JPH05209224A - Production of nonoriented silicon steel sheet excellent in magnetic property - Google Patents

Production of nonoriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH05209224A
JPH05209224A JP27032792A JP27032792A JPH05209224A JP H05209224 A JPH05209224 A JP H05209224A JP 27032792 A JP27032792 A JP 27032792A JP 27032792 A JP27032792 A JP 27032792A JP H05209224 A JPH05209224 A JP H05209224A
Authority
JP
Japan
Prior art keywords
annealing
cold rolling
hot
intermediate annealing
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27032792A
Other languages
Japanese (ja)
Inventor
Yoshinari Muro
吉成 室
Masahiko Manabe
昌彦 真鍋
Takashi Obara
隆史 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP27032792A priority Critical patent/JPH05209224A/en
Publication of JPH05209224A publication Critical patent/JPH05209224A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce a high grade nonoriented silicon steel sheet excellent in magnetic properties by subjecting a hot rolled plate of steel having a specific composition containing C, Si, Mn, and Al to process annealing at specific temp. and to final cold rolling at specific draft. CONSTITUTION:A hot rolled plate of a steel having a composition which contains, by weight, <=0.01% C, >=2.5% Si, 0.1-1.0% Mn, and >=0.1% Al and in which (Si+Al) is regulated to <=4% is rolled, in the as-hot-rolled state or after hot rolled plate annealing, to the final sheet thickness by means of two or more cold rollings while process-annealed between the cold rolling stages, followed by finish annealing. At this time, the process annealing before the above finish annealing is done at 740-880 deg.C and then descaling treatment is performed, if necessary. By this method, the nonoriented silicon steel sheet reduced in iron loss value and excellent in magnetic properties can be obtained with certainty.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、磁気特性の優れた無
方向性電磁鋼板の製造に関し、とくに鉄損値の極めて低
い高級無方向性電磁鋼板を製造する方法に関しての提案
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of a non-oriented electrical steel sheet having excellent magnetic properties, and particularly to a method for producing a high-grade non-oriented electrical steel sheet having an extremely low iron loss value.

【0002】[0002]

【従来の技術】無方向性電磁鋼板は、主に回転機や変圧
器の鉄心等の電気機器に使用されているが、とりわけ大
型回転機等の場合、省エネルギーの要請から低鉄損のも
のが賞用されることから、方向性電磁鋼板に比べて方向
性の小さい高級無方向性電磁鋼板が広く用いられる。か
かる無方向性電磁鋼板については、JIS C 2552に、低鉄
損の材料として50A270 等が規定されているが、電気機
器の一層の省エネルギーを図るためには、この50A270
よりもさらに鉄損の低い材料が望まれているのが実情で
ある。
2. Description of the Related Art Non-oriented electrical steel sheets are mainly used for electric machines such as rotating machines and iron cores of transformers. High grade non-oriented electrical steel sheets, which are less oriented than the grain-oriented electrical steel sheets, are widely used because they are prized. Regarding such non-oriented electrical steel sheets, JIS C 2552 specifies 50A270 as a material with low iron loss, but in order to further save energy of electric equipment, this 50A270 is required.
The reality is that materials with lower iron loss are desired.

【0003】従来、無方向性電磁鋼板の鉄損を低減する
技術として、(1) SiあるいはAl含有量を高める、(2) 鋼
中不純物(C,S,O等)を低減または無害化する、
(3) 仕上げ焼鈍後の結晶粒径を最適化する、(4) 冷延圧
下率を調節する、(5) 中間焼鈍を挟む2回以上の冷間圧
延を施す、方法などが採用されてきた。
Conventionally, as techniques for reducing iron loss of non-oriented electrical steel sheets, (1) increase Si or Al content, (2) reduce or detoxify impurities (C, S, O, etc.) in steel. ,
(3) Optimization of grain size after finish annealing, (4) Adjustment of cold rolling reduction, (5) Method of performing two or more cold rolling steps with intermediate annealing, etc. have been adopted. ..

【0004】こうした低鉄損化のための努力により、50
A270 クラスの高級無方向性電磁鋼板が製造可能とな
り、現在では既に、実用化もされているのである。しか
し、この50A270 クラスよりさらに鉄損の低い材料を製
造するためには、上記(2),(3),(4) の方法では限界があ
り、これらに比べると上記(1) の方法である、Siあるい
はAlを増量する方法は有効である。しかしながら、この
方法についても、SiやAlを増量すれば冷間圧延時に割れ
が発生し易くなることから、(Si+Al)含有量を4wt%
(以下、単に%で示す)以下にすることが必要であり、
これを超えると、通常の冷間圧延は困難になるという問
題があった。この問題に対しては、冷間圧延時に、たと
えば 150℃以上の温間圧延を行えば解決可能であるが、
通常の冷間圧延機では保温が難しく安定した圧延が行え
ないという別の問題があった。
Due to such efforts to reduce iron loss, 50
A270-class high-grade non-oriented electrical steel sheets can now be manufactured, and are now in practical use. However, the methods of (2), (3), and (4) above have limitations in order to manufacture materials with lower iron loss than those of the 50A270 class, and the method of (1) above is compared to these methods. It is effective to increase the amount of Si, Si or Al. However, in this method as well, if Si or Al is increased, cracking is likely to occur during cold rolling. Therefore, the (Si + Al) content is 4 wt%.
(Hereinafter, simply expressed as%)
If it exceeds this, there is a problem that normal cold rolling becomes difficult. This problem can be solved by performing cold rolling at 150 ° C or higher during cold rolling,
There was another problem that it was difficult to maintain heat with a normal cold rolling mill and stable rolling could not be performed.

【0005】一方、低鉄損化の手段としては、上掲の
(5) の方法も有効であり、本発明も正にこの方法の改良
に関するものである。この方法については、以下に説明
するような方法が提案されている。たとえば、特公昭56
−22931 号公報は、素材に含まれるSを 0.005%以下、
Oを0.0025%以下とし、中間焼鈍後に行う2回目の冷間
圧延の圧下率を40〜70%とし、 900〜1000℃で仕上焼鈍
を行う方法を開示している。この方法は、成分組成の高
級化と2回目の冷延圧下率(高圧下)の工夫により集合
組織を改善することで、磁気特性を向上させるものであ
る。また、特開昭53−66816 号公報は、素材に含まれる
Sを0.005 %以下、Oを0.0025%以下とし、1回目の冷
延圧下率を20%以上、中間焼鈍を 900〜1050℃、2〜15
分間の条件で行うことにより、中間焼鈍後の平均粒径を
0.07mm以上に調整し、次いで45〜70%の圧下率の冷間仕
上圧延によって仕上厚さとし、その後、930〜1050℃, 2
〜15分間の条件の仕上焼鈍を行う方法を開示してい
る。この方法は、前記特公昭56−22931 号公報に示され
た方法に加え中間焼鈍後の粒径を制御して集合組織を改
善することにより、磁気特性を向上させる技術である。
上述した各従来技術による方法では、50A270 〜50A25
0 クラスまでの製造には有効であった。しかしながら、
上掲の(2),(3),(4) の方法による改善が進んだ現在にお
いて、この方法だけでは通常の冷延〜焼鈍を各1回施す
方法に比べて若干の磁気特性改善が見られるにすぎず、
大幅な改善とは言えなかった。
On the other hand, as a means for reducing iron loss, the above-mentioned means
The method (5) is also effective, and the present invention relates to an improvement of this method. As for this method, the method described below has been proposed. For example, Japanese Examined Sho 56
-22931 discloses that S contained in the material is 0.005% or less,
Disclosed is a method in which O is 0.0025% or less, the reduction ratio of the second cold rolling performed after the intermediate annealing is 40 to 70%, and the finish annealing is performed at 900 to 1000 ° C. This method improves the magnetic properties by improving the texture by improving the composition of components and devising the second cold rolling reduction rate (under high pressure). Further, in Japanese Patent Laid-Open No. 53-66816, S contained in the material is 0.005% or less, O is 0.0025% or less, the first cold rolling reduction is 20% or more, and the intermediate annealing is 900 to 1050 ° C. ~ 15
The average grain size after intermediate annealing is
Adjust the thickness to 0.07 mm or more, and then finish by cold finishing rolling with a rolling reduction of 45 to 70% to obtain a finished thickness.
Disclosed is a method of performing finish annealing under conditions of ~ 15 minutes. In addition to the method disclosed in Japanese Patent Publication No. 56-22931, this method is a technology for improving the magnetic properties by controlling the grain size after intermediate annealing to improve the texture.
According to the above-mentioned respective prior art methods, 50A270 to 50A25
It was effective for manufacturing up to 0 class. However,
At the present time when improvements have been made by the methods (2), (3), and (4) above, a slight improvement in magnetic properties has been observed with this method alone compared to the method in which ordinary cold rolling to annealing is performed once each. Is simply
It wasn't a big improvement.

【0006】さらに、特開昭58−23410 号公報に開示さ
れているような方法もある。この技術は、素材のSiを
2.5%以上、Alを1%以上とし、そして仕上焼鈍前の冷
延圧下率を55〜87%とし、仕上焼鈍を1050℃以上, 3sec
〜60sec の条件で行う方法である。しかしながら、この
方法の場合、AlによるN固定・無害化および高温短時間
焼鈍による内部酸化の軽減を図ろうとするものである
が、この処理だけで集合組織が飛躍的に改善されるわけ
ではないし、また、現在の焼鈍技術のレベルでは、焼鈍
時の内部酸化は確かに若干認められるものの磁性劣化は
ごくわずかである。したがって、この方法の場合も、冷
延〜焼鈍を2回行う方法以上の、集合組織改善効果は期
待できない。
Further, there is also a method disclosed in Japanese Patent Laid-Open No. 58-23410. This technology uses the material Si
2.5% or more, Al 1% or more, and cold rolling reduction before finish annealing 55 to 87%, finish annealing 1050 ° C or more, 3 seconds
This is a method performed under the condition of ~ 60sec. However, in the case of this method, although it is intended to fix N by Al and detoxify it and reduce internal oxidation by high temperature short time annealing, this treatment alone does not dramatically improve the texture. Also, at the current level of annealing technology, although some internal oxidation is certainly observed during annealing, magnetic deterioration is very slight. Therefore, also in the case of this method, the texture improving effect, which is more than the method of performing cold rolling to annealing twice, cannot be expected.

【0007】次に、特開昭58−23411 号公報で提案して
いる方法もある。この技術は、中間焼鈍を950 〜1100
℃, 20〜120 sec 未満で行い、最終冷延圧下率を、35〜
45%とし、仕上焼鈍を 950〜1100℃, 3 〜60sec の条件
で行う方法である。しかしながら、この方法の場合、中
間焼鈍条件と最終冷延圧下率の組合わせと高温短時間焼
鈍による内部酸窒化層の防止によって磁気特性が向上す
るとしているが、発明者らが行なった試験では、この方
法によって特公昭56−22931 号公報あるいは特開昭53−
66816 号公報の方法を上回る磁気特性の結果を得ること
はできなかった。したがって、中間焼鈍と最終冷延圧下
率の組合わせは必ずしも適切とは言えないものと考えら
れる。
Next, there is a method proposed in JP-A-58-23411. This technology applies intermediate annealing from 950 to 1100.
℃, 20 ~ less than 120 sec, the final cold rolling reduction rate of 35 ~
This is a method in which 45% is used and finish annealing is performed under the conditions of 950 to 1100 ° C and 3 to 60 seconds. However, in the case of this method, the magnetic properties are improved by the combination of the intermediate annealing condition and the final cold rolling reduction ratio and the prevention of the internal oxynitride layer by the high temperature short time annealing, but in the test conducted by the inventors, According to this method, Japanese Patent Publication No. 56-22931 or Japanese Patent Laid-Open No. 53-
It was not possible to obtain the results of magnetic characteristics exceeding the method of 66816. Therefore, it is considered that the combination of intermediate annealing and final cold rolling reduction is not necessarily appropriate.

【0008】さらに、特開昭59−74225 で提案している
方法もある。この技術は、素材のSを15ppm 以下、Oを
20ppm 以下、Nを25ppm 以下とし、中間焼鈍を 950〜10
50℃, 2〜15分で行い、2回目の冷延圧下率を70%以上
とする方法であり、上記いずれの方法よりも一層の不純
物低減を行い、その素材に適した中間焼鈍と2回目の冷
延圧下率を見出し、集合組織の改善と磁気特性向上を図
るものである。しかしながら、この方法についても、50
A250 クラスの開発を狙ったものであり、50A250 より
さらに鉄損の低い材料を安定して製造することが困難な
方法である。
Further, there is a method proposed in JP-A-59-74225. This technology uses S for material of 15ppm or less and O for
20ppm or less, N 25ppm or less, intermediate annealing 950 ~ 10
This method is performed at 50 ° C for 2 to 15 minutes and the cold rolling reduction of the second time is 70% or more. The impurities are further reduced than any of the above methods, and the intermediate annealing suitable for the material and the second time By finding the cold rolling reduction ratio of, the improvement of the texture and the improvement of magnetic properties are aimed at. However, even with this method,
This is aimed at the development of the A250 class, and it is a difficult method to stably manufacture materials with lower iron loss than 50A250.

【0009】以上説明した上記各従来技術の場合は、中
間焼鈍を 900〜1100℃の高めの温度で行い、2回目の冷
延圧下率を35%以上で行う、という両者の組合わせに特
徴があると考えられる。その他の事例としては、特公昭
56−22931 号公報に記載されている実施例において、中
間焼鈍 900℃×5分、2回目の冷延圧下率 9.1%、仕上
焼鈍1000℃×5分の例が示されている。これは、2回目
の冷延圧下率を10%前後の軽圧下とし、歪エネルギーを
利用することにより仕上焼鈍時の粒成長を促進させ、磁
気特性を向上させようとするものであるが、集合組織が
ランダム化し、やはり50A250 より優れた磁気特性のも
のを得ることはできない。
The above-mentioned respective prior arts described above are characterized by a combination of both, in which the intermediate annealing is performed at a higher temperature of 900 to 1100 ° C. and the second cold rolling reduction is performed at 35% or more. It is believed that there is. Other cases include Shoko Sho
In the example described in Japanese Patent Laid-Open No. 56-22931, an example of intermediate annealing 900 ° C. × 5 minutes, second cold rolling reduction of 9.1% and finish annealing 1000 ° C. × 5 minutes is shown. This is to reduce the cold rolling reduction of the second time to around 10% and use strain energy to promote grain growth during finish annealing and improve magnetic properties. The texture is randomized, and it is not possible to obtain a magnetic property superior to 50A250.

【0010】[0010]

【発明が解決しようとする課題】この発明の目的は、上
述した冷延〜焼鈍を2回以上繰り返す方法において、磁
気特性改善効果をより一層高めることにより、鉄損値が
同組成の従来品よりもさらに低い高級無方向性電磁鋼板
の新規な製造方法を提案することにある。
SUMMARY OF THE INVENTION The object of the present invention is to improve the magnetic property improving effect further in the above-mentioned method of repeating cold rolling to annealing twice or more, so that the iron loss value is more than that of the conventional product having the same composition. Another object of the present invention is to propose a new manufacturing method for high-grade non-oriented electrical steel sheet.

【0011】さて、発明者らは、冷間圧延の容易な(Si
+Al):4%以下の無方向性電磁鋼板について、それの
鉄損をより一層改善すべく鋭意研究を重ねた結果、冷間
圧延と焼鈍の処理を2回以上繰り返して行う方法におい
て、仕上焼鈍前の中間焼鈍を比較的低温で行うと共に、
最終の冷間圧延を軽圧下圧延するようにすれば、鉄損の
一層の低減化が図れることを見出し、さらに、この方法
の実施に加えて、前記中間焼鈍の後に一旦脱スケール処
理を行うようにすれば、鉄損の一層の低減化が図れるこ
とを見い出し、本発明の第1および第2の方法に想到し
た。
By the way, the inventors have found that cold rolling is easy (Si
+ Al): 4% or less of non-oriented electrical steel sheet, as a result of earnest studies to further improve the iron loss thereof, the result of cold annealing and annealing treatment repeated twice or more, finish annealing While performing the previous intermediate annealing at a relatively low temperature,
It was found that if the final cold rolling was carried out by light reduction rolling, the iron loss could be further reduced, and further, in addition to the implementation of this method, a descaling treatment should be performed once after the intermediate annealing. Then, it was found that the iron loss can be further reduced, and the first and second methods of the present invention were conceived.

【0012】すなわち、本発明の第1の方法は、C:0.
01wt%以下、Si:2.5 wt%以上、Mn:0.1 〜1.0 wt%、
Al:0.1 wt%以上を含み、かつSi+Al:4wt%以下、を
含有する組成の熱間圧延鋼板を、そのままあるいは熱延
板焼鈍を施した後、中間焼鈍をはさむ2回以上の冷間圧
延により最終板厚に圧延し、その後仕上焼鈍を行うこと
によって無方向性電磁鋼板を製造するに当たり、仕上焼
鈍前の中間焼鈍を 740〜880 ℃の温度範囲で行い、最終
冷間圧延を圧下率1〜10%で行うことを特徴とする磁気
特性の優れた無方向性電磁鋼板の製造方法である。
That is, the first method of the present invention is C: 0.
01 wt% or less, Si: 2.5 wt% or more, Mn: 0.1 to 1.0 wt%,
A hot-rolled steel sheet having a composition containing Al: 0.1 wt% or more and Si + Al: 4 wt% or less is directly or after hot-rolled sheet annealed, and then cold-rolled twice or more with intermediate annealing. When manufacturing a non-oriented electrical steel sheet by rolling to the final plate thickness and then performing finish annealing, intermediate annealing before finish annealing is performed in the temperature range of 740 to 880 ° C, and final cold rolling is performed at a reduction ratio of 1 to 1. This is a method for producing a non-oriented electrical steel sheet having excellent magnetic properties, which is characterized by being performed at 10%.

【0013】そして、本発明の第2の方法は、C:0.01
wt%以下、Si:2.5 wt%以上、Mn:0.1 〜1.0 wt%、A
l:0.1 wt%以上を含み、かつSi+Al:4wt%以下、を
含有する組成の熱間圧延鋼板を、そのままあるいは熱延
板焼鈍を施した後、中間焼鈍をはさむ2回以上の冷間圧
延により最終板厚に圧延し、その後仕上焼鈍を行うこと
によって無方向性電磁鋼板を製造するに当たり、仕上焼
鈍前の中間焼鈍を 740〜880 ℃の温度範囲で行い、引き
続き脱スケール処理を施してから、最終冷間圧延を圧下
率1〜10%にて行うことを特徴とする磁気特性の優れた
無方向性電磁鋼板の製造方法である。
The second method of the present invention is C: 0.01.
wt% or less, Si: 2.5 wt% or more, Mn: 0.1 to 1.0 wt%, A
l: 0.1% by weight or more and Si + Al: 4% by weight or less, hot-rolled steel sheet having a composition that is annealed as it is or after hot-rolled sheet is annealed. When manufacturing a non-oriented electrical steel sheet by rolling to the final plate thickness and then performing finish annealing, intermediate annealing before finish annealing is performed in the temperature range of 740 to 880 ° C, and after performing descaling treatment, This is a method for producing a non-oriented electrical steel sheet having excellent magnetic properties, characterized in that the final cold rolling is performed at a reduction rate of 1 to 10%.

【0014】[0014]

【作用】次に、本発明が上述のように構成される理由に
つき、発明者らの行った実験結果に基づいて説明する。
この実験は、C:0.003 %, Si:3.23%, Mn:0.19%,
P:0.016 %, S:0.0013%, Al:0.61%, N:0.0015
%, O:0.0011%, 残部Feおよび不可避的不純物からな
る鋼のスラブを、通常の熱延工程により2mm厚の熱延板
とし、この熱延板を1000℃×30sec の条件で焼鈍し、脱
スケール後に冷間圧延によって中間板厚(0.5〜0.588 m
m) とした。得られた冷延板を、(700〜1000℃) ×15sec
の条件で中間焼鈍をした後、2回目の冷間圧延を15%
以下の圧下率で行うことにより、板厚を 0.5mmとし、10
00℃×15sec で仕上げ焼鈍した。その結果を図1, 図2
に示す。
Next, the reason why the present invention is configured as described above will be described based on the results of experiments conducted by the inventors.
In this experiment, C: 0.003%, Si: 3.23%, Mn: 0.19%,
P: 0.016%, S: 0.0013%, Al: 0.61%, N: 0.0015
%, O: 0.0011%, a steel slab consisting of balance Fe and unavoidable impurities was made into a hot-rolled sheet with a thickness of 2 mm by a normal hot-rolling process, and this hot-rolled sheet was annealed under the condition of 1000 ° C × 30 sec, Intermediate plate thickness (0.5 to 0.588 m
m) The obtained cold-rolled sheet, (700 ~ 1000 ℃) × 15sec
15% after the second cold rolling after the intermediate annealing under the conditions
The plate thickness is set to 0.5 mm and 10
Finish annealing was carried out at 00 ℃ × 15sec. The results are shown in Figure 1 and Figure 2.
Shown in.

【0015】図1は、中間焼鈍の温度を変え、2回目の
冷延圧下率を5%一定としたときの鉄損(W 15/50) の
影響を示すものである。なお、比較のために1回法(中
間焼鈍および2回目の冷延なし。その他条件は上記と同
じ。) および、比較2回法(1回目の冷延圧下率:50
%, 中間焼鈍:1000℃×15sec , 2回目の冷延圧下率:
50%, その他条件は上記と同じ。)の結果も同図中に併
記した。この図から明瞭に判るように、中間焼鈍の温度
が 740〜880 ℃で比較の方法に比べ大幅な鉄損低下が認
められる。
FIG. 1 shows the effect of iron loss (W 15/50) when the temperature of the intermediate annealing is changed and the cold rolling reduction of the second time is kept constant at 5%. For comparison, the one-time method (without intermediate annealing and the second cold rolling; other conditions are the same as above) and the two-time method (first cold rolling reduction: 50
%, Intermediate annealing: 1000 ℃ × 15sec, Second cold rolling reduction:
50%, other conditions are the same as above. The results of () are also shown in the figure. As can be clearly seen from this figure, the intermediate annealing temperature is 740 to 880 ° C, and a large decrease in iron loss is recognized as compared with the comparative method.

【0016】図2は、中間焼鈍温度を 800℃一定とし、
2回目冷間圧延の圧下率を0〜15%の間で変えたときの
結果である。なお、図1の場合と同様に1回法および比
較2回法の結果も示した。ここで、2回目冷間圧延の圧
下率が0%のデータは、1回目の冷間圧延で板厚 0.5mm
とし、中間焼鈍を施した後、さらに仕上げ焼鈍をしたと
きの結果である。この図から判るように、2回目の冷間
圧延における圧下率が1〜10%のときに、比較の方法に
比べ大幅な鉄損低下が認められる。すなわち、中間焼鈍
を 740〜880 ℃とし、2回目の冷間圧延の圧下率を1〜
10%とする組合わせの処理例が鉄損を大幅に低下させる
ことがわかる。
FIG. 2 shows that the intermediate annealing temperature is kept constant at 800 ° C.
It is a result when changing the reduction rate of the 2nd cold rolling between 0-15%. As in the case of FIG. 1, the results of the one-time method and the comparative two-time method are also shown. Here, the data of the reduction ratio of the second cold rolling is 0%, the sheet thickness is 0.5 mm in the first cold rolling.
The results are obtained when the final annealing is performed after the intermediate annealing. As can be seen from this figure, when the reduction ratio in the second cold rolling is 1 to 10%, a significant decrease in iron loss is recognized as compared with the comparative method. That is, the intermediate annealing is set to 740 to 880 ° C, and the reduction ratio of the second cold rolling is set to 1 to
It can be seen that the treatment example of the combination of 10% significantly reduces the iron loss.

【0017】次に、発明者らは、上述した比較的低温で
の中間焼鈍に加えて軽圧下, 最終圧延による低鉄損化
を、さらに向上させるべく次の如き実験を行なった。こ
の実験は、C:0.003 %, Si:3.23%, Mn:0.19%,
P:0.016 %, S:0.0013%, Al:0.61%, N:0.0015
%, O:0.0011%, 残部Feおよび不可避的不純物からな
る鋼のスラブを、通常の熱延工程により2mm厚の熱延板
とし、この熱延板を1000℃×30sec の条件で焼鈍し、脱
スケール後に冷間圧延によって中間板厚(0.5〜0.588 m
m) とした。得られた冷延板を、(700〜1000℃) ×15sec
の条件で中間焼鈍をした後、 320番の研磨ベルトで両
表面を研磨し、脱スケール処理を施した。引き続いて2
回目の冷間圧延を15%以下の圧下率で行うことにより、
板厚を 0.5mmとし、1000℃×15sec で仕上げ焼鈍した。
その結果を図3, 図4に示す。
Next, the present inventors conducted the following experiment in order to further improve the iron loss reduction by the final rolling in addition to the above-mentioned intermediate annealing at a relatively low temperature. In this experiment, C: 0.003%, Si: 3.23%, Mn: 0.19%,
P: 0.016%, S: 0.0013%, Al: 0.61%, N: 0.0015
%, O: 0.0011%, a steel slab consisting of balance Fe and unavoidable impurities was made into a hot-rolled sheet with a thickness of 2 mm by a normal hot-rolling process, and this hot-rolled sheet was annealed under the condition of 1000 ° C × 30 sec, Intermediate plate thickness (0.5 to 0.588 m
m) The obtained cold-rolled sheet, (700 ~ 1000 ℃) × 15sec
After the intermediate annealing under the conditions of No. 3, both surfaces were polished with a No. 320 polishing belt and descaled. 2 in succession
By performing the cold rolling for the second time at a reduction rate of 15% or less,
The plate thickness was 0.5 mm, and finish annealing was performed at 1000 ° C for 15 seconds.
The results are shown in FIGS.

【0018】脱スケール処理を施さない例を示す図1,
図2の結果と比べると判るように、脱スケール処理を行
うと全体的に低鉄損となっており、中間焼鈍後の脱スケ
ール処理の効果が大きいことが判る。
FIG. 1 showing an example in which the descaling process is not performed,
As can be seen from comparison with the results of FIG. 2, the iron loss is generally low when the descaling treatment is performed, and it is understood that the effect of the descaling treatment after the intermediate annealing is large.

【0019】上述した本発明方法を実施したときに磁気
特性が改善される理由については、まだ完全に解明した
わけではないが、第1に、“適切な仕上焼鈍前の中間焼
鈍温度”と“最終冷間圧延の適切な圧下率”の選択組合
わせにより、仕上焼鈍後の集合組織が改善される結果に
よるものと推定している。すなわち、本発明によれば、
比較的低温での仕上焼鈍前の中間焼鈍によって結晶粒径
を制御する一方で、最終冷間圧延の圧下率は軽くすると
いう方法の組合わせによる相乗効果によって、最終冷間
圧延時の加工歪の入り方が変化し、そのために仕上焼鈍
後の集合組織が改善されるものと考えられる。
The reason why the magnetic properties are improved when the above-mentioned method of the present invention is carried out has not been completely clarified yet, but firstly, "appropriate intermediate annealing temperature before finish annealing" and " It is presumed that this is due to the result that the texture after finishing annealing is improved by the selected combination of "appropriate reduction ratio of final cold rolling". That is, according to the present invention,
The grain size is controlled by intermediate annealing before finish annealing at a relatively low temperature, while the reduction ratio of final cold rolling is reduced. It is considered that the way of entering changes, and therefore the texture after finish annealing is improved.

【0020】第2に、最終冷間圧延前に脱スケール処理
を行うことにより、鋼板表面の状態が変化し、引き続く
最終冷間圧延時の加工歪の入り方に大きく影響し、ひい
てはこのことが仕上焼鈍後の集合組織を一層良好な方向
へ変化させるためと考えられる。
Secondly, by performing the descaling treatment before the final cold rolling, the state of the steel sheet surface is changed, which greatly influences how the working strain enters during the subsequent final cold rolling. It is considered to change the texture after finish annealing in a better direction.

【0021】この点、従来の冷間圧延〜焼鈍を2回(あ
るいはそれ以上)繰返す方法において、最終冷間圧延の
圧下率を10%前後あるいはそれ以下とすることは、集合
組織をランダム化するものと認識されており、仕上焼鈍
前の冷間圧延による歪エネルギーを利用して仕上焼鈍時
の粒成長をはかるためだけの方法とされてきた。これに
対し、本発明者らは、上述した実験結果から、仕上焼鈍
前の中間焼鈍を比較的低温で行うことによって予め結晶
粒径を制御し、そして最終の冷間圧延を軽圧下で行え
ば、集合組織を大幅に改善することができ、一層の低鉄
損化を図り得ることを新たに見い出したわけである。
In this regard, in the conventional method of repeating cold rolling to annealing twice (or more), setting the reduction ratio of the final cold rolling to about 10% or less randomizes the texture. It has been recognized that this is only a method for measuring grain growth during finish annealing by utilizing the strain energy of cold rolling before finish annealing. On the other hand, the inventors of the present invention, from the above experimental results, to control the grain size in advance by performing intermediate annealing before finish annealing at a relatively low temperature, and if the final cold rolling is performed under a light pressure. In addition, it has been newly found that the texture can be greatly improved and further reduction of iron loss can be achieved.

【0022】さらに、中間焼鈍後の前記脱スケール処理
と、比較的低温の中間焼鈍および軽圧下最終冷間圧延と
の組合わせが、集合組織改善に一層効果的に作用するこ
とは、これまでに知られていなかった知見である。
Furthermore, the combination of the descaling treatment after the intermediate annealing and the relatively low temperature intermediate annealing and the final cold rolling under a light reduction work more effectively for improving the texture. This is an unknown knowledge.

【0023】次に、この発明の素材成分の組成を、上述
したように限定する理由について述べる。 C:0.01%以下 Cは、鉄損に有害な成分であるため、0.01%以下とす
る。望ましくは 0.001%以下が、磁気時効の点からも良
い。
Next, the reason for limiting the composition of the raw material components of the present invention as described above will be described. C: 0.01% or less C is a component harmful to iron loss, so 0.01% or less. Desirably 0.001% or less is also good from the viewpoint of magnetic aging.

【0024】Si:2.5 %以上 Siは、比抵抗を増し鉄損を低下させる有用元素であり、
この発明は高級無方向性電磁鋼板が対象であるので、2.
5 %以上とする。
Si: 2.5% or more Si is a useful element that increases specific resistance and decreases iron loss,
This invention is intended for high-grade non-oriented electrical steel sheets, so 2.
5% or more.

【0025】Al:0.1 %以上 Alは、Siと同様、比抵抗を増し鉄損を低下させる有用元
素であるが、含有量が0.1 %に満たないとAlN が微細に
析出し鉄損に悪影響を与えるので、0.1 %以上とする。
Al: 0.1% or more Al, like Si, is a useful element that increases the specific resistance and decreases the iron loss, but if the content is less than 0.1%, AlN is finely precipitated and the iron loss is adversely affected. Since it is given, it should be 0.1% or more.

【0026】Si+Al:4%以下 SiとAlはいずれも、上述したとおり鉄損の改善に有用な
元素であるが、合計量が4%を超えると前述したとおり
冷延性が劣化するので、4%以下とした。
Si + Al: 4% or less Both Si and Al are elements useful for improving iron loss as described above, but if the total amount exceeds 4%, cold ductility deteriorates as described above, so 4%. Below.

【0027】Mn: 0.1〜1.0 % Mnは、熱間圧延時における割れ防止のために少なくとも
0.1%を含有させるが、 1.0%を超えて含有させてもコ
ストが上昇するのみで他に効果がないので、1%を上限
とした。
Mn: 0.1-1.0% Mn is at least to prevent cracking during hot rolling.
Although 0.1% is included, if it exceeds 1.0%, only the cost increases and there is no other effect, so 1% was made the upper limit.

【0028】Pは、磁気特性に大きな影響がないので特
に限定しない。
P does not have a great influence on the magnetic properties and is not particularly limited.

【0029】S,O,N等の不純物元素は、磁気特性を
劣化させるので、できるだけ少ないほうがよい。
Impurity elements such as S, O, and N deteriorate the magnetic characteristics, so it is preferable that they be contained as little as possible.

【0030】次に、本発明にかかる無方向性電磁鋼板の
製造方法について、具体的に説明する。転炉−脱ガス装
置を介して溶製された本発明で限定する成分組成の溶鋼
を、連続鋳造または造塊−分塊圧延によってスラブと
し、次いで、加熱および熱間圧延を経て熱延板とする。
この熱延板は、冷間圧延に先立って熱延板焼鈍を施し、
その後、脱スケールをしてから中間焼鈍を挟む2回以上
の冷間圧延により最終板厚とした後、仕上げ焼鈍に供さ
れる。
Next, the method for manufacturing the non-oriented electrical steel sheet according to the present invention will be specifically described. Converter-molten steel of the composition defined in the present invention melted through a degasser, a continuous casting or ingot-a slab by slab rolling, and then subjected to heating and hot rolling to a hot rolled sheet To do.
This hot rolled sheet is subjected to hot rolled sheet annealing prior to cold rolling,
Then, after descaling, the final sheet thickness is obtained by cold rolling two or more times with intermediate annealing sandwiched, and then subjected to finish annealing.

【0031】上記工程で、熱延板の板厚は、通常 2.0〜
2.3 mmであるが、本発明の効果に大きな影響を与えるこ
とはないので、特に限定しない。熱延板焼鈍は(900〜11
00℃) ×(5sec.〜1分)が適当である。この処理は、高
級無方向性電磁鋼板の製造に既に採用されており、集合
組織の改善に有効である。本発明方法は、熱延板焼鈍を
行わない場合でも磁気特性を向上させ得るが、より鉄損
の低い電磁鋼板を製造するためには熱延板焼鈍が必要で
ある。なお、上記の例は連続熱延板焼鈍を前提としてい
るが、バッチ焼鈍によっても同等の効果を得られるのは
いうまでもない。
In the above process, the thickness of the hot rolled sheet is usually 2.0 to
Although it is 2.3 mm, it does not particularly affect the effects of the present invention, and thus is not particularly limited. Hot-rolled sheet annealing (900-11
(00 ° C) × (5 sec. To 1 minute) is suitable. This treatment has already been adopted in the production of high-grade non-oriented electrical steel sheets and is effective in improving the texture. The method of the present invention can improve the magnetic properties even when the hot-rolled sheet annealing is not performed, but the hot-rolled sheet annealing is necessary in order to manufacture an electromagnetic steel sheet having a lower iron loss. Although the above example is premised on continuous hot-rolled sheet annealing, it goes without saying that the same effect can be obtained by batch annealing.

【0032】仕上焼鈍前の中間焼鈍の温度は、 740〜88
0 ℃の範囲とする。保持時間は5sec 〜1分が適当であ
る。その他の中間焼鈍条件については特に限定しない
が、(900 〜1050℃) ×(5sec.〜1分)が適当である。
The temperature of the intermediate annealing before the finish annealing is 740-88.
It shall be in the range of 0 ° C. A holding time of 5 seconds to 1 minute is suitable. Other intermediate annealing conditions are not particularly limited, but (900 to 1050 ° C.) × (5 sec. To 1 minute) is suitable.

【0033】ついで、上記中間焼鈍後の最終冷間圧延前
に、脱スケールを施す。この脱スケール処理の方法とし
ては、酸洗, ショットブラストあるいは表面研削等が一
般的であるが、脱スケールが可能な方法であれば、その
他の方法であってもよい。
Then, descaling is performed before the final cold rolling after the intermediate annealing. As a method for this descaling treatment, pickling, shot blasting, surface grinding, etc. are generally used, but other methods may be used as long as descaling is possible.

【0034】なお、仕上げ焼鈍は、(900〜1100℃) ×(5
sec.〜1分)が適当である。仕上げ焼鈍後、絶縁, 耐食
等の目的のため、コーティングが施されるのが一般的で
ある。
The final annealing is (900-1100 ° C) x (5
sec. ~ 1 minute) is appropriate. After finishing annealing, a coating is generally applied for the purpose of insulation and corrosion resistance.

【0035】[0035]

【実施例】【Example】

実施例1 C:0.002 %, Si:3.35%, Mn:0.23%, P:0.013
%, S:0.0011%, Al:0.62%, N:0.0017%, O:0.
0010%を含み、残部は実質的にFeの組成よりなるスラブ
を通常の熱間圧延工程で2mm厚の熱延板とし、以下、表
1, No.1〜7に示す条件で熱延板焼鈍, 脱スケール, 冷
間圧延, 中間焼鈍, 冷間圧延, 仕上焼鈍を施し、板厚
0.5mmの製品とした。結果を表1に併せて示した。中間
焼鈍 740〜880 ℃, 2回目冷間圧延の圧下率2%の組合
わせ例が鉄損を低下させていることが判る。
Example 1 C: 0.002%, Si: 3.35%, Mn: 0.23%, P: 0.013
%, S: 0.0011%, Al: 0.62%, N: 0.0017%, O: 0.
A slab containing 0010% and the balance being substantially Fe composition was formed into a hot-rolled sheet with a thickness of 2 mm by a normal hot rolling process, and the hot-rolled sheet was annealed under the conditions shown in Table 1, No. , Descaling, cold rolling, intermediate annealing, cold rolling, finish annealing, sheet thickness
The product is 0.5 mm. The results are also shown in Table 1. It can be seen that the combination example of the intermediate annealing of 740 to 880 ° C and the reduction ratio of 2% in the second cold rolling reduces the iron loss.

【0036】実施例2 C:0.003 %, Si:3.07%, Mn:0.15%, P:0.010
%, S:0.0015%, Al:0.41%, N:0.0018%, O:0.
0010%を含み、残部は実質的にFeの組成よりなるスラブ
を通常の熱間圧延工程で2mm厚の熱延板とし、以下、表
1, No.8〜14に示す条件で熱延板焼鈍, 脱スケール, 冷
間圧延, 中間焼鈍, 冷間圧延, 仕上焼鈍を施し、板厚0.
35mmの製品とした。結果を表1に併せて示した。中間焼
鈍 740〜880 ℃, 2回目の冷間圧延の圧下率が8%の組
合わせ例が鉄損を低下させていることが判る。
Example 2 C: 0.003%, Si: 3.07%, Mn: 0.15%, P: 0.010
%, S: 0.0015%, Al: 0.41%, N: 0.0018%, O: 0.
A slab containing 0010% and the balance of substantially Fe is formed into a hot-rolled sheet having a thickness of 2 mm by a normal hot rolling process, and the hot-rolled sheet is annealed under the conditions shown in Table 1 and No. , Descaling, cold rolling, intermediate annealing, cold rolling, finish annealing, and plate thickness 0.
35mm product. The results are also shown in Table 1. It can be seen that the combination example of the intermediate annealing of 740 to 880 ° C. and the reduction ratio of the second cold rolling of 8% reduces the iron loss.

【0037】実施例3 C:0.003 %, Si:2.61%, Mn:0.17%, P:0.017
%, S:0.0018%, Al:0.28%, N:0.0019%, O:0.
0012%を含み、残部は実質的にFeの組成よりなるスラブ
を通常の熱間圧延工程で2.3mm厚の熱延板とし、以下、
表1,No.15〜20に示す条件で熱延板焼鈍, 脱スケール,
冷間圧延, 中間焼鈍, 冷間圧延, 仕上焼鈍を施し、板厚
0.5mmの製品とした。結果を表1に併せて示した。中間
焼鈍 780℃, 2回目の冷間圧延の圧下率1〜10%の組合
わせが鉄損を低下させていることが判る。
Example 3 C: 0.003%, Si: 2.61%, Mn: 0.17%, P: 0.017
%, S: 0.0018%, Al: 0.28%, N: 0.0019%, O: 0.
A slab containing 0012% and the balance substantially consisting of Fe is formed into a hot-rolled sheet having a thickness of 2.3 mm by an ordinary hot rolling process.
Hot-rolled sheet annealing, descaling under the conditions shown in Table 1, Nos. 15 to 20,
Cold rolled, intermediate annealed, cold rolled, finish annealed, sheet thickness
The product is 0.5 mm. The results are also shown in Table 1. It can be seen that the combination of the intermediate annealing of 780 ° C and the reduction ratio of 1 to 10% in the second cold rolling reduces the iron loss.

【0038】実施例4 実施例1と同組成のスラブを通常の熱延工程により 2.3
mm厚の熱延板とし、1000℃×30sec の条件で焼鈍し、脱
スケール後、以下の条件で処理した。 1回目冷延圧下率 = 50 % 1回目中間焼鈍条件= 970℃×30sec 2回目冷延圧下率 = 54.7 % 2回目中間焼鈍条件= 800℃×10sec 3回目冷延圧下率 = 4 % 仕上焼鈍条件 = 1000 ℃×20sec この結果、W15/50 =2.24W/kg の値のものが得られ
た。
Example 4 A slab having the same composition as in Example 1 was subjected to a normal hot rolling process to obtain 2.3.
A hot rolled sheet having a thickness of mm was annealed under the condition of 1000 ° C. × 30 sec, descaled, and treated under the following conditions. 1st cold rolling reduction = 50% 1st intermediate annealing condition = 970 ° C x 30sec 2nd cold rolling reduction = 54.7% 2nd intermediate annealing condition = 800 ° C x 10sec 3rd cold rolling reduction = 4% Finish annealing condition = 1000 ° C. × 20 sec As a result, a value of W15 / 50 = 2.24 W / kg was obtained.

【0039】[0039]

【表1】 [Table 1]

【0040】実施例5 C:0.002 %, Si:3.35%, Mn:0.23%, P:0.013
%, S:0.0011%, Al:0.62%, N:0.0017%, O:0.
0010%を含み、残部は実質的にFeの組成よりなるスラブ
を通常の熱間圧延工程で2mm厚の熱延板とし、以下、表
1, No.1〜7に示す条件で熱延板焼鈍, 脱スケール, 冷
間圧延, 中間焼鈍, 酸洗による脱スケール, 冷間圧延,
仕上焼鈍を順次に施し、板厚 0.5mmの製品とした。その
結果を表2に併せて示した。この表2に示す結果から明
らかなように、中間焼鈍 740〜880 ℃, 中間焼鈍後に脱
スケール処理を行い、そして2回目冷間圧延の圧下率を
2%とした組合わせ例では、鉄損の一層の低下が実現さ
れている様子が判る。
Example 5 C: 0.002%, Si: 3.35%, Mn: 0.23%, P: 0.013
%, S: 0.0011%, Al: 0.62%, N: 0.0017%, O: 0.
A slab containing 0010% and the balance being substantially Fe composition was formed into a hot-rolled sheet with a thickness of 2 mm by a normal hot rolling process, and the hot-rolled sheet was annealed under the conditions shown in Table 1, No. , Descaling, cold rolling, intermediate annealing, descaling by pickling, cold rolling,
Finish annealing was sequentially performed to obtain a product with a plate thickness of 0.5 mm. The results are also shown in Table 2. As is clear from the results shown in Table 2, in the combination example in which the intermediate annealing was performed at 740 to 880 ° C, the descaling treatment was performed after the intermediate annealing, and the reduction ratio of the second cold rolling was 2%, the iron loss It can be seen that the further reduction has been realized.

【0041】実施例6 C:0.003 %, Si:3.07%, Mn:0.15%, P:0.010
%, S:0.0015%, Al:0.41%, N:0.0018%, O:0.
0010%を含み、残部は実質的にFeの組成よりなるスラブ
を通常の熱間圧延工程で2mm厚の熱延板とし、以下、表
1, No.8〜14に示した方法と同じ条件で熱延板焼鈍, 脱
スケール, 冷間圧延, 中間焼鈍, 120 番の研磨ベルトに
よる脱スケール, 冷間圧延, 仕上焼鈍を順次に施し、板
厚0.35mmの製品とした。その結果を表2に併せて示し
た。この表2に示す結果から明らかなように、中間焼鈍
740〜880 ℃, 中間焼鈍後に脱スケール処理を行い、そ
して2回目の冷間圧延の圧下率を8%とした組合わせ例
では、一層の鉄損低下が実現されていることが判る。
Example 6 C: 0.003%, Si: 3.07%, Mn: 0.15%, P: 0.010
%, S: 0.0015%, Al: 0.41%, N: 0.0018%, O: 0.
A slab containing 0010% and the balance substantially consisting of Fe was formed into a hot-rolled sheet having a thickness of 2 mm by a normal hot rolling process, and the same conditions as those shown in Table 1 and Nos. 8 to 14 were used. Hot-rolled sheet annealing, descaling, cold rolling, intermediate annealing, descaling with No. 120 polishing belt, cold rolling, and finish annealing were carried out in order to obtain a sheet thickness of 0.35 mm. The results are also shown in Table 2. As is clear from the results shown in Table 2, the intermediate annealing
It can be seen that in the combination example in which the descaling treatment was performed after the intermediate annealing at 740 to 880 ° C. and the reduction ratio of the second cold rolling was 8%, the iron loss was further reduced.

【0042】実施例7 C:0.003 %, Si:2.61%, Mn:0.17%, P:0.017
%, S:0.0018%, Al:0.28%, N:0.0019%, O:0.
0012%を含み、残部は実質的にFeの組成よりなるスラブ
を通常の熱間圧延工程で2.3mm厚の熱延板とし、以下、
表1,No.15〜20に示す条件で熱延板焼鈍, 脱スケール,
冷間圧延, 中間焼鈍, ショットブラストによる脱スケー
ル, 冷間圧延, 仕上焼鈍を順次に施し、板厚0.5mmの製
品とした。その結果を表2に併せて示した。この表2に
示す結果から明らかなように、中間焼鈍 780℃, 中間焼
鈍後に脱スケール処理を行い、そして2回目の冷間圧延
の圧下率を1〜10%とした組合わせ例では、一層の鉄損
低下が実現されている様子が判る。
Example 7 C: 0.003%, Si: 2.61%, Mn: 0.17%, P: 0.017
%, S: 0.0018%, Al: 0.28%, N: 0.0019%, O: 0.
A slab containing 0012% and the balance substantially consisting of Fe is formed into a hot-rolled sheet having a thickness of 2.3 mm by an ordinary hot rolling process.
Hot-rolled sheet annealing, descaling under the conditions shown in Table 1, Nos. 15 to 20,
Cold rolling, intermediate annealing, descaling by shot blasting, cold rolling, and finish annealing were carried out in order to obtain a product with a plate thickness of 0.5 mm. The results are also shown in Table 2. As is clear from the results shown in Table 2, in the combination example in which the intermediate annealing was performed at 780 ° C., the intermediate annealing was followed by descaling, and the reduction ratio of the second cold rolling was 1 to 10%, It can be seen that the iron loss has been reduced.

【0043】実施例8 実施例5と同組成のスラブを通常の熱延工程により 2.3
mm厚の熱延板とし、1000℃×30sec の条件で焼鈍し、脱
スケール後、以下の条件で処理した。 1回目冷延圧下率 = 50 % 1回目中間焼鈍条件= 970℃×30sec 2回目冷延圧下率 = 54.7 % 2回目中間焼鈍条件= 800℃×10sec 脱スケール条件 = 60 番の研磨ベルト 3回目冷延圧下率 = 4 % 仕上焼鈍条件 = 1000 ℃×20sec この結果、鉄損はW15/50 =2.20W/kg の値のものが
得られた。
Example 8 A slab having the same composition as in Example 5 was subjected to a normal hot rolling process to obtain 2.3.
A hot rolled sheet having a thickness of mm was annealed under the condition of 1000 ° C. × 30 sec, descaled, and treated under the following conditions. 1st cold rolling reduction = 50% 1st intermediate annealing condition = 970 ° C x 30sec 2nd cold rolling reduction = 54.7% 2nd intermediate annealing condition = 800 ° C x 10sec Descaling condition = No. 60 polishing belt 3rd cooling Rolling reduction = 4% Finish annealing condition = 1000 ° C x 20 sec As a result, iron loss W15 / 50 = 2.20 W / kg was obtained.

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【発明の効果】かくしてこの発明によれば、磁気特性に
優れた無方向性電磁鋼板を製造する際に、仕上焼鈍前に
行う中間焼鈍を 740〜880 ℃という比較的低温で行い、
また、このような中間焼鈍に加え、さらに脱スケール処
理を施し、その後、最終の冷間圧延に当たっては圧下率
1〜10%という軽圧下圧延を施すことによって、従来の
高級無方向性電磁鋼板よりもさらに低鉄損の無方向性電
磁鋼板を確実に得ることが可能である。
As described above, according to the present invention, when producing a non-oriented electrical steel sheet having excellent magnetic properties, intermediate annealing is carried out before finish annealing at a relatively low temperature of 740 to 880 ° C,
Further, in addition to such intermediate annealing, descaling is further performed, and then, in the final cold rolling, a light reduction rolling with a reduction rate of 1 to 10% is performed. Furthermore, it is possible to surely obtain a non-oriented electrical steel sheet with low iron loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】脱スケール処理を施さない方法での中間焼鈍温
度と鉄損の関係を示すグラフ。
FIG. 1 is a graph showing the relationship between the intermediate annealing temperature and the iron loss in the method without the descaling treatment.

【図2】脱スケール処理を施さない方法での2回目の冷
延圧下率と鉄損の関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the second cold rolling reduction rate and the iron loss in the method without the descaling treatment.

【図3】中間焼鈍後に脱スケール処理を施す方法での中
間焼鈍温度と鉄損の関係を示すグラフ。
FIG. 3 is a graph showing the relationship between intermediate annealing temperature and iron loss in the method of performing descaling treatment after intermediate annealing.

【図4】中間焼鈍後の脱スケール処理を施す方法での2
回目の冷延圧下率と鉄損の関係を示すグラフ。
[Fig. 4] Fig. 4 is a view showing a method of performing descaling treatment after intermediate annealing.
The graph which shows the relationship between the cold rolling reduction of the 1st time and iron loss.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C:0.01wt%以下、 Si:2.5 wt%以上、 Mn:0.1 〜1.0 wt%、 Al:0.1 wt%以上含み、 かつSi+Al:4wt%以下を含有する組成の熱間圧延鋼板
を、そのままあるいは熱延板焼鈍を施した後、中間焼鈍
をはさむ2回以上の冷間圧延により最終板厚に圧延し、
その後仕上焼鈍を行うことによって無方向性電磁鋼板を
製造するに当たり、仕上焼鈍前の中間焼鈍を 740〜880
℃の温度範囲で行い、最終冷間圧延を圧下率1〜10%で
行うことを特徴とする磁気特性の優れた無方向性電磁鋼
板の製造方法。
1. A hot-rolled steel sheet having a composition containing C: 0.01 wt% or less, Si: 2.5 wt% or more, Mn: 0.1 to 1.0 wt%, Al: 0.1 wt% or more, and containing Si + Al: 4 wt% or less. As it is, or after hot-rolled sheet annealing, rolled to a final sheet thickness by two or more cold rolling steps with intermediate annealing.
After that, when manufacturing a non-oriented electrical steel sheet by performing finish annealing, the intermediate annealing before finish annealing is performed at 740 to 880.
A method for producing a non-oriented electrical steel sheet having excellent magnetic properties, which comprises performing the final cold rolling at a rolling reduction of 1 to 10% in a temperature range of ℃.
【請求項2】 前記中間焼鈍の後に脱スケール処理を施
し、その後最終冷間圧延を施すことを特徴とする請求項
1記載の製造方法。
2. The manufacturing method according to claim 1, wherein descaling treatment is performed after the intermediate annealing, and then final cold rolling is performed.
JP27032792A 1991-12-05 1992-10-08 Production of nonoriented silicon steel sheet excellent in magnetic property Pending JPH05209224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27032792A JPH05209224A (en) 1991-12-05 1992-10-08 Production of nonoriented silicon steel sheet excellent in magnetic property

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-321959 1991-12-05
JP32195991 1991-12-05
JP27032792A JPH05209224A (en) 1991-12-05 1992-10-08 Production of nonoriented silicon steel sheet excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH05209224A true JPH05209224A (en) 1993-08-20

Family

ID=26549161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27032792A Pending JPH05209224A (en) 1991-12-05 1992-10-08 Production of nonoriented silicon steel sheet excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH05209224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024136021A1 (en) * 2022-12-21 2024-06-27 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024136021A1 (en) * 2022-12-21 2024-06-27 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing same

Similar Documents

Publication Publication Date Title
JPH06322443A (en) Production of grain-oriented magentic steel sheet reduced in iron loss
EP0475710B1 (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characteristics
JP2639226B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP5920387B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0121851B2 (en)
JPH05209224A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
KR100340548B1 (en) A method for manufacturing non-oriented silicon steel sheet having superior magnetic property
EP0551141A1 (en) Oriented magnetic steel sheets and manufacturing process therefor
JP4281119B2 (en) Manufacturing method of electrical steel sheet
KR100530069B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP3443151B2 (en) Method for producing grain-oriented silicon steel sheet
JP2713028B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP4258028B2 (en) Method for producing non-oriented electrical steel sheet
JP2819993B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
JP2712913B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH04224625A (en) Manufacture of grain-oriented high silicon steel sheet
JPH04107216A (en) Production of nonoriented silicon steel sheet
JPH046220A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JP2883224B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH01191741A (en) Manufacture of semiprocessing non-oriented electrical steel sheet
CN117203355A (en) Method for producing oriented electrical steel sheet
JP3697767B2 (en) Method for producing grain-oriented silicon steel sheets with extremely stable magnetic properties in the plate width direction
CN117062921A (en) Method for producing oriented electrical steel sheet