JPH05208277A - Shielded metal arc welding method for pipe - Google Patents

Shielded metal arc welding method for pipe

Info

Publication number
JPH05208277A
JPH05208277A JP22042192A JP22042192A JPH05208277A JP H05208277 A JPH05208277 A JP H05208277A JP 22042192 A JP22042192 A JP 22042192A JP 22042192 A JP22042192 A JP 22042192A JP H05208277 A JPH05208277 A JP H05208277A
Authority
JP
Japan
Prior art keywords
welding
weld metal
coating
pipe
welding rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22042192A
Other languages
Japanese (ja)
Other versions
JP2754438B2 (en
Inventor
Shigeru Endo
茂 遠藤
Moriyasu Nagae
守康 長江
Motokiyo Itou
元清 伊藤
Takeshi Sugino
毅 杉野
Shozo Naruse
省三 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
JFE Engineering Corp
Original Assignee
Kobe Steel Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Kobe Steel Ltd
Priority to JP22042192A priority Critical patent/JP2754438B2/en
Publication of JPH05208277A publication Critical patent/JPH05208277A/en
Application granted granted Critical
Publication of JP2754438B2 publication Critical patent/JP2754438B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To improve selective corrosion resistance, toughness and crack resistance of weld metal in circumferential welding of the pipe by regulating the difference between the weld metal and base metal, and Mo and welding conditions. CONSTITUTION:In circumferencial welding of the pipe, the pipe base metal, a high cellulose type electrode and the welding conditions are regulated. The inequality DELTAMo >=0.03% determined by the difference between the weld metal and the base metal, and Mo and the inequality PCM <=0.30% calculated from chemical composition of the weld metal are satisfied. Further, the welding conditions regulate the electrode diameter, a kind of a current, a welding current, the welding speed and the welding position.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、CO2 を含んだ石油及
び天然ガス、またはCO2 を輸送するラインパイプの円
周溶接方法、特に溶接金属の耐選択腐食性や低温靭性、
耐割れ性に優れた円周溶接方法に関するものである。
The present invention relates to oil and gas containing CO 2 or circumferential welding method for line pipe for transporting CO 2, especially resistance to preferential corrosion resistance and low-temperature toughness of the weld metal,
The present invention relates to a circumferential welding method having excellent crack resistance.

【0002】[0002]

【従来の技術】従来、低合金鋼の溶接部選択腐食に関す
る公表文献には次のようなものがある。 1)氷海での溶接継手部局部腐食に対して、母材と溶接
金属のNi添加量の差が影響を及ぼすとするもの(阿部
隆ほか;「鉄と鋼」Vol.72,No.12,s1266,1986年)。 2)同じく氷海域鋼の溶接部局部腐食で、NiとCuが
影響を及ぼし、 3.8 ΔCu+1.1 ΔNi+0.3 が選択腐食性を左右するとするもの(伊藤亀太郎ほか;
「鉄と鋼」Vol.72,No.12,s1265,1986年)。 3)炭素鋼配管円周溶接部の選択腐食防止に、Cu及び
Niを含む低合金溶接棒の使用が有効であるとするもの
(幸英明;材料Vol.38,No.424,p62-p68,1989年)。 4)溶接鋼管縦シーム溶接部の選択腐食防止に、Ni及
びMoの添加が有効であるとするもの(須賀ほか;特開
平3-170641号)。
2. Description of the Related Art Conventionally, there are the following publications regarding selective corrosion of welded parts of low alloy steel. 1) It is said that the difference in the amount of Ni added between the base metal and the weld metal has an effect on the local corrosion of welded joints in the ice sea (Takashi Abe et al. “Iron and Steel” Vol.72, No.12, s1266, 1986). 2) Similarly, localized corrosion of welded steel in ice-sea steels, where Ni and Cu influence and 3.8 ΔCu + 1.1 ΔNi + 0.3 influences selective corrosion (Kametaro Ito et al .;
"Iron and Steel" Vol.72, No.12, s1265, 1986). 3) Use of low alloy welding rods containing Cu and Ni is effective for preventing selective corrosion of carbon steel pipe circumferential welds (Yuki Hideaki; Material Vol.38, No.424, p62-p68, 1989). 4) Addition of Ni and Mo is effective for preventing selective corrosion of welded steel pipe vertical seam welds (Suga et al .; JP-A-3-70641).

【0003】以上のように氷海等の酸素を含む海水など
の腐食環境中で溶接金属の選択腐食を改善する方法とし
て、Ni及びCuを添加する方法や、溶接鋼管縦シーム
の選択腐食特性の改善にNi及びMoを添加する方法が
見いだされているが、CO2を含む腐食環境で使用され
るラインパイプの円周溶接部の選択腐食抑制にMo添加
が有効であるとの知見や、母材との組合せを考慮し、か
つ溶接金属の硬さや耐割れ性などの実用性を考慮した被
覆アーク溶接方法は得られていない。
As described above, as a method for improving the selective corrosion of the weld metal in a corrosive environment such as seawater containing oxygen such as ice sea, a method of adding Ni and Cu and an improvement of the selective corrosion characteristic of the welded steel pipe vertical seam. A method of adding Ni and Mo has been found, but it has been found that Mo addition is effective for suppressing selective corrosion of circumferential welds of line pipes used in corrosive environments containing CO 2, and the base metal A covered arc welding method has not been obtained in consideration of the combination with the above and considering practicality such as hardness and crack resistance of the weld metal.

【0004】[0004]

【発明が解決しようとする課題】溶接鋼管あるいはシー
ムレス鋼管を、CO2 を含んだ石油及び天然ガスまたは
CO2 の輸送に使用すると、円周溶接金属が選択的に腐
食する、いわゆる溶接部選択腐食を起こす場合がある。
これは、溶接金属と母材との化学成分や組織が異なり溶
接金属部が電気化学的に卑になり、溶接金属部が選択的
に腐食するものである。前述のような環境で使用される
ラインパイプの場合、従来、この選択腐食を考慮した円
周溶接方法は検討されていなかった。しかしながら、実
環境では、この種の選択腐食が問題となることがしばし
ばあり、この検討が待たれている。
The welded steel pipe or seamless steel pipe INVENTION SUMMARY is], using the inclusive of oil and natural gas or CO 2 transport CO 2, circumferential weld metal is selectively corroded, so-called weld-alloying May occur.
This is because the chemical composition and structure of the weld metal and the base material are different and the weld metal part becomes electrochemically base, and the weld metal part is selectively corroded. In the case of the line pipe used in the environment as described above, the circumferential welding method considering the selective corrosion has not been studied so far. However, in a real environment, this type of selective corrosion often poses a problem, and this examination is awaited.

【0005】そこで、本発明者らは円周溶接金属の化学
成分及びその成分値を各種に変化させて、CO2 と海水
を含む腐食環境中で溶接部の選択腐食特性とその機械的
性質耐割れ性等について、綿密な調査を重ねた。本発明
は、この調査の結果得られた知見に基づくものであり、
溶接金属部の化学成分を調整するため、母材と溶接材料
及び溶接方法を調整することにより、円周溶接金属部の
選択腐食を防止するとともに、十分な強度及び靭性及び
耐割れ性を備えた円周溶接金属を得るためのパイプの被
覆アーク溶接方法を提供することを目的とする。
Therefore, the inventors of the present invention have variously changed the chemical composition of the circumferential weld metal and the composition values thereof, so that the selective corrosion characteristic of the welded portion and its mechanical property resistance in a corrosive environment containing CO 2 and seawater. Thorough investigations were conducted on crackability. The present invention is based on the findings obtained as a result of this investigation,
By adjusting the base metal, welding material, and welding method to adjust the chemical composition of the weld metal part, selective corrosion of the circumferential weld metal part was prevented and sufficient strength, toughness, and crack resistance were provided. An object of the present invention is to provide a covered arc welding method for pipes to obtain a circumferential weld metal.

【0006】[0006]

【課題を解決するための手段】本発明の第1は、溶接金
属の化学成分組成(重量%)が、 C ;0.05〜0.20% Si;0.05〜0.45% Mn;0.50〜2.00% 残部はFe及び不可避不純物からなり、かつ、溶接金属
と母材とのMoの差により決められる下記の式(1)と
溶接金属の化学成分から計算される式(2)を満足する
高セルロース系溶接棒によるパイプの被覆アーク溶接方
法である。 ΔMo≧0.03% (1) PCM≦0.30% (2) (PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5
B) このとき不可避不純物は下記の範囲を満足するものとす
る。 P ;≦0.030% S ;≦0.030% Al;
≦0.10% N ;≦0.050% Nb;≦0.10% V ;
≦0.10% Ti;≦0.10% Cr;≦1.00% Ca;
≦0.0025% O ;≦0.10% Zr;≦0.05%
The first aspect of the present invention is that the chemical composition of the weld metal (% by weight) is C: 0.05 to 0.20% Si; 0.05 to 0.45% Mn; 0.50 to 2.00% The balance consists of Fe and unavoidable impurities, and is calculated from the following formula (1) determined by the difference in Mo between the weld metal and the base metal and the chemical composition of the weld metal ( It is a covered arc welding method for pipes with a high-cellulosic welding rod that satisfies 2). ΔMo ≧ 0.03% (1) P CM ≦ 0.30% (2) (P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5
B) At this time, the inevitable impurities shall satisfy the following range. P; ≤0.030% S; ≤0.030% Al;
≤0.10% N; ≤0.050% Nb; ≤0.10% V;
≤0.10% Ti; ≤0.10% Cr; ≤1.00% Ca;
≦ 0.0025% O 2 ≦ 0.10% Zr; ≦ 0.05%

【0007】本発明の第2は、溶接金属の化学成分組成
(重量%)が、上記化学成分に加えて、以下に示す成分
の中から1種または2種以上含有する高セルロース系溶
接棒によるパイプの被覆アーク溶接方法である。 Cu ;0.15〜2.00% Ni ;0.15〜2.00% Cu+Ni;0.15〜2.00% B ;0.0005〜0.0050%
A second aspect of the present invention is a high-cellulosic welding rod in which the chemical composition (% by weight) of the weld metal contains, in addition to the above chemical composition, one or more of the following components. This is a covered arc welding method for pipes. Cu; 0.15-2.00% Ni; 0.15-2.00% Cu + Ni; 0.15-2.00% B; 0.0005-0.0050%

【0008】また、第1及び第2発明に適用されるパイ
プ母材及び高セルロース系溶接棒の各化学成分と溶
接条件を下記のとおりとしたものである。 母材の化学成分(重量%) C ;0.03〜0.15% Si;0.05〜0.50% Mn;0.50〜2.00% Al;0.005〜0.10% を含有し、または、上記化学成分に加え、さらに下記の
成分の中から1種または2種以上を含有し、 Cu;0.05〜2.0% Ni;0.05〜2.0% Cr;0.05〜2.0% Mo;0.05〜1.0% Nb;0.005〜0.20% V ;0.005〜0.20% Ti;0.005〜0.20% B ;0.0005〜0.0020% Ca;0.0005〜0.0050% 残部がFe及び不可避不純物を含むものとする。 溶接棒の構成 多量のセルロースを含む被覆剤原料を粘結剤と共に混練
した被覆剤を、軟鋼心線または低合金鋼心線の外周に塗
布してなる高セルロース系被覆アーク溶接棒において、
被覆剤中に、下記の化学成分(重量%) MgO ;0.1〜7.0% 酸化鉄(FeO換算);7〜25% TiO2 ;8〜19% SiO2 ;10〜30% Mn ;5〜27% を含有し、かつ、溶接棒全重量に対して、 Mo;0.06〜1.10% を単独または複合添加した溶接棒であり、被覆剤の重量
比を0.10〜0.19とし、または上記化学成分に加
えて、下記成分を1種または2種以上含有した高セルロ
ース系溶接棒である。 Cu ;0.30〜2.00% Ni ;0.30〜2.00% Cu+Ni;0.30〜2.00% B ;0.05〜0.5% 溶接条件 棒径(心線径):3.2〜4.8mm 電流の種類 :DCEP 溶接電流 :90〜240A 溶接速度 :100〜450mm/min 溶接姿勢 :全姿勢(下進溶接)
The chemical components and welding conditions of the pipe base material and the high-cellulosic welding rod applied to the first and second inventions are as follows. Chemical composition (% by weight) of base material C; 0.03 to 0.15% Si; 0.05 to 0.50% Mn; 0.50 to 2.00% Al; 0.005 to 0.10% Contained, or in addition to the above chemical components, further contains one or more of the following components: Cu; 0.05 to 2.0% Ni; 0.05 to 2.0% Cr; 0.05-2.0% Mo; 0.05-1.0% Nb; 0.005-0.20% V; 0.005-0.20% Ti; 0.005-0.20% B; 0.0005 to 0.0020% Ca; 0.0005 to 0.0050% The balance contains Fe and unavoidable impurities. Composition of welding rod A coating material obtained by kneading a coating material raw material containing a large amount of cellulose together with a binder, in a high cellulose-based coated arc welding rod formed by coating the outer circumference of a mild steel core wire or a low alloy steel core wire,
In the coating agent, the following chemical components (wt%) MgO; 0.1-7.0% iron oxide (FeO conversion); 7-25% TiO 2 ; 8-19% SiO 2 ; 10-30% Mn; It is a welding rod containing 5 to 27%, and Mo; 0.06 to 1.10% added singly or in combination with respect to the total weight of the welding rod, and the weight ratio of the coating agent is 0.10 to 0. .19 or in addition to the above chemical components, a high cellulosic welding rod containing one or more of the following components. Cu; 0.30 to 2.00% Ni; 0.30 to 2.00% Cu + Ni; 0.30 to 2.00% B; 0.05 to 0.5% Welding conditions Rod diameter (core diameter): 3.2 to 4.8 mm Type of current: DCEP Welding current: 90 to 240 A Welding speed: 100 to 450 mm / min Welding posture: All postures (downward welding)

【0009】[0009]

【作用】本発明は、以上のごとく、溶接金属の化学成分
を母材と溶接棒の化学成分及び溶接条件の範囲を限定す
ることにより限定し、耐選択腐食性に富む十分な強度と
高靭性を備え、耐割れ性に優れた円周溶接方法である。
As described above, the present invention limits the chemical composition of the weld metal by limiting the chemical composition of the base metal and the welding rod and the range of welding conditions, and provides sufficient strength and high toughness with rich selective corrosion resistance. It is a circumferential welding method that has excellent crack resistance.

【0010】次に、溶接金属中の各々の化学成分を限定
した理由について述べる。 C;0.05〜0.20% Cは良好な作業性及び溶接金属の機械的性質を得るため
に溶接金属中で0.05〜0.20%とする。良好な溶
接作業性が得られる高セルロース系被覆アーク溶接棒の
セルロース量範囲では、溶接金属中のC量は0.05%
以上となり、0.05%未満にしようとすると溶接作業
性が著しく低下する。一方、0.20%を超えると、溶
接金属の強度及び硬さが上昇し、低温割れが発生し易く
なる。 Si;0.05〜0.45% Siは良好な作業性及び溶接金属の機械的性質を得るた
めに溶接金属中で0.05〜0.45%とする。0.0
5%未満では脱酸不足となり、溶接金属中のO量が増加
し良好な機械的特性を得ることができない。0.45%
を超えて溶接金属に添加するとスラグ量が多くなり溶接
が困難となる。 Mn;0.50〜2.00% Mnも良好な溶接作業性と機械的性質を得るために溶接
金属中で0.50〜2.00%とする。0.50%未満
では脱酸不足となり良好な機械的性質を得ることができ
ない。2.00%を超えて溶接金属に添加とすると、ビ
ード表面にピットが発生し易くなる。 Mo;0.03〜1.05% Moは溶接金属の選択腐食を防止するためにΔMoが
0.03%以上となるように溶接金属中に0.03〜
1.05%添加する。図1に示すように溶接金属と母材
とのMo含有量の差ΔMoを0.03%以上とすれば、
CO2 を含む腐食環境中において溶接金属の選択腐食は
防止できる。しかし、1.05%を超えて添加すると溶
接金属の硬さが増加し溶接割れ(低温割れ)を引き起こ
し易くなる。なお、図1は選択腐食特性に及ぼすΔMo
の影響をあらわしたグラフであり、縦軸に母材と溶接金
属との間に流れた選択腐食電流(μA)を、横軸にΔM
o(%)をとって示したものである。選択腐食電流がプ
ラスのとき、溶接金属の選択腐食は起こらない。ΔMo
が0.03%以上になると、選択腐食電流はプラスに転
じている。
Next, the reason why each chemical component in the weld metal is limited will be described. C: 0.05 to 0.20% C is 0.05 to 0.20% in the weld metal in order to obtain good workability and mechanical properties of the weld metal. In the range of the amount of cellulose in the high-cellulosic coated arc welding rod that provides good welding workability, the amount of C in the weld metal is 0.05%.
As described above, if the amount is set to be less than 0.05%, the workability for welding is significantly reduced. On the other hand, if it exceeds 0.20%, the strength and hardness of the weld metal increase, and cold cracking tends to occur. Si: 0.05 to 0.45% Si is 0.05 to 0.45% in the weld metal in order to obtain good workability and mechanical properties of the weld metal. 0.0
If it is less than 5%, deoxidation becomes insufficient, and the amount of O in the weld metal increases, so that good mechanical properties cannot be obtained. 0.45%
If it is added to the weld metal in excess of 1.0, the amount of slag increases and welding becomes difficult. Mn: 0.50 to 2.00% Mn is also set to 0.50 to 2.00% in the weld metal in order to obtain good welding workability and mechanical properties. If it is less than 0.50%, deoxidation becomes insufficient and good mechanical properties cannot be obtained. If more than 2.00% is added to the weld metal, pits are likely to occur on the bead surface. Mo: 0.03 to 1.05% Mo is 0.03 to 1.03% in the weld metal so that ΔMo is 0.03% or more in order to prevent selective corrosion of the weld metal.
Add 1.05%. As shown in FIG. 1, when the difference ΔMo in Mo content between the weld metal and the base metal is 0.03% or more,
Selective corrosion of the weld metal can be prevented in a corrosive environment containing CO 2 . However, if added in excess of 1.05%, the hardness of the weld metal increases and weld cracking (cold cracking) tends to occur. It should be noted that FIG. 1 shows ΔMo that affects the selective corrosion characteristics.
Is a graph showing the effect of, the vertical axis represents the selective corrosion current (μA) flowing between the base metal and the weld metal, and the horizontal axis represents ΔM.
It is shown by taking o (%). When the selective corrosion current is positive, the selective corrosion of the weld metal does not occur. ΔMo
Is 0.03% or more, the selective corrosion current turns to positive.

【0011】次に、本発明の第2発明においては、上記
成分のほか、さらに前述のような選択成分及びその組成
を限定する。 Cu ;0.15〜2.00% Ni ;0.15〜2.00% Cu+Ni;0.15〜2.00% Cu及びNiは溶接金属の靭性改善と選択腐食特性を向
上させるために単独、複合添加の場合ともに溶接金属中
に0.15〜2.00%添加してもよい。0.15%未
満ではそれらの効果が認められず、2.00%を超えて
添加すると溶接金属に凝固割れが発生し易くなる。Cu
及びNiの添加は溶接金属の選択腐食の防止に効果があ
るが、Moよりそれらの効果が小さく補助的役割を担わ
せるものであって、必ずしも添加しなくてもよいが、母
材にCu及びNiが添加される場合には、母材と同程度
添加すると効果的である。 B;0.0005〜0.0050% Bは溶接金属の低温靭性が要求される場合、溶接金属中
で0.0005〜0.0050%となるように添加する
ことができる。0.0005%未満では靭性向上効果が
小さく、0.0050%を超えると溶接金属の硬さが上
昇し低温割れが発生し易くなる。
Next, in the second aspect of the present invention, in addition to the above-mentioned components, the above-mentioned optional components and their compositions are limited. Cu; 0.15 to 2.00% Ni; 0.15 to 2.00% Cu + Ni; 0.15 to 2.00% Cu and Ni are used alone to improve the toughness of the weld metal and the selective corrosion property. In both cases of composite addition, 0.15 to 2.00% may be added to the weld metal. If it is less than 0.15%, these effects are not recognized, and if it exceeds 2.00%, solidification cracking easily occurs in the weld metal. Cu
Although addition of Ni and Ni is effective in preventing selective corrosion of the weld metal, these effects are smaller than Mo and play an auxiliary role, and it is not always necessary to add Cu. When Ni is added, it is effective to add it to the same extent as the base material. B: 0.0005 to 0.0050% When low temperature toughness of the weld metal is required, B can be added so as to be 0.0005 to 0.0050% in the weld metal. If it is less than 0.0005%, the toughness improving effect is small, and if it exceeds 0.0050%, the hardness of the weld metal increases and cold cracking easily occurs.

【0012】次に、鋼管母材の化学成分を限定した理由
について述べる。 C;0.03〜0.15% 鋼中の炭素は、鋼の強度を上昇させる上で有効な元素で
あるが、過度の添加は靭性の劣化を招く。したがって、
強度並びに靭性とも良好な鋼管を製造するために炭素量
の上限は0.15%とする。炭素量の低減は靭性を向上
させるが、0.03%以下になると靭性は劣化する。ま
た、安定したNb,V,Tiなどの析出硬化を有効に利
用するためにも0.03%の炭素は必要となるので、炭
素量の下限は0.03%とする。他の成分の限定理由は
以下のとおりである。 Si;0.05〜0.50% Siは脱酸のため必要であるが、過多に添加すると靭性
を劣化させるので下限を0.05%,上限を0.50%
とする。 Mn;0.50〜2.00% Mnは脱酸のため0.50%以上必要であるが、2.0
0%を超えると溶接性を劣化させるので上限を2.00
%とする。 Al;0.005〜0.10% Alは脱酸のため必要であるが、0.005%未満では
脱酸が不十分となるので下限を0.005%とする。一
方0.10%を超えると鋼の清浄度並びにHAZ靭性を
劣化させるので上限を0.10%とする。 Cu;0.05〜2.0% Ni;0.05〜2.0% Cu並びにNiはHAZ靭性に悪影響を及ぼすことなく
母材の強度、靭性を改善させるが、2.0%を超えると
HAZの硬化性並びに靭性に悪影響を及ぼすので上限を
2.0%とする。 Cr;0.05〜2.0% Crは母材及び溶接部の強度を高めるが、2.0%を超
えるとHAZの硬化性並びに靭性を劣化させるので上限
を2.0%とする。 Mo;0.05〜1.0% Moは母材の強度並びに靭性を向上させるが、1.0%
を超えるとHAZの焼き入れ性を増して溶接性を劣化さ
せるので上限を1.0%とする。これら元素添加量の下
限は材質上の効果が得られる最小必要量とし、0.05
%とする。 Ti;0.005〜0.20% Tiは0.005%以上の添加によりスラブ加熱時のオ
ーステナイトの粗大化を防止する効果を有するので下限
を0.005%とし、過度に添加すると溶接部の靭性を
劣化させるので上限を0.20%とする。 Nb;0.005〜0.20% V ;0.005〜0.20% Nb並びにVは強度・靭性に効果が認められるが、0.
20%を超えると母材並びに溶接部の靭性を劣化させる
ので上限は0.20%とする。下限は材質上の向上の認
められる0.005%とする。 B;0.0005〜0.0020% Bは母材の強度上昇に有効であるが、過度の添加は溶接
性並びにHAZ靭性の劣化を招くので上限は0.002
0%とし、下限は強度上昇に効果が認められる0.00
05%とする。 Ca;0.0005〜0.0050% Caの添加は、耐水素誘起割れ性を改善し、下限はその
効果の認められる0.0005%とする。過度の添加は
酸化物を形成して有害であるので上限を0.0050%
とする。
Next, the reasons for limiting the chemical composition of the steel pipe base material will be described. C: 0.03 to 0.15% Carbon in steel is an element effective in increasing the strength of steel, but excessive addition causes deterioration of toughness. Therefore,
The upper limit of the carbon content is 0.15% in order to manufacture a steel pipe having both good strength and toughness. The reduction of the carbon amount improves the toughness, but if it is 0.03% or less, the toughness deteriorates. Further, 0.03% of carbon is required to effectively utilize stable precipitation hardening of Nb, V, Ti, etc., so the lower limit of the amount of carbon is set to 0.03%. The reasons for limiting the other components are as follows. Si; 0.05 to 0.50% Si is necessary for deoxidation, but if added in excess, it deteriorates toughness, so the lower limit is 0.05% and the upper limit is 0.50%.
And Mn: 0.50 to 2.00% Mn is required to be 0.50% or more for deoxidation, but 2.0
If it exceeds 0%, the weldability deteriorates, so the upper limit is 2.00.
%. Al: 0.005-0.10% Al is necessary for deoxidation, but if it is less than 0.005%, deoxidation is insufficient, so the lower limit is made 0.005%. On the other hand, if it exceeds 0.10%, the cleanliness of the steel and the HAZ toughness deteriorate, so the upper limit is made 0.10%. Cu; 0.05 to 2.0% Ni; 0.05 to 2.0% Cu and Ni improve the strength and toughness of the base material without adversely affecting the HAZ toughness, but when it exceeds 2.0%. Since the HAZ hardenability and toughness are adversely affected, the upper limit is 2.0%. Cr: 0.05 to 2.0% Cr increases the strength of the base material and the welded portion, but if it exceeds 2.0%, the hardenability and toughness of the HAZ are deteriorated, so the upper limit is made 2.0%. Mo: 0.05-1.0% Mo improves the strength and toughness of the base material, but 1.0%
If it exceeds 0.1%, the hardenability of the HAZ increases and the weldability deteriorates, so the upper limit is made 1.0%. The lower limit of the amount of addition of these elements is the minimum required amount to obtain the effect on the material, and 0.05
%. Ti: 0.005 to 0.20% Ti has the effect of preventing coarsening of austenite during slab heating by adding 0.005% or more, so the lower limit is made 0.005%, and if added excessively, the weld zone The toughness deteriorates, so the upper limit is made 0.20%. Nb; 0.005 to 0.20% V; 0.005 to 0.20% Nb and V are found to have an effect on strength and toughness.
If it exceeds 20%, the toughness of the base material and the welded part deteriorates, so the upper limit is made 0.20%. The lower limit is set to 0.005% at which improvement in material is recognized. B: 0.0005 to 0.0020% B is effective in increasing the strength of the base material, but excessive addition causes deterioration of weldability and HAZ toughness, so the upper limit is 0.002.
0%, the lower limit is 0.00, which is effective in increasing strength.
05%. Ca: 0.0005 to 0.0050% Addition of Ca improves hydrogen-induced cracking resistance, and the lower limit is made 0.0005% at which the effect is recognized. Excessive addition forms an oxide and is harmful, so the upper limit is 0.0050%.
And

【0013】本発明における高セルロース系溶接棒の化
学成分(重量%)の限定理由は次のとおりである。 MgO;0.1〜7.0%(被覆剤中の割合) MgOは溶接速度を大きく変化させて使用しても溶融金
属の垂れ、スラグの垂れ落ちがなく、また耐ピット性及
び継手部のX線性能を向上させる効果があるが、0.1
%未満ではそれらの効果が得られず、また7.0%を超
えるとスラグの流動性が過大となって下進溶接が困難に
なる。よって、MgOの被覆剤中の割合は0.1〜7.
0wt.%の範囲とする。 酸化鉄(FeO換算);7〜25%(被覆剤中の割合) 酸化鉄はスラグを多孔質にしてスラグの剥離性を良好に
するともに、脱酸過剰によるピットの発生を防止する効
果がある。しかし、7%未満ではそれらの効果が得られ
ず、また25%を超えるとスラグの流動性が過剰になっ
て下進溶接が困難になる。よって、酸化鉄の被覆剤中の
割合は7〜25wt.%の範囲とする。なお、酸化鉄と
してはFeO以外にFeO2 の形でも添加でき、この場
合には、FeO換算量が上記範囲となるようにする。 TiO2 ;8〜19%(被覆剤中の割合) TiO2 はアークの安定性の向上の効果がある。しか
し、8%未満ではアークが安定せず、また19%を超え
るとアーク力が弱くなり、下進溶接が困難になる。よっ
て、TiO2 の被覆剤中の割合は8〜19wt.%の範
囲とする。 SiO2 ;10〜30%(被覆剤中の割合) SiO2 はアークの強さ、クレータの拡がり、なじみ性
を向上させるために不可欠の成分であるが、10%未満
ではそれらの効果が得られず、また30%を超えるとス
ラグ量が増加し、しかも流動性が過大となり、下進溶接
が困難となる。よって、SiO2 の被覆剤中の割合は1
0〜30wt.%の範囲とする。なお、SiO2 は水ガ
ラス、硅酸鉱物などの形で添加できる。 Mn;5〜27%(被覆剤中の割合) Mnは脱酸剤として並びに強度と靭性の確保のため不可
欠の成分であるが、5%未満では脱酸不足となって清浄
な溶接金属が得られず、また27%を超えると脱酸過剰
になってビード表面にピットが発生し易くなる。よっ
て、Mnの被覆剤中の割合は5〜27wt.%の範囲と
する。なお、Mnは金属Mn以外に、Fe−Mn,Mn
酸化物の形で添加できるが、後者の場合はMn換算量が
上記範囲となるようにする。 Mo;0.06〜1.10%(溶接棒全重量に対する割
合) 溶接金属の強度調整と、耐選択腐食を向上させるために
溶接棒全重量に対して0.06〜1.10wt.%添加
する。この範囲は溶接金属中に0.03〜1.05w
t.%添加するに必要な量である。Moは被覆剤中に金
属Mo,Fe−Moなどの形で添加できる外、心線中に
も添加することができる。 Cu;0.30〜2.00%(溶接棒全重量に対する割
合) 溶接金属の耐選択腐食を向上させるために溶接棒全重量
に対して0.30〜2.00wt.%添加する。この範
囲は溶接金属中に0.15〜2.00wt.%添加する
に必要な量である。Cuは被覆剤中に金属Cu,酸化銅
などの形で添加できる外、心線中にも添加することがで
きる。 Ni;0.30〜2.00%(溶接棒全重量に対する割
合) 溶接金属の耐選択腐食を向上させるために溶接棒全重量
に対して0.30〜2.00wt.%添加する。この範
囲は溶接金属中に0.15〜2.00wt.%添加する
に必要な量である。Niは被覆剤中に金属Ni,Fe−
Ni,酸化Niなどの形で添加できる外、心線中にも添
加することができる。 Cu+Ni;0.30〜2.00%(溶接棒全重量に対
する割合) 溶接金属の耐選択腐食を向上させるためにCuとNiを
複合添加できるが、Cu+Niが溶接棒全重量に対して
0.30〜2.00wt.%の範囲で添加する。この範
囲は溶接金属中にCu+Niを0.15〜2.00w
t.%添加するに必要な量である。 B;0.05〜0.5%(被覆剤中の割合) 組織を微細化し、良好な靭性を得るために被覆剤中に
0.05〜0.5wt.%添加することができる。この
範囲は溶接金属中に0.0005〜0.0050wt.
%添加するに必要な量である。 溶接棒に対する被覆剤の重量比;0.10〜0.19 溶接棒に対する被覆剤の重量比(被覆比)は下進溶接を
容易にするために重要な条件であり、そのためには被覆
比0.10以上が必要である。被覆比が0.10未満で
は保護筒としての機能が不十分になってアークが不安定
になり、しかも棒焼けし易くなる。また、被覆比が0.
19を超えるとアークの集中性が低下して裏波ビードが
形成され難くなる。また、2層目以降の溶接においてア
ークが弱くなり、しかもスラグ量が増加する。したがっ
て、被覆比は0.10〜0.19の範囲とする。なお、
被覆剤の残部はセルロースが主成分である。また通常、
高セルロース系被覆アーク溶接棒の被覆剤に添加されて
いる他の成分、例えばNa2 O,Al23 ,Zr
2 ,K2 OなどやFe,Crなどの金属成分も微量で
添加することができる。
The reasons for limiting the chemical composition (% by weight) of the high cellulosic welding rod in the present invention are as follows. MgO: 0.1-7.0% (ratio in coating material) MgO does not cause dripping of molten metal or slag even when the welding speed is greatly changed and used, and pit resistance and joint part Although it has the effect of improving X-ray performance,
If it is less than 0.1%, these effects cannot be obtained, and if it exceeds 7.0%, the fluidity of the slag becomes excessive and it becomes difficult to perform downward welding. Therefore, the ratio of MgO in the coating agent is 0.1 to 7.
0 wt. The range is%. Iron oxide (calculated as FeO): 7 to 25% (ratio in coating agent) Iron oxide has the effect of making the slag porous to improve the slag releasability and also to prevent the formation of pits due to excess deoxidation. .. However, if it is less than 7%, these effects cannot be obtained, and if it exceeds 25%, the fluidity of the slag becomes excessive, and downward welding becomes difficult. Therefore, the ratio of iron oxide in the coating agent is 7 to 25 wt. The range is%. The iron oxide may be added in the form of FeO 2 other than FeO. In this case, the FeO conversion amount should be within the above range. TiO 2 ; 8 to 19% (ratio in coating material) TiO 2 has an effect of improving arc stability. However, if it is less than 8%, the arc is not stable, and if it exceeds 19%, the arc force becomes weak and it becomes difficult to perform downward welding. Therefore, the ratio of TiO 2 in the coating material is 8 to 19 wt. The range is%. SiO 2 ; 10 to 30% (ratio in coating material) SiO 2 is an essential component for improving arc strength, crater spread, and conformability, but if it is less than 10%, those effects can be obtained. On the other hand, if it exceeds 30%, the amount of slag increases and the fluidity becomes excessive, which makes downward welding difficult. Therefore, the ratio of SiO 2 in the coating material is 1
0-30 wt. The range is%. It should be noted that SiO 2 can be added in the form of water glass, silicate mineral, or the like. Mn: 5 to 27% (ratio in coating material) Mn is an essential component as a deoxidizer and for securing strength and toughness, but if it is less than 5%, deoxidation becomes insufficient and a clean weld metal is obtained. If it exceeds 27%, deoxidation becomes excessive and pits are likely to occur on the bead surface. Therefore, the ratio of Mn in the coating agent is 5 to 27 wt. The range is%. In addition to Mn, Mn is Fe-Mn, Mn.
It can be added in the form of an oxide, but in the latter case, the Mn conversion amount should be within the above range. Mo: 0.06 to 1.10% (ratio to the total weight of the welding rod) In order to adjust the strength of the weld metal and to improve selective corrosion resistance, 0.06 to 1.10 wt. %Added. This range is 0.03 to 1.05w in the weld metal
t. % Is the amount required for addition. Mo can be added to the coating material in the form of metallic Mo, Fe-Mo, etc., as well as to the core wire. Cu: 0.30 to 2.00% (ratio to the total weight of the welding rod) To improve the selective corrosion resistance of the weld metal, 0.30 to 2.00 wt. %Added. This range is 0.15-2.00 wt. % Is the amount required for addition. Cu can be added to the coating in the form of metallic Cu, copper oxide, etc., as well as to the core wire. Ni: 0.30 to 2.00% (ratio to the total weight of the welding rod) To improve the selective corrosion resistance of the weld metal, 0.30 to 2.00 wt. %Added. This range is 0.15-2.00 wt. % Is the amount required for addition. Ni is metallic Ni, Fe- in the coating material.
Not only can it be added in the form of Ni, Ni oxide, etc., but it can also be added to the core wire. Cu + Ni: 0.30 to 2.00% (ratio to the total weight of the welding rod) Cu and Ni can be added in combination to improve the selective corrosion resistance of the weld metal, but Cu + Ni is 0.30 relative to the total weight of the welding rod. ~ 2.00 wt. Add in the range of%. This range is 0.15 to 2.00w Cu + Ni in the weld metal.
t. % Is the amount required for addition. B: 0.05 to 0.5% (ratio in coating material) 0.05 to 0.5 wt.% In the coating material in order to refine the structure and obtain good toughness. % Can be added. This range is 0.0005 to 0.0050 wt.
% Is the amount required for addition. Weight ratio of coating material to welding rod; 0.10 to 0.19 The weight ratio of coating material to welding rod (covering ratio) is an important condition for facilitating the downward welding, and therefore the coating ratio is 0. 10 or more is required. If the coating ratio is less than 0.10, the function as a protective cylinder becomes insufficient, the arc becomes unstable, and the stick is easily burnt. Further, the coating ratio is 0.
When it exceeds 19, the concentration of the arc is lowered and it becomes difficult to form the back bead. In addition, the arc becomes weaker in the welding of the second and subsequent layers, and the amount of slag increases. Therefore, the coating ratio is set in the range of 0.10 to 0.19. In addition,
The balance of the coating agent is mainly composed of cellulose. Also usually
Other components added to the coating material for high cellulosic coated arc welding rods, such as Na 2 O, Al 2 O 3 , Zr.
A minute amount of metal components such as O 2 and K 2 O and Fe and Cr can be added.

【0014】本発明における溶接条件の限定の理由は次
のとおりである。 棒径:3.2〜4.8mm この範囲外の棒径を使用した溶接も可能であるが、溶接
の能率性とパイプの円周溶接のし易さを考慮して3.2
〜4.8mmとする。 電流の種類:DCEP 高セルロース系溶接棒を使用する場合に一般に使用され
ているDCEP(直流、棒プラス)とする。 溶接電流、溶接速度:90〜240A,100〜450
mm/min 開先形状、溶接姿勢、及び棒径に応じて一般に使用され
る溶接電流、溶接速度とする。 溶接姿勢:全姿勢 パイプの円周溶接を考慮して全姿勢とする。なお、傾斜
溶接の場合は下り溶接(下進溶接)とする。
The reason for limiting the welding conditions in the present invention is as follows. Rod diameter: 3.2 to 4.8 mm Welding using a rod diameter outside this range is also possible, but in consideration of welding efficiency and ease of circumferential welding of pipes, 3.2
~ 4.8mm. Type of current: DCEP DCEP (direct current, rod plus) generally used when using a high cellulosic welding rod. Welding current, welding speed: 90-240A, 100-450
mm / min Weld current and welding speed generally used according to the groove shape, welding position, and rod diameter. Welding position: All positions All positions should be set considering the circumferential welding of the pipe. In the case of inclined welding, downward welding (downward welding) is performed.

【0015】[0015]

【実施例】本発明の実施例について述べる。表1に供試
母材の化学成分(重量%)を示す。表1に示すA〜D鋼
を用いて外径38インチ×全長12mの溶接鋼管を製造
した後、被覆アーク溶接により円周溶接を行い、溶接金
属の強度、靭性、海水環境(CO2 バブリング)での選
択腐食速度をそれぞれ測定した。表2,表3に溶接金属
の選択腐食速度、強度、靭性、割れ発生の有無を示す。
強度YSはJIS Z2201 3号(6mmφ)試験
片、靭性はJIS Z3128 4号試験片を用いて、
0℃での吸収エネルギーで評価した。溶接割れ発生の有
無は溶接後5断面の観察により判定し、選択腐食速度は
円周溶接部を含む全長50cm鋼管の内部に、人工海水を
入れ、これにCO2 ガスを吹き込んで、母材と溶接金属
部の板厚の差を求めることにより、測定した値である。
EXAMPLES Examples of the present invention will be described. Table 1 shows the chemical composition (% by weight) of the test base metal. After manufacturing a welded steel pipe having an outer diameter of 38 inches and a total length of 12 m using the A to D steels shown in Table 1, circumferential welding is performed by covered arc welding, and the strength, toughness, and seawater environment of the weld metal (CO 2 bubbling) The selective corrosion rates in the above were measured respectively. Tables 2 and 3 show the selective corrosion rate of the weld metal, strength, toughness, and the presence or absence of cracks.
For strength YS, JIS Z2201 No. 3 (6 mmφ) test piece was used, and for toughness, JIS Z3128 No. 4 test piece was used.
It was evaluated by the absorbed energy at 0 ° C. The presence or absence of weld cracking is determined by observing 5 cross-sections after welding, and the selective corrosion rate is 50 cm long steel pipe including circumferential welds, artificial seawater is put inside, and CO 2 gas is blown into it to form a base metal. It is a value measured by obtaining the difference in plate thickness of the weld metal part.

【0016】表2,表3に示すように、溶接金属の化学
成分が特許請求の範囲を満足する円周溶接部では、降伏
強度(350N/mm2 以上),靭性(50J以上),選
択腐食特性(溶接金属部が選択的に腐食しない、表2中
0で表示)に優れ、硬さが低く(Hv300以下),耐
割れ性にも優れた円周溶接部であることが確認された。
As shown in Tables 2 and 3, the yield strength (350 N / mm 2 or more), toughness (50 J or more), and selective corrosion are found in the circumferential welded portion where the chemical composition of the weld metal satisfies the claims. It was confirmed that the circumferential welded portion has excellent properties (the weld metal portion does not selectively corrode, indicated by 0 in Table 2), has a low hardness (Hv 300 or less), and has excellent crack resistance.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【0017】[0017]

【発明の効果】以上のように本発明によれば、溶接金属
部の化学成分を母材と溶接材料及び溶接方法により調整
するものであるから、CO2 を含む海水環境など腐食環
境にさらされた円周溶接部の選択腐食において、溶接金
属部と母材とのMo差を前述のように特定することによ
り、十分な強度及び高靭性を有し、かつ耐溶接割れ性と
耐選択腐食性に優れた円周溶接金属部を得ることができ
る。
As described above, according to the present invention, since the chemical composition of the weld metal portion is adjusted by the base material, the welding material and the welding method, it is exposed to a corrosive environment such as a seawater environment containing CO 2. In the selective corrosion of the circumferential welded portion, by specifying the Mo difference between the weld metal portion and the base metal as described above, it has sufficient strength and high toughness, and also has weld crack resistance and selective corrosion resistance. It is possible to obtain an excellent circumferential weld metal part.

【図面の簡単な説明】[Brief description of drawings]

【図1】母材と溶接金属との間に流れた選択腐食電流
(μA)とΔMoとの関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a selective corrosion current (μA) flowing between a base material and a weld metal and ΔMo.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B23K 35/365 R 7362−4E // B23K 101:06 (72)発明者 伊藤 元清 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 杉野 毅 神奈川県藤沢市宮前字裏河内100−1 株 式会社神戸製鋼所藤沢事業所内 (72)発明者 成瀬 省三 神奈川県藤沢市宮前字裏河内100−1 株 式会社神戸製鋼所藤沢事業所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location B23K 35/365 R 7362-4E // B23K 101: 06 (72) Inventor Motokiyo Itoh Chiyoda, Tokyo 1-1-2, Marunouchi-ku Nihon Kokan Co., Ltd. (72) Inventor Takeshi Sugino 100-1 Urakawachi, Miyamae, Fujisawa-shi, Kanagawa Kobe Steel Works, Fujisawa Works (72) Inventor Shozo Naruse Kanagawa 100-1 Urakawachi, Fujimae, Fujisawa Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 パイプの円周溶接において、下記化学成
分(重量%)の溶接金属が得られるような、パイプ母材
と高セルロース系溶接棒と溶接条件との組合せに
よるパイプの被覆アーク溶接方法。 C ;0.05〜0.20% Si;0.05〜0.45% Mn;0.50〜2.00% Mo;0.03〜1.05% 残部はFe及び不可避不純物からなり、かつ、溶接金属
と母材とのMoの差により決められる下記の式(1)と
溶接金属の化学成分から計算される式(2)を満足する
ものとする。 ΔMo≧0.03% (1) PCM≦0.30% (2) ただし、PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15
+V/10+5B このとき不可避不純物は下記の範囲を満足するものとす
る。 P ;≦0.030% S ;≦0.030% Al;
≦0.10% N ;≦0.050% Nb;≦0.10% V ;
≦0.10% Ti;≦0.10% Cr;≦1.00% Ca;
≦0.0025% O ;≦0.10% Zr;≦0.05% 母材の化学成分(重量%) C ;0.03〜0.15% Si;0.05〜0.50% Mn;0.50〜2.00% Al;0.005〜0.10% を含有し、または上記化学成分に加え、さらに下記の成
分の中から1種または2種以上を含有し、 Cu;0.05〜2.0% Ni;0.05〜2.0% Cr;0.05〜2.0% Mo;0.05〜1.0% Nb;0.005〜0.20% V ;0.005〜0.20% Ti;0.005〜0.20% B ;0.0005〜0.0020% Ca;0.0005〜0.0050% 残部がFe及び不可避不純物を含むものとする。 溶接棒の構成 多量のセルロースを含む被覆剤原料を粘結剤と共に混練
した被覆剤を、軟鋼心線または低合金鋼心線の外周に塗
布してなる高セルロース系被覆アーク溶接棒において、
被覆剤中に、下記の化学成分(重量%) MgO ;0.1〜7.0% 酸化鉄(FeO換算);7〜25% TiO2 ;8〜19% SiO2 ;10〜30% Mn ;5〜27% を含有し、かつ、溶接棒全重量に対して、 Mo;0.06〜1.10% を単独または複合添加した溶接棒であり、被覆剤の重量
比を0.10〜0.19とし、または上記化学成分に加
えて、下記成分を1種または2種以上含有したことを特
徴とする高セルロース系溶接棒。 Cu ;0.30〜2.00%(溶接棒全重量に対
して) Ni ;0.30〜2.00%(溶接棒全重量に対
して) Cu+Ni;0.30〜2.00%(溶接棒全重量に対
して) B ;0.05〜0.5%(被覆剤全重量に対し
て) 溶接条件 棒径(心線径):3.2〜4.8mm 電流の種類 :DCEP 溶接電流 :90〜240A 溶接速度 :100〜450mm/min 溶接姿勢 :全姿勢(下進溶接)
1. A method for covering arc welding of a pipe by combining a pipe base material, a high-cellulosic welding rod and welding conditions so that a weld metal having the following chemical composition (% by weight) can be obtained in the circumferential welding of the pipe. .. C; 0.05 to 0.20% Si; 0.05 to 0.45% Mn; 0.50 to 2.00% Mo; 0.03 to 1.05% The balance consists of Fe and inevitable impurities, and The following formula (1) determined by the difference in Mo between the weld metal and the base metal and the formula (2) calculated from the chemical composition of the weld metal are satisfied. ΔMo ≧ 0.03% (1) P CM ≦ 0.30% (2) However, P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15
+ V / 10 + 5B At this time, unavoidable impurities shall satisfy the following range. P; ≤0.030% S; ≤0.030% Al;
≤0.10% N; ≤0.050% Nb; ≤0.10% V;
≤0.10% Ti; ≤0.10% Cr; ≤1.00% Ca;
≤0.0025% O; ≤0.10% Zr; ≤0.05% Chemical composition (% by weight) of base material C; 0.03 to 0.15% Si; 0.05 to 0.50% Mn; 0.50 to 2.00% Al; 0.005 to 0.10%, or one or more of the following components in addition to the above chemical components: Cu; 0.05 to 2.0% Ni; 0.05 to 2.0% Cr; 0.05 to 2.0% Mo; 0.05 to 1.0% Nb; 0.005 to 0.20% V; 005 to 0.20% Ti; 0.005 to 0.20% B; 0.0005 to 0.0020% Ca; 0.0005 to 0.0050% The balance contains Fe and unavoidable impurities. Composition of welding rod A coating material obtained by kneading a coating material raw material containing a large amount of cellulose together with a binder, in a high cellulose-based coated arc welding rod formed by coating the outer circumference of a mild steel core wire or a low alloy steel core wire,
In the coating agent, the following chemical components (wt%) MgO; 0.1-7.0% iron oxide (FeO conversion); 7-25% TiO 2 ; 8-19% SiO 2 ; 10-30% Mn; It is a welding rod containing 5 to 27%, and Mo; 0.06 to 1.10% added singly or in combination with respect to the total weight of the welding rod, and the weight ratio of the coating agent is 0.10 to 0. .19, or in addition to the above chemical components, one or more of the following components are contained, a high cellulosic welding rod. Cu; 0.30 to 2.00% (based on the total weight of the welding rod) Ni; 0.30 to 2.00% (based on the total weight of the welding rod) Cu + Ni; 0.30 to 2.00% (welding B: 0.05 to 0.5% (relative to the total weight of the coating) Welding conditions Rod diameter (core diameter): 3.2 to 4.8 mm Current type: DCEP Welding current : 90-240A Welding speed: 100-450mm / min Welding posture: All postures (downward welding)
【請求項2】 上記溶接金属が上記化学成分に加えて、
下記成分の中から1種または2種以上含有することを特
徴とする請求項1記載のパイプの被覆アーク溶接方法。 Cu ;0.15〜2.00% Ni ;0.15〜2.00% Cu+Ni;0.15〜2.00% B ;0.0005〜0.0050%
2. The weld metal, in addition to the chemical composition,
The method for coating arc welding of pipes according to claim 1, wherein one or more of the following components are contained. Cu; 0.15-2.00% Ni; 0.15-2.00% Cu + Ni; 0.15-2.00% B; 0.0005-0.0050%
JP22042192A 1991-08-30 1992-08-19 Pipe arc welding method Expired - Lifetime JP2754438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22042192A JP2754438B2 (en) 1991-08-30 1992-08-19 Pipe arc welding method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-219954 1991-08-30
JP21995491 1991-08-30
JP22042192A JP2754438B2 (en) 1991-08-30 1992-08-19 Pipe arc welding method

Publications (2)

Publication Number Publication Date
JPH05208277A true JPH05208277A (en) 1993-08-20
JP2754438B2 JP2754438B2 (en) 1998-05-20

Family

ID=26523430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22042192A Expired - Lifetime JP2754438B2 (en) 1991-08-30 1992-08-19 Pipe arc welding method

Country Status (1)

Country Link
JP (1) JP2754438B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137967A (en) * 2004-11-10 2006-06-01 Sumitomo Metal Ind Ltd Welded joint with excellent corrosion resistance
WO2014014097A1 (en) * 2012-07-20 2014-01-23 バブコック日立株式会社 Welding structure for high strength low alloy steel, boiler water wall panel, and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137967A (en) * 2004-11-10 2006-06-01 Sumitomo Metal Ind Ltd Welded joint with excellent corrosion resistance
WO2014014097A1 (en) * 2012-07-20 2014-01-23 バブコック日立株式会社 Welding structure for high strength low alloy steel, boiler water wall panel, and method for manufacturing same
JP2014018843A (en) * 2012-07-20 2014-02-03 Babcock-Hitachi Co Ltd Welded structure of high-strength low-alloy steel, boiler water wall panel, and method for manufacturing the same

Also Published As

Publication number Publication date
JP2754438B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
JP4558780B2 (en) Flux-cored wire for submerged arc welding of low-temperature steel
JP4903912B2 (en) Molten high basic flux for submerged arc welding
CN110653515B (en) Seamless submerged arc flux-cored wire for welding high manganese steel LNG storage tank
US5272305A (en) Girth-welding process for a pipe and a high cellulose type coated electrode
JPH10324950A (en) High-strength welded steel structure, and its manufacture
JP4082464B2 (en) Manufacturing method of high strength and high toughness large diameter welded steel pipe
JPH05375A (en) Submerged arc welding method and equipment for steel pipe
CN113613828A (en) Coated electrode for high Cr ferrite heat-resistant steel
JP3354460B2 (en) Covered arc welding method for high strength steel
JP2780140B2 (en) Welding wire for fire-resistant steel with excellent weather resistance
JP2008000808A (en) High strength weld metal with excellent low temperature toughness, low temperature cracking resistance, and bead shape in the whole posture welding
JP3442563B2 (en) Flux-cored wire for gas shielded arc welding of 690 MPa class high tensile steel
JP2711071B2 (en) Bond flux for submerged arc welding
JP2534942B2 (en) Gas shield arc welding method for pipes
JP2754438B2 (en) Pipe arc welding method
JPH08257789A (en) Submerged arc welding
JP2022102850A (en) SOLID WIRE FOR GAS SHIELD ARC WELDING USED FOR WELD OF LOW Si STEEL, JOINTING METHOD OF LOW Si STEEL, AND REPAIR METHOD OF LOW Si STEEL
JP3547282B2 (en) Low hydrogen coated arc welding rod
JPS5961590A (en) Welding method
JP4774588B2 (en) Manufacturing method of high strength oil well steel pipe joint with excellent corrosion resistance and high strength oil well steel pipe joint
JP3642178B2 (en) TIG welding wire for steel welding
JP2004261858A (en) Wire for welding martensitic stainless steel pipe
JP2788825B2 (en) High cellulose coated arc welding rod
JP2004230392A (en) Welding material for martensitic stainless steel pipe and welding method therefor
JP4040824B2 (en) Weld metal