に示す如くダンピング室8が環
状溝30と摺動面27とで形成された絞り通路1
0′を介して液室2と連通する。
The stepped spring bearing piston portion 7 is the stepped cylinder portion 6
A damping chamber 8 is formed at the stepped portion.
In this damping chamber 8, as shown in FIG. By connecting the annular groove 24 and the spring chamber 9 through the small radial holes 25 formed in the stepped spring bearing piston part 7 and the axial hole 26, the stepped spring bearing piston part 7 moves in the direction of compressing the spring 4, the damping chamber 8 moves between the annular groove 24 and the sliding surface 2, as shown in FIG.
The spring chamber 4 is connected to the spring chamber 4 through the throttle passage 10 formed by the
communicate with. Alternatively, the damping chamber 8 may be connected to the liquid chamber 2 as shown by imaginary lines in FIG. In this case, as shown in FIG.
Annular grooves 29 and 30 with a very shallow depth are formed at the location where the damping chamber 8 connects with the liquid chamber 2, and the annular groove 30 and the damping chamber 8 are connected by a through hole 31 formed in the stepped spring receiving piston part 7. As a result, when the stepped spring receiving piston portion 7 moves in the direction of compressing the spring 4, the damping chamber 8 is formed in the throttle passage 1 formed by the annular groove 30 and the sliding surface 27, as shown in FIG.
It communicates with the liquid chamber 2 via 0'.

第2図及び第4図に示すダンピング機構は段付
ばね受けピストン部7が液室2の圧液によりばね
4に抗して移動を開始すると、最初は第2図及び
第4図に示すようにダンピング室8の圧液は比較
的抵抗なしに矢印方向へ流れて僅かな昇圧とな
り、ついで第3図、第5図に示すように圧液が絞
り通路10,10′を通るようになると前述した
ように最終設定圧力に至るまで略直線的で且つゆ
るやかな昇圧となる。
In the damping mechanism shown in FIGS. 2 and 4, when the stepped spring receiver piston 7 starts moving against the spring 4 due to the pressure fluid in the liquid chamber 2, the damping mechanism shown in FIGS. Then, the pressure fluid in the damping chamber 8 flows in the direction of the arrow with relatively little resistance, resulting in a slight pressure increase, and then, as shown in FIGS. 3 and 5, the pressure fluid passes through the throttle passages 10 and 10', as described above As described above, the pressure rises approximately linearly and gradually until the final set pressure is reached.

従つて、例えば旋回体ブレーキ回路に本案リリ
ーフ弁を使用すれば、停止時のシヨツクを緩和で
きる。
Therefore, for example, if the relief valve of this invention is used in the rotating body brake circuit, the shock at the time of stopping can be alleviated.

〔考案の効果〕[Effect of idea]

以上の説明より明らかなように本考案によれ
ば、リリーフ弁が始動を開始するとダンピング室
の圧液を絞り通路を経て段付ばね受けピストン部
背後の液室又はばね室に排出するようにしている
ので、リリーフ弁始動時における回路圧力は略直
線的に且つゆるやかに昇圧する。又、段付ばね受
けピストン部のばね圧縮方向の移動速度を遅らす
手段として、弁本体の段付シリンダ部とこれに嵌
挿する段付ばね受けピストン部とで段付箇所に形
成したダンピング室を絞り通路により前記液室又
はばね室に連通するようにしたので、該手段の軸
方向の寸法精度は、段付シリンダ部、段付ばね受
けピストン部および段付ばね受けピストン部の後
退限を規定するストツパの3点で出すことがで
き、これを弁本体、ばね座、ロツド及びばね座の
後退限を規定するストツパの4点で出していた従
来品(第10図)に比べ、簡単に製作できる。
又、プランジヤからの供給側の圧液を段付ばね受
けピストン部背後の液室に導く手段にパイプを使
用できるので、孔加工や栓が不要となり、コスト
を低減できる。
As is clear from the above explanation, according to the present invention, when the relief valve starts to start, the pressure fluid in the damping chamber is discharged through the throttle passage into the fluid chamber or spring chamber behind the stepped spring receiver piston section. Therefore, the circuit pressure when the relief valve is started increases approximately linearly and gradually. In addition, as a means for slowing down the moving speed of the stepped spring receiver piston in the spring compression direction, a damping chamber is formed at the stepped portion by the stepped cylinder of the valve body and the stepped spring receiver piston that fits into the stepped cylinder. Since the throttle passage communicates with the liquid chamber or the spring chamber, the dimensional accuracy of the means in the axial direction defines the retraction limit of the stepped cylinder part, the stepped spring bearing piston part, and the stepped spring bearing piston part. It is easier to manufacture than the conventional product (Fig. 10), which has four points: the valve body, the spring seat, the rod, and the stopper that defines the retraction limit of the spring seat. can.
Furthermore, since a pipe can be used as a means for guiding the supply-side pressurized liquid from the plunger to the liquid chamber behind the stepped spring receiver piston portion, no hole drilling or plugging is required, and costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例の一部切欠き縦断面
図、第2図は同実施例のダンピング機構の一部切
欠き断面図、第3図は同ダンピング機構のダンピ
ング作用説明図、第4図は本考案の他の実施例の
ダンピング機構の一部切欠き断面図、第5図は同
ダンピング機構のダンピング作用説明図、第6図
はダンピング室がない場合、段付ばね受けピスト
ン部がストロークエンドに達した瞬間に段付ばね
受けピストン部に作用する液圧PBの変動状態を
示す図表、第7図は同リリーフ圧力PAの変動状
態を示す図表、第8図はダンピング室を有する場
合で、リリーフ弁始動時における段付ばね受けピ
ストン部に作用する液圧力と時間との関係を示す
図表、第9図は同リリーフ圧力と時間との関係を
示す図表、第10図は従来品の一部切欠き縦断面
図である。 1……供給通路、2……液室、3……プランジ
ヤ、4……ばね、5……弁本体、6……段付シリ
ンダ部、7……段付ばね受けピストン部、8……
ダンピング室、9……ばね室、10,10′……
絞り通路。
Fig. 1 is a partially cutaway vertical sectional view of an embodiment of the present invention, Fig. 2 is a partially cutaway sectional view of the damping mechanism of the same embodiment, Fig. 3 is an explanatory diagram of the damping action of the damping mechanism, Fig. 4 is a partially cutaway sectional view of a damping mechanism according to another embodiment of the present invention, Fig. 5 is an explanatory view of the damping action of the same damping mechanism, and Fig. 6 is a stepped spring receiver piston section when there is no damping chamber. A chart showing the fluctuation state of the hydraulic pressure P B acting on the stepped spring receiver piston at the moment when the piston reaches the stroke end, Figure 7 is a chart showing the fluctuation state of the relief pressure P A , and Figure 8 is a diagram showing the fluctuation state of the relief pressure P A. 9 is a chart showing the relationship between the hydraulic pressure acting on the stepped spring receiver piston section and time when the relief valve is started, FIG. 9 is a chart showing the relationship between the relief pressure and time, and FIG. It is a partially cutaway longitudinal sectional view of a conventional product. DESCRIPTION OF SYMBOLS 1... Supply passage, 2... Liquid chamber, 3... Plunger, 4... Spring, 5... Valve body, 6... Stepped cylinder part, 7... Stepped spring receiving piston part, 8...
Damping chamber, 9... Spring chamber, 10, 10'...
Aperture passage.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] プランジヤの絞り孔からの供給側の圧液をばね
受け部背後の液室に導く手段と、この圧液の供給
によりばねを圧縮して設定圧力を調整するばね受
け部と、このばね受け部のばね圧縮方向の移動速
度を遅らす手段とを備えたリリーフ弁において、
前記ばね受け部を弁本体の段付シリンダ部に嵌挿
する段付ばね受けピストン部となし、この段付ば
ね受けピストン部と段付シリンダ部とで段付箇所
にダンピング室を形成し、このダンピング室を前
記液室又はばね室に段付ばね受けピストン部と段
付シリンダ部とで形成した絞り通路を介して連通
すると共に、前記プランジヤの絞り孔と前記液室
とを、一端部をプランジヤに嵌挿し他端部を段付
ばね受けピストンに貫挿したロツドの貫通孔で連
通したことを特徴とするリリーフ弁。
A means for guiding pressure fluid on the supply side from the throttle hole of the plunger to a liquid chamber behind the spring receiver, a spring receiver that compresses the spring by supplying this pressure fluid and adjusts the set pressure, and a spring receiver for adjusting the set pressure. In the relief valve, the relief valve is equipped with a means for slowing down the movement speed in the spring compression direction,
The spring receiving portion is a stepped spring receiving piston portion that is inserted into the stepped cylinder portion of the valve body, and the stepped spring receiving piston portion and the stepped cylinder portion form a damping chamber at the stepped portion. The damping chamber is communicated with the liquid chamber or the spring chamber through a throttle passage formed by a stepped spring receiving piston section and a stepped cylinder section, and the throttle hole of the plunger and the liquid chamber are connected to each other by connecting one end of the damping chamber to the liquid chamber or the spring chamber. A relief valve characterized in that the other end of the rod is inserted into the stepped spring receiving piston and communicates with the through hole of the rod.
JP1987108897U 1987-07-15 1987-07-15 Expired - Lifetime JPH0520937Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987108897U JPH0520937Y2 (en) 1987-07-15 1987-07-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987108897U JPH0520937Y2 (en) 1987-07-15 1987-07-15

Publications (2)

Publication Number Publication Date
JPS6414971U JPS6414971U (en) 1989-01-25
JPH0520937Y2 true JPH0520937Y2 (en) 1993-05-28

Family

ID=31344659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987108897U Expired - Lifetime JPH0520937Y2 (en) 1987-07-15 1987-07-15

Country Status (1)

Country Link
JP (1) JPH0520937Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5601510B2 (en) * 2010-07-07 2014-10-08 アイシン精機株式会社 Relief valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4835423A (en) * 1971-09-13 1973-05-24

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229318Y2 (en) * 1972-05-04 1977-07-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4835423A (en) * 1971-09-13 1973-05-24

Also Published As

Publication number Publication date
JPS6414971U (en) 1989-01-25

Similar Documents

Publication Publication Date Title
US5050636A (en) Relief valve
US5823513A (en) Delay return gas spring
JPH0520937Y2 (en)
CN112253558B (en) Load control valve integrating large-flow overflow function into main valve core
JPH0750612Y2 (en) Pressure control valve
GB1359973A (en) Hydraulic booster with pressure limiter
GB1485073A (en) Variable ratio hydraulic master-cylinder
JP3783879B2 (en) safety valve
JPH0723663Y2 (en) Relief valve
US5362034A (en) Hydraulic height adjusting device
JPH0717894Y2 (en) Relief valve
JPS6319668Y2 (en)
EP0287242A3 (en) Hydraulic device
US5239828A (en) Two-stage valve
JPS6321814Y2 (en)
JPH0218324Y2 (en)
CN109058216B (en) Balance valve
JP2549309Y2 (en) Relief valve
JP3369614B2 (en) Relief valve
JPH0717895Y2 (en) Relief valve
SU351027A1 (en) SAFETY VALVE FOR HYDRAULIC SYSTEMS
SU1721324A1 (en) Hydraulic cylinder
JP2515790Y2 (en) Pressure regulating valve
JP2579909Y2 (en) Flow control structure in check valve
JPH04132274U (en) Poppet type relief valve