JPH05208136A - Catalyst for producing nitrile from alkane - Google Patents

Catalyst for producing nitrile from alkane

Info

Publication number
JPH05208136A
JPH05208136A JP4211425A JP21142592A JPH05208136A JP H05208136 A JPH05208136 A JP H05208136A JP 4211425 A JP4211425 A JP 4211425A JP 21142592 A JP21142592 A JP 21142592A JP H05208136 A JPH05208136 A JP H05208136A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
ray diffraction
alkane
nitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4211425A
Other languages
Japanese (ja)
Other versions
JP3331629B2 (en
Inventor
Takashi Ushikubo
孝 牛窪
Atsushi Kayou
篤志 加養
Kazunori Oshima
一典 大島
Tomoaki Umezawa
智明 梅沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP21142592A priority Critical patent/JP3331629B2/en
Publication of JPH05208136A publication Critical patent/JPH05208136A/en
Application granted granted Critical
Publication of JP3331629B2 publication Critical patent/JP3331629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst for producing nitrile from alkane in high yield by showing an X-ray diffraction peak represented by specific empirical formula at a specific angle of diffraction in an X-ray diffraction line. CONSTITUTION:A catalyst is obtained so that an empirical formula is represented by formula I (wherein X is one or more kind of an element selected from Nb, Ce and the like and, when (a) is l,(b) is 0.01-l.0, (c) is 0.01-1.0 and (x) is 0.01-1.0 and (n) is determined according to the oxidation state of other element) and a condition showing an X-ray diffraction peak at angles 2theta of diffractions (22.1+ or -0.3 deg., 28.2+ or -0.3 deg., 36.2+ or -0.3 deg., 45.2+ or -0.3 deg., 50.0+ or -0,3 deg.) in an X-ray diffraction line is satisfied. By using this catalyst being novel oxide, nitrile can be produced from alkane being a raw material in high yield at relatively low temp. of about 400-459 deg.C without allowing halide or water to be present in a reactional system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はニトリルの製造法に関す
るものである。詳しくは、アルカンを原料とする改良さ
れたニトリルの製造法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing nitrile. More particularly, it relates to an improved nitrile production method using alkane as a raw material.

【0002】[0002]

【従来の技術】アクリロニトリル、メタクリロニトリル
等のニトリル類は、繊維、合成樹脂、合成ゴムなどの重
要な中間体として工業的に製造されているが、その製造
法としては、従来、プロピレン、イソブテン等のオレフ
ィンを、触媒の存在下でアンモニアおよび酸素と気相に
おいて高温で接触反応させる方法が最も一般的な方法と
して知られている。
BACKGROUND OF THE INVENTION Nitriles such as acrylonitrile and methacrylonitrile are industrially produced as important intermediates for fibers, synthetic resins, synthetic rubbers and the like. The most general method is to react an olefin such as the above with an ammonia and oxygen in the presence of a catalyst in a gas phase at a high temperature.

【0003】一方、プロパンとプロピレンとの間の価格
差、あるいは、イソブタンとイソブテンとの間の価格差
のために、プロパン、イソブタン等の低級アルカンを出
発原料とし、触媒の存在下でアンモニアおよび酸素と気
相で接触反応させる、いわゆるアンモ酸化反応法により
アクリロニトリル、メタクリロニトリルを製造する方法
の開発に関心が高まっている。
On the other hand, due to the price difference between propane and propylene or the price difference between isobutane and isobutene, lower alkanes such as propane and isobutane are used as starting materials, and ammonia and oxygen are used in the presence of a catalyst. There is an increasing interest in the development of a method for producing acrylonitrile and methacrylonitrile by a so-called ammoxidation reaction method in which they are catalytically reacted with each other in the gas phase.

【0004】これらの報告の例として、Mo−Bi−P
−O系触媒(特開昭48−16887号)、V−Sb−
O系触媒(特開昭47−33783号、特公昭50−2
3016号、特開平1−268668号)、Sb−U−
V−Ni−O系触媒(特公昭47−14371号)、S
b−Sn−O系触媒(特公昭50−28940号)、V
−Sb−W−P−O系触媒(特開平2−95439
号)、V−Sb−W−O系酸化物とBi−Ce−Mo−
W−O系酸化物を機械的に混合して得た触媒(特開昭6
4−38051)が知られているほか、本発明者等もM
o−V−Te−Nb−O系触媒(特開平2−257号)
を報告している。
As an example of these reports, Mo-Bi-P
-O catalyst (Japanese Patent Laid-Open No. 48-16887), V-Sb-
O-based catalyst (JP-A-47-33783, JP-B-50-2)
No. 3016, JP-A-1-268668), Sb-U-
V-Ni-O catalyst (Japanese Patent Publication No. 47-14371), S
b-Sn-O type catalyst (Japanese Patent Publication No. 50-28940), V
-Sb-W-P-O catalyst (Japanese Patent Laid-Open No. 95439/1990)
No.), V-Sb-W-O-based oxide and Bi-Ce-Mo-
A catalyst obtained by mechanically mixing W—O type oxides (Japanese Patent Application Laid-Open No. Sho 6-96).
4-38051) and the present inventors
o-V-Te-Nb-O based catalyst (JP-A-2-257)
Is reported.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の方法はいずれも目的とするニトリル類の収率が十分満
足できるものではない。また、ニトリル類の収率を向上
させるために、反応系に少量の有機ハロゲン化物、無機
ハロゲン化物、またはイオウ化合物を添加する方法、あ
るいは水を添加する方法等が試みられているが、前者は
反応装置の腐食の問題があり、また後者は副反応による
副生物の生成とその処理などの問題があり、いずれも工
業的実施上難点がある。
However, none of these methods can sufficiently satisfy the target yield of nitriles. Further, in order to improve the yield of nitriles, a method of adding a small amount of an organic halide, an inorganic halide, or a sulfur compound to the reaction system, or a method of adding water has been tried, but the former is There is a problem of corrosion of the reactor, and the latter has problems such as generation of by-products due to side reactions and treatment thereof, and both of them have problems in industrial implementation.

【0006】更に、従来の触媒系を用いる方法では、本
発明者等が報告したMo−V−Te−Nb−O系触媒を
除き、一般に500℃前後ないしはそれ以上の極めて高
い反応温度を必要とするため、反応器の材質、製造コス
ト等の面で有利ではない。
Further, the conventional method using a catalyst system generally requires an extremely high reaction temperature of about 500 ° C. or higher except for the Mo-V-Te-Nb-O catalyst reported by the present inventors. Therefore, it is not advantageous in terms of reactor material, manufacturing cost, and the like.

【0007】[0007]

【課題を解決するための手段】本発明者等は、アルカン
を原料とするニトリルの製造法について種々検討した結
果、特定の結晶構造を有するモリブデン(Mo)、バナ
ジウム(V)、テルル(Te)及びある種の金属から成
る触媒の存在下で、アルカンをアンモニアと気相接触反
応させることにより、反応系にハロゲン化物や水等を存
在させることなく、しかも400〜450℃程度の比較
的に低い温度において従来法より著しく高い収率で目的
とするニトリルを製造し得ることを見い出し、本発明に
到達したものである。
Means for Solving the Problems As a result of various studies on the production method of nitrile using alkane as a raw material, the present inventors have found that molybdenum (Mo), vanadium (V), tellurium (Te) having a specific crystal structure. In the presence of a catalyst composed of a certain kind of metal, by reacting an alkane with ammonia in a gas phase, a halide and water are not present in the reaction system, and the temperature is relatively low at about 400 to 450 ° C. The present inventors have found that the target nitrile can be produced at a temperature in a significantly higher yield than the conventional method, and have reached the present invention.

【0008】以下、本発明について詳細に説明する。本
発明の、アルカンをアンモニアと気相接触酸化反応させ
ることにより、ニトリルを製造するための触媒の特徴
は、以下の点,により存する。 触媒の実験式は、 Moa b Tec x n (1) (式(1)において、XはNb,Ta,W,Ti,A
l,Zr,Cr,Mn,Fe,Ru,Co,Rh,N
i,Pd,Pt,Sb,BiおよびCeの中から選ばれ
た1つまたはそれ以上の元素を表わし、 a=1とするとき、 b=0.01〜1.0 c=0.01〜1.0 x=0.01〜1.0 であり、また、nは他の元素の酸化状態により決定され
る。)により表わされる。 触媒のX線回折線において、下記に示す回折角2θ
にX線回折ピークを示す。
The present invention will be described in detail below. The characteristics of the catalyst for producing a nitrile by subjecting an alkane to a gas phase catalytic oxidation reaction of ammonia of the present invention are due to the following points. Empirical formula of the catalyst, Mo a V b Te c X x O in n (1) (Formula (1), X is Nb, Ta, W, Ti, A
1, Zr, Cr, Mn, Fe, Ru, Co, Rh, N
represents one or more elements selected from i, Pd, Pt, Sb, Bi and Ce, and when a = 1, b = 0.01 to 1.0 c = 0.01 to 1 0.0x = 0.01 to 1.0, and n is determined by the oxidation states of other elements. ). In the X-ray diffraction line of the catalyst, the diffraction angle 2θ shown below
Shows the X-ray diffraction peak.

【0009】[0009]

【表3】回折角2θ(°) 22.1±0.3 28.2±0.3 36.2±0.3 45.2±0.3 50.0±0.3[Table 3] Diffraction angle 2θ (°) 22.1 ± 0.3 28.2 ± 0.3 36.2 ± 0.3 45.2 ± 0.3 50.0 ± 0.3

【0010】本発明の触媒は上述の(1)式の酸化物で
あって、Xとして上記の元素が用いられるが、好ましく
はNb,Ta,W,Tiであり、特に好ましくはNbで
ある。また、式(1)の係数として、a=1とすると
き、b=0.1〜0.6,c=0.05〜0.4,x=
0.01〜0.6が特に好ましい。しかし、該酸化物
は、ただ単に(1)式の組成を示すだけでは本発明の反
応触媒として十分ではなく、特定の結晶構造を有するこ
とが重要である。
The catalyst of the present invention is the oxide of the above formula (1), and the above element is used as X, preferably Nb, Ta, W and Ti, and particularly preferably Nb. Further, as a coefficient of the equation (1), when a = 1, b = 0.1 to 0.6, c = 0.05 to 0.4, x =
0.01 to 0.6 is particularly preferable. However, the oxide is not sufficient as the reaction catalyst of the present invention merely by showing the composition of the formula (1), and it is important that the oxide has a specific crystal structure.

【0011】本発明触媒として用いる酸化物が特定の結
晶構造を有することを示す指標は粉末X線回折のパター
ンである。該酸化物のX線回折ピーク(X線源としてC
u−Kα線を使用)のパターンと、は特定の回折角2θ
において以下に示す5つの主要回折ピークが認められる
ことにある。
An index indicating that the oxide used as the catalyst of the present invention has a specific crystal structure is a powder X-ray diffraction pattern. X-ray diffraction peak of the oxide (C as an X-ray source
u-Kα line) and the specific diffraction angle 2θ
In, there are five major diffraction peaks shown below.

【0012】[0012]

【表4】 X 線 格 子 面 回折角2θ(°) 間隔中央値(Å) 相対強度 22.1±0.3 4.02 100 28.2±0.3 3.16 20〜150 36.2±0.3 2.48 5〜60 45.2±0.3 2.00 2〜40 50.0±0.3 1.82 2〜40[Table 4] X-ray grating plane diffraction angle 2θ (°) Interval median value (Å) Relative intensity 22.1 ± 0.3 4.02 100 28.2 ± 0.3 3.16 20 to 150 36.2 ± 0.3 2.48 5-60 45.2 ± 0.3 2.00 2-40 50.0 ± 0.3 1.82 2-40

【0013】X線回折ピーク強度は各結晶の測定条件に
よってずれる場合があるが、2θ=22.1°のピーク
強度を100とした場合の相対強度は通常上記の範囲に
ある。また、一般的には2θ=22.1°及び28.2
°のピーク強度が大きく表われる。しかしながら、上記
5本の回折ピークを認める限り該5本の回折ピーク以外
の2θにピークを有するものがあっても基本的な結晶構
造には変わりはなく、本発明に好適に用いることができ
る。
The X-ray diffraction peak intensity may deviate depending on the measurement conditions of each crystal, but the relative intensity is usually in the above range when the peak intensity at 2θ = 22.1 ° is 100. Also, in general, 2θ = 22.1 ° and 28.2.
The peak intensity at ° appears significantly. However, as long as the above-mentioned 5 diffraction peaks are recognized, even if there is a peak having a peak at 2θ other than the 5 diffraction peaks, the basic crystal structure does not change and it can be preferably used in the present invention.

【0014】この特定の結晶構造を有する酸化物の調製
方法は次のようである。例えば、Moa b Tec Nb
x n の場合、所定量のメタバナジン酸アンモニウム塩
を含む水溶液に、テルル酸の水溶液、シュウ酸ニオブア
ンモニウム塩の水溶液およびパラモリブデン酸アンモニ
ウム塩の水溶液を各々の金属元素の原子比が所定の割合
となるような量比で順次添加し、蒸発乾固法、噴霧乾燥
法、真空乾燥法等で乾燥させ、最後に、残った乾燥物を
焼成して目的の酸化物とする。また、焼成を効率よく行
うためには、最終の焼成前に、上記乾燥物を、通常、空
気あるいは窒素、アルゴン等の不活性ガス雰囲気中、1
50〜350℃で加熱分解してもよい。
The method for preparing the oxide having this specific crystal structure is as follows. For example, Mo a V b Te c Nb
For x O n, to an aqueous solution containing a predetermined amount of ammonium metavanadate salt, an aqueous solution of telluric acid, the proportion atomic ratio of metal elements of each of the aqueous solutions of ammonium niobium oxalate salt and ammonium paramolybdate salt is given Are sequentially added in such an amount ratio that they become, and are dried by an evaporation dryness method, a spray drying method, a vacuum drying method, etc. Finally, the remaining dried product is calcined to obtain the target oxide. Further, in order to perform the firing efficiently, the dried product is usually treated in air or an inert gas atmosphere such as nitrogen or argon before the final firing.
You may heat-decompose at 50-350 degreeC.

【0015】本発明の触媒として用いる特定の酸化物の
調製方法の焼成条件が特に重要である。通常の酸化物を
調製する場合の焼成処理は、酸素雰囲気中で行う方法が
最も一般的である。しかしながら、本発明においては、
焼成の雰囲気をむしろ実質的に酸素不存在下とすること
が好ましく、例えば、窒素、アルゴン、ヘリウム等の不
活性ガス雰囲気中、また、そのガス中に水素、炭化水素
等の還元性ガスあるいは水蒸気を含んでいてもよく、あ
るいは、真空中で通常350〜700℃、好ましくは4
00〜650℃の温度で通常0.5〜30時間好ましく
は1〜10時間実施される。該温度範囲より低い温度で
は高い触媒活性を有する前記結晶構造の形成が不十分で
あり、また、該温度範囲より高い温度では結晶構造の一
部が熱的に分解することがあるので好ましくない。
The calcination conditions of the method for preparing the particular oxide used as the catalyst of the present invention are of particular importance. The firing treatment in the case of preparing an ordinary oxide is most commonly performed in an oxygen atmosphere. However, in the present invention,
It is preferable to set the firing atmosphere substantially in the absence of oxygen, for example, in an atmosphere of an inert gas such as nitrogen, argon or helium, or in the gas, a reducing gas such as hydrogen or hydrocarbon, or steam. Or in vacuum usually 350-700 ° C., preferably 4
It is carried out at a temperature of 00 to 650 ° C for usually 0.5 to 30 hours, preferably 1 to 10 hours. At a temperature lower than the temperature range, formation of the crystal structure having high catalytic activity is insufficient, and at a temperature higher than the temperature range, a part of the crystal structure may be thermally decomposed, which is not preferable.

【0016】このようにして得られた酸化物中の酸素の
含有量を調べてみると、例えばMo a b Tec Nbx
n の場合において、nの値は、Mo,V,Te,Nb
の最高酸化状態に対応する値である(3a+2.5b+
3c+2.5x)より小さく、その80〜97%であっ
た。すなわち、本発明の触媒として用いる特定の構造の
酸化物は、同じ原料乾燥物を通常の酸素雰囲気下で焼成
して得られる酸化物よりわずかに含有酸素量が少ないも
のにすぎない。
The oxygen content of the oxide thus obtained
When examining the content, for example, Mo aVbTecNbx
OnIn the case of, the value of n is Mo, V, Te, Nb
Is the value corresponding to the highest oxidation state of (3a + 2.5b +
3c + 2.5x), which is 80 to 97%.
It was That is, of the specific structure used as the catalyst of the present invention
Oxide is the same raw material dried product baked in a normal oxygen atmosphere
It has a slightly lower oxygen content than the oxide obtained by
Nothing more.

【0017】従って、該酸化物が、特定の結晶構造であ
るばかりでなく、更に、アルカンを原料とするニトリル
への反応において、従来の触媒に比べ著しく優れた活性
を発現することは全く予想外であり驚くべきことであ
る。なお、上記の酸化物の原料は前述したものに限定さ
れるのではなく、メタバナジン酸アンモニウムの代わり
に例えば、V2 5 ,V2 3 ,VOCl3 あるいはV
Cl4 等を使用することができ、テルル酸の代わりにT
eO2 などが使用され、シュウ酸ニオブアンモニウム塩
の代わりに、NbCl5 ,Nb2 5 ,ニオブ酸等が使
用され、パラモリブデン酸アンモニウム塩の代わりにM
oO3 ,MoCl5 、等を使用することができる。
Therefore, it is totally unexpected that the oxide not only has a specific crystal structure but also exhibits a significantly superior activity as compared with conventional catalysts in the reaction of nitrile using an alkane as a raw material. It is amazing. The raw materials of the above oxides are not limited to those described above, but instead of ammonium metavanadate, for example, V 2 O 5 , V 2 O 3 , VOCl 3 or V may be used.
Cl 4 or the like can be used, and T can be used in place of telluric acid.
eO 2 or the like is used, NbCl 5 , Nb 2 O 5 , niobate, or the like is used instead of niobium ammonium oxalate, and M is used instead of ammonium paramolybdate.
oO 3 , MoCl 5 , etc. can be used.

【0018】以上の触媒は単独でも用いられるが、周知
の担体、例えば、シリカ、アルミナ、チタニア、アルミ
ノシリケート、珪藻土等と共に使用することもできる。
また、反応の規模、方式等により適宜の形状および粒径
に成型される。本発明では、上述の触媒の存在下で、ア
ルカンをアンモニアと気相接触酸化反応させることによ
り効率よくニトリルを製造することができる。
The above catalysts can be used alone, but can also be used together with well-known carriers such as silica, alumina, titania, aluminosilicate and diatomaceous earth.
Further, it is molded into an appropriate shape and particle size depending on the scale of reaction, method and the like. In the present invention, a nitrile can be efficiently produced by subjecting an alkane to a gas-phase catalytic oxidation reaction with ammonia in the presence of the above-mentioned catalyst.

【0019】本発明のニトリルの製造法における原料の
アルカンとしては、特に限られるものではなく、例え
ば、メタン、エタン、プロパン、ブタン、イソブタン、
ペンタン、ヘキサン、ヘプタン、シクロヘキサン等があ
げられるが、得られるニトリルの工業的用途を考慮する
と、炭素数1〜4の低級アルカン、特にプロパン、イソ
ブタンを用いるのがよい。
The alkane as a raw material in the nitrile production method of the present invention is not particularly limited, and examples thereof include methane, ethane, propane, butane, isobutane,
Pentane, hexane, heptane, cyclohexane and the like can be mentioned, but considering the industrial use of the resulting nitrile, it is preferable to use a lower alkane having 1 to 4 carbon atoms, particularly propane and isobutane.

【0020】本発明での酸化反応の機構の詳細は明らか
ではないが、上述の酸化物中に存在する酸素原子、ある
いは供給ガス中に存在させる分子状酸素によって行なわ
れる。供給ガス中に分子状酸素を存在させる場合、分子
状酸素は純酸素ガスでもよいが、特に純度は要求されな
いので、一般には空気のような酸素含有ガスを使用する
のが経済的である。供給ガスとしては、通常、アルカ
ン、アンモニアと酸素含有ガスの混合ガスを使用する
が、アルカンとアンモニアの混合ガスと酸素含有ガスと
を交互に供給してもよい。
Although the details of the mechanism of the oxidation reaction in the present invention are not clear, it is carried out by oxygen atoms present in the above oxides or molecular oxygen present in the feed gas. When the molecular oxygen is present in the feed gas, the molecular oxygen may be pure oxygen gas, but it is generally economical to use an oxygen-containing gas such as air because purity is not particularly required. Alkane, a mixed gas of ammonia and an oxygen-containing gas is usually used as the supply gas, but a mixed gas of an alkane and ammonia and an oxygen-containing gas may be alternately supplied.

【0021】また、実質的に分子状酸素が存在しないア
ルカンとアンモニアのみを供給ガスとして気相接触反応
させることもできる。かかる場合は、反応帯域より触媒
の一部を適宜抜き出して、該触媒を酸化再生器に送り込
み、再生後、触媒を反応帯域に再供給する方法が好まし
い。触媒の再生方法としては、触媒を、酸素、空気、一
酸化窒素等の酸化性ガスを再生器内の触媒に対して、通
常300〜600℃で流通させる方法が例示される。
It is also possible to carry out a gas phase catalytic reaction using only alkane and ammonia, which are substantially free of molecular oxygen, as feed gases. In such a case, a method is preferable in which a part of the catalyst is appropriately extracted from the reaction zone, the catalyst is sent to an oxidation regenerator, and after regeneration, the catalyst is re-supplied to the reaction zone. Examples of the method for regenerating the catalyst include a method in which an oxidizing gas such as oxygen, air or nitric oxide is passed through the catalyst in the regenerator usually at 300 to 600 ° C.

【0022】アルカンとしてプロパンを、酸素源として
空気を使用する場合について、本発明をさらに詳細に説
明するに、反応に供給する空気の割合は、生成するアク
リロニトリルの選択率に関して重要であり、空気は通常
プロパンに対して25モル倍量以下、特に1〜15モル
場合の範囲が高いアクリロニトリル選択率を示す。ま
た、反応に供与するアンモニアの割合は、プロパンに対
して0.2〜5モル倍量、特に0.5〜3モル倍量の範
囲が好適である。なお、本反応は通常大気圧下で実施さ
れるが、低度の加圧下または減圧下で行なうこともでき
る。他のアルカンについても、プロパンの場合の反応条
件に準じて供給ガスの組成が選択される。
In the case of using propane as the alkane and air as the oxygen source, the ratio of the air supplied to the reaction is important with respect to the selectivity of the acrylonitrile produced, and the air is Usually, the acrylonitrile selectivity is high in a range of 25 mol times or less, particularly 1 to 15 mol based on propane. Further, the proportion of ammonia supplied to the reaction is preferably in the range of 0.2 to 5 mol times, and particularly 0.5 to 3 mol times the amount of propane. The reaction is usually carried out under atmospheric pressure, but it can also be carried out under slightly elevated pressure or reduced pressure. For other alkanes, the composition of the feed gas is selected according to the reaction conditions for propane.

【0023】本発明方法においては、従来のアルカンの
アンモ酸化反応におけるよりも低い温度、例えば、34
0〜480℃で実施することができ、特に好ましいのは
400〜450℃程度である。また、気相反応における
ガス空間速度SVは、通常100〜10000h-1、好
ましくは、300〜2000h-1の範囲である。なお、
空間速度と酸素分圧を調整するための希釈ガスとして、
窒素、アルゴン、ヘリウム等の不活性ガスを用いること
ができる。本発明の方法により、プロパンのアンモ酸化
反応を行なった場合、アクリロニトリルの外に、一酸化
炭素、二酸化炭素、アセトニトリル、青酸、アクロレイ
ン等が副生するが、その生成量はきわめて少ない。
In the method of the present invention, a temperature lower than that in the conventional ammoxidation reaction of alkane, for example, 34
It can be carried out at 0 to 480 ° C, and particularly preferably about 400 to 450 ° C. The gas space velocity SV in the gas phase reaction is usually 100~10000H -1, preferably in the range of 300~2000h -1. In addition,
As a diluent gas for adjusting the space velocity and oxygen partial pressure,
An inert gas such as nitrogen, argon or helium can be used. When the ammoxidation reaction of propane is carried out by the method of the present invention, carbon monoxide, carbon dioxide, acetonitrile, hydrocyanic acid, acrolein, etc. are by-produced in addition to acrylonitrile, but the amount produced is extremely small.

【0024】[0024]

【実施例】以下、本発明を、実施例および比較例を挙げ
てさらに詳細に説明するが、本発明はその要旨を超えな
いかぎりこれらの実施例に限定されるものではない。な
お、以下の実施例および比較例における転化率(%)、
選択率(%)および収率(%)は、各々次式で示され
る。
EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples as long as the gist thereof is not exceeded. The conversion rate (%) in the following examples and comparative examples,
The selectivity (%) and the yield (%) are respectively shown by the following equations.

【0025】[0025]

【数1】アルカンの転化率(%)=(消費アルカンのモ
ル数/供給アルカンのモル数)×100 目的ニトリルの選択率(%)=(生成目的ニトリルのモ
ル数/消費アルカンのモル数)×100 目的ニトリルの収率(%)=(生成目的ニトリルのモル
数/供給アルカンのモル数)×100
[Formula 1] Alkane conversion rate (%) = (mol number of consumed alkane / mol number of supplied alkane) × 100 Selectivity of target nitrile (%) = (mol number of target nitrile to be produced / mol number of consumed alkane) × 100 Yield of target nitrile (%) = (mol number of nitrile for production / mol number of alkane supplied) × 100

【0026】実施例1 実験組成Mo1 0.4 Te0.2 Nb0.1 n を有する酸
化物を次のように調製した。温水117mlに4.21
gのメタバナジン酸アンモニウム塩を溶解し、これにテ
ルル酸4.13g、パラモリブデン酸アンモニウム塩1
5.89gを順次添加し、均一な水溶液を調製した。さ
らに、シュウ酸ニオブアンモニウム塩3.99gを1
7.9mlの水に溶解した液を混合し、スラリーを調製
した。このスラリーを約150℃で蒸発乾固して乾燥物
を得た。
Example 1 Experimental An oxide having the composition Mo 1 V 0.4 Te 0.2 Nb 0.1 O n was prepared as follows. 4.21 in 117 ml of warm water
g of ammonium metavanadate is dissolved, and 4.13 g of telluric acid and ammonium paramolybdate 1 are dissolved therein.
5.89 g was sequentially added to prepare a uniform aqueous solution. Further, add 3.99 g of niobium ammonium oxalate salt to 1
A liquid dissolved in 7.9 ml of water was mixed to prepare a slurry. This slurry was evaporated to dryness at about 150 ° C. to obtain a dried product.

【0027】この乾燥物を、打錠成型器を用いて5mm
φ×3mmLに成型したのち、粉砕し、16〜28メッ
シュに篩別し、窒素気流中620℃で2時間焼成した。
このようにして得た酸化物の粉末X線回折線ピークのチ
ャートを図1に、また、その主要回折線ピーク強度を表
−1に示す。また、該酸化物中の酸素含有量を酸素分析
計にて測定したところ31.0重量%であった。この測
定値よりO(酸素)の係数nを算出すると4.25とな
る。n=4.25とは、該酸化物の構成元素の最高酸化
状態が、Moが6価、Vが5価、Teが6価、Nbが5
価としたときにn=4.85となることから、その8
7.6%に相当する。
5 mm of this dried product was obtained using a tablet molding machine.
After being molded into φ × 3 mmL, it was pulverized, sieved to 16 to 28 mesh, and fired at 620 ° C. for 2 hours in a nitrogen stream.
The powder X-ray diffraction line peak chart of the oxide thus obtained is shown in FIG. 1, and the main diffraction line peak intensity thereof is shown in Table-1. The oxygen content in the oxide was measured by an oxygen analyzer and found to be 31.0% by weight. The coefficient n of O (oxygen) calculated from this measured value is 4.25. n = 4.25 means that the highest oxidation state of the constituent elements of the oxide is Mo = 6, V = 5, Te = 6, and Nb = 5.
Since n = 4.85 when the valence is set, 8
This corresponds to 7.6%.

【0028】このようにして得た触媒0.5mlを反応
器に装填し、反応温度440℃、空間速度SVを100
0h-1に固定して、プロパン:アンモニア:空気=1:
1.2:10モル比でガスを供給し気相接触反応を行な
った。その結果を表−2に示す。
0.5 ml of the catalyst thus obtained was charged into a reactor, the reaction temperature was 440 ° C., and the space velocity SV was 100.
Fixed at 0 h -1 , propane: ammonia: air = 1:
Gas was supplied at a molar ratio of 1.2: 10 to carry out a gas phase catalytic reaction. The results are shown in Table-2.

【0029】実施例2,3 実施例1で焼成温度を500℃および600℃とした以
外は実施例1と同様に実験組成Mo1 0.4 Te0.2
0.1 n を有する酸化物を調製した。該酸化物の粉末
X線回折の結果を表−1に示す。また、気相接触反応を
行った結果を表−2に示す。
Examples 2 and 3 Experimental composition Mo 1 V 0.4 Te 0.2 N was carried out in the same manner as in Example 1 except that the firing temperature was changed to 500 ° C. and 600 ° C.
an oxide having a b 0.1 O n was prepared. The results of powder X-ray diffraction of the oxide are shown in Table 1. Table 2 shows the results of the gas phase contact reaction.

【0030】比較例1 実施例2でニオブ成分を使用しない以外は、実施例2と
同様に調製し、実験組成Mo1 0.4 Te0.2 n の酸
化物を得た。該酸化物のX線回折パターンは実施例1の
ものとは全く異っていた。また、気相接触反応を行った
結果を表−2に示す。
Comparative Example 1 An oxide having the experimental composition Mo 1 V 0.4 Te 0.2 O n was obtained in the same manner as in Example 2 except that the niobium component was not used in Example 2. The X-ray diffraction pattern of the oxide was quite different from that of Example 1. Table 2 shows the results of the gas phase contact reaction.

【0031】比較例2 実施例1で焼成を空気流通下350℃で2時間実施した
以外は実施例1と同様に実験組成Mo1 0.4 Te0.2
Nb0.1 n を有する酸化物を調製した。得られた酸化
物の粉末X線回折パターンを図2に示す。実施例1の図
1とは全くパターンが異なる。また、気相接触反応を行
った結果を表−2に示す。
Comparative Example 2 Experimental composition Mo 1 V 0.4 Te 0.2 was carried out in the same manner as in Example 1 except that firing was carried out at 350 ° C. for 2 hours under air flow.
An oxide having a nb 0.1 O n was prepared. The powder X-ray diffraction pattern of the obtained oxide is shown in FIG. The pattern is completely different from that of FIG. 1 of the first embodiment. Table 2 shows the results of the gas phase contact reaction.

【0032】比較例3,4 比較例2の酸化物を用い、表−2に示した反応条件で気
相接触反応を行った。結果を表−2に示す。
Comparative Examples 3 and 4 Using the oxide of Comparative Example 2, a gas phase catalytic reaction was carried out under the reaction conditions shown in Table 2. The results are shown in Table-2.

【0033】実施例4 実験組成Mo1 0.4 Te0.2 Sb0.1 n を有する酸
化物を次のように調製した。温水117mlに4.21
gのメタバナジン酸アンモニウム塩を溶解し、これにテ
ルル酸4.13g、パラモリブデン酸アンモニウム塩1
5.9gを順次添加し、均一な水溶液を調製した。これ
に1.56gの塩化酸化アンチモンを17.9mlの水
に溶解して混合した。得られた水溶液を蒸発乾固させ乾
燥物を得た。この乾燥物を打錠成型器を用いて5mmφ
×3mmLに成型したのち、粉砕し、16〜28メッシ
ュに篩別し、窒素気流中500℃で2時間焼成した。得
られた酸化物の粉末X線回折の結果を表−1に示す。こ
のようにして得た酸化物につき、気相接触反応を行った
結果を表−2に示す。
Example 4 Experimental An oxide having the composition Mo 1 V 0.4 Te 0.2 Sb 0.1 O n was prepared as follows. 4.21 in 117 ml of warm water
g of ammonium metavanadate is dissolved, and 4.13 g of telluric acid and ammonium paramolybdate 1 are dissolved therein.
5.9 g was sequentially added to prepare a uniform aqueous solution. To this, 1.56 g of antimony chloride oxide was dissolved in 17.9 ml of water and mixed. The obtained aqueous solution was evaporated to dryness to obtain a dried product. 5 mmφ of this dried product using a tablet press
After molding into 3 mmL, it was crushed, sieved to 16 to 28 mesh, and fired at 500 ° C. for 2 hours in a nitrogen stream. The results of powder X-ray diffraction of the obtained oxide are shown in Table 1. Table 2 shows the results of the gas phase contact reaction of the oxides thus obtained.

【0034】比較例5 実施例4で焼成を空気流通下350℃で2時間実施した
以外は実施例4と同様にMo1 0.4 Te0.2 Sb0.1
n を有する酸化物を調製した。得られた酸化物のX線
回折パターンは実施例4のものとは全く異なっていた。
また、得られた酸化物を用いて気相接触反応を行った結
果を表−2に示す。
Comparative Example 5 Mo 1 V 0.4 Te 0.2 Sb 0.1 was carried out in the same manner as in Example 4 except that calcination was carried out in air at 350 ° C. for 2 hours.
An oxide having O n was prepared. The X-ray diffraction pattern of the resulting oxide was quite different from that of Example 4.
In addition, Table 2 shows the results of a gas phase catalytic reaction using the obtained oxide.

【0035】実施例5 実施例4における塩化酸化アンチモンの代わりに硝酸ア
ルミニウム・9水和物3.38gを用いた以外は実施例
4と同様に酸化物を調製した。得られた酸化物の実験組
成はMo1 0.4 Te0.2 Al0.1 n である。このよ
うにして得た酸化物の粉末X線回折の結果を表−1に示
す。また、得られた酸化物を用いて気相接触反応を行っ
た結果を表−2に示す。
Example 5 An oxide was prepared in the same manner as in Example 4 except that 3.38 g of aluminum nitrate nonahydrate was used in place of the antimony chloride oxide in Example 4. Empirical composition of the obtained oxide is Mo 1 V 0.4 Te 0.2 Al 0.1 O n. The results of powder X-ray diffraction of the oxide thus obtained are shown in Table 1. In addition, Table 2 shows the results of a gas phase catalytic reaction using the obtained oxide.

【0036】比較例6 実施例5で焼成を空気流通下350℃で2時間実施した
以外は実施例5と同様にMo1 0.4 Te0.2 Al0.1
n を有する酸化物を調製した。得られた酸化物のX線
回折パターンは実施例5のものとは全く異なった。ま
た、得られた酸化物を用いて気相接触反応を行った結果
を表−2に示す。
Comparative Example 6 Mo 1 V 0.4 Te 0.2 Al 0.1 was carried out in the same manner as in Example 5 except that firing was carried out at 350 ° C. for 2 hours under air flow in Example 5.
An oxide having O n was prepared. The X-ray diffraction pattern of the resulting oxide was completely different from that of Example 5. In addition, Table 2 shows the results of a gas phase catalytic reaction using the obtained oxide.

【0037】実施例6 実施例4における塩化酸化アンチモンの代わりに硝酸パ
ラジウム0.415gを用い、また、焼成温度を600
℃とした以外は実施例4と同様に酸化物を調製した。得
られた酸化物の実験組成はMo1 0.4 Te0.2 Nb
0.1 Pd0.02nである。このようにして得た酸化物の
粉末X線回折の結果を表−1に示す。また、得られた酸
化物を用いて気相接触反応を行った結果を表−2に示
す。
Example 6 0.415 g of palladium nitrate was used in place of the antimony chloride oxide in Example 4, and the firing temperature was 600.
An oxide was prepared in the same manner as in Example 4 except that the temperature was changed to ° C. The experimental composition of the obtained oxide was Mo 1 V 0.4 Te 0.2 Nb.
A 0.1 Pd 0.02 O n. The results of powder X-ray diffraction of the oxide thus obtained are shown in Table 1. In addition, Table 2 shows the results of a gas phase catalytic reaction using the obtained oxide.

【0038】実施例7〜23 実施例1の方法で原料化合物の量比を変更し、また、焼
成温度を全て600℃とした以外は実施例1と同様の方
法で各実験組成の酸化物を調製した。各酸化物の粉末X
線回折の結果を表−1に示す。また、各酸化物を用いて
気相接触反応を行った結果を表−3に示す。
Examples 7 to 23 Oxides of each experimental composition were prepared in the same manner as in Example 1 except that the ratio of the raw material compounds was changed by the method of Example 1 and the firing temperature was set to 600 ° C. Prepared. Powder of each oxide X
The results of the line diffraction are shown in Table-1. In addition, Table 3 shows the results of the gas phase contact reaction using each oxide.

【0039】実施例24〜32 実施例3で調製した酸化物(実験組成Mo1 0.4 Te
0.2 Nb0.1 n )を用いて種々の条件で気相接触酸化
反応を行った結果を表−4に示す。
Examples 24-32 Oxides prepared in Example 3 (experimental composition Mo 1 V 0.4 Te
The results of the gas-phase catalytic oxidation reaction under various conditions using the 0.2 Nb 0.1 O n) shown in Table 4.

【0040】[0040]

【表5】 [Table 5]

【0041】[0041]

【表6】 [Table 6]

【0042】[0042]

【表7】 [Table 7]

【0043】[0043]

【表8】 [Table 8]

【0044】実施例33 実験組成Mo1 0.3 Te0.23Nb0.12n を有する酸
化物を次のように調製した。温水325ミリリットルに
15.7gのメタバナジン酸アンモニウム塩を溶解し、
これにテルル酸23.6g、パラモリブデン酸アンモニ
ウム塩78.9gを順次添加し、均一な水溶液を調製し
た。さらにニオブの濃度が0.456モル/kgのシュ
ウ酸ニオブアンモニウム水溶液117.5gを混合し、
スラリーを調製した。このスラリーを蒸発乾固させ、固
体を得た。この固体を打錠成型器を用いて5mmφ×3
mmLに成型したのち、粉砕し、16〜28メッシュに
篩別し、窒素気流中600℃で2時間焼成した。
Example 33 Experimental An oxide having the composition Mo 1 V 0.3 Te 0.23 Nb 0.12 O n was prepared as follows. Dissolve 15.7 g of ammonium metavanadate in 325 ml of warm water,
To this, 23.6 g of telluric acid and 78.9 g of ammonium paramolybdate were sequentially added to prepare a uniform aqueous solution. Further, 117.5 g of an aqueous solution of ammonium niobium oxalate having a niobium concentration of 0.456 mol / kg is mixed,
A slurry was prepared. The slurry was evaporated to dryness to give a solid. 5 mmφ x 3 of this solid using a tablet press
After molding into mmL, it was pulverized, sieved to 16 to 28 mesh, and fired at 600 ° C for 2 hours in a nitrogen stream.

【0045】このようにして得た酸化物の粉末X線回折
測定を行なったところ(Cu−Kα線を使用)、回折角
2θ(°)として、22.1(100)、28.2(9
0.0)、36.2(25.7)、45.1(15.
2)、50.0(16.3)に主要回折ピークが観察さ
れた(数字のカッコ内は、22.1°のピークを100
としたときの相対ピーク強度を示す。)。
When the powder X-ray diffraction measurement of the oxide thus obtained was carried out (using Cu-Kα ray), the diffraction angles 2θ (°) were 22.1 (100), 28.2 (9).
0.0), 36.2 (25.7), 45.1 (15.
2) A major diffraction peak was observed at 50.0 (16.3) (numbers in parentheses indicate a peak at 22.1 ° of 100).
Indicates the relative peak intensity. ).

【0046】このようにして得た触媒0.5mlを反応
器に充填し、反応温度420℃、空間速度SVを100
0h-1に固定して、イソブタン:アンモニア:空気=
1:1.2:15のモル比でガスを供給し、気相接触反
応を行なった。その結果、イソブタンの転化率は61.
4%、メタクリロニトリル選択率は29.7%、メタク
リロニトリルの収率は19.1%であった。
0.5 ml of the catalyst thus obtained was charged into a reactor and the reaction temperature was 420 ° C. and the space velocity SV was 100.
Fixed at 0h -1 , isobutane: ammonia: air =
Gas was supplied at a molar ratio of 1: 1.2: 15 to carry out a gas phase catalytic reaction. As a result, the conversion rate of isobutane was 61.
4%, the selectivity of methacrylonitrile was 29.7%, and the yield of methacrylonitrile was 19.1%.

【0047】実施例34 実施例3の酸化物を用いた以外は実施例33と同様にイ
ソブタンの気相接触酸化反応を行なった。その結果、イ
ソブタンの転化率は52.1%、メタクリロニトリル選
択率は31.0%、メタクリロニトリルの収率は16.
2%であった。
Example 34 A gas phase catalytic oxidation reaction of isobutane was carried out in the same manner as in Example 33 except that the oxide of Example 3 was used. As a result, the conversion of isobutane was 52.1%, the selectivity of methacrylonitrile was 31.0%, and the yield of methacrylonitrile was 16.
It was 2%.

【0048】比較例7 比較例2の酸化物を用いた以外は実施例33と同様にイ
ソブタンの気相接触酸化反応を行なった。その結果、イ
ソブタンの転化率は11.0%、メタクリロニトリル選
択率は42.7%、メタクリロニトリルの収率は4.7
%であった。
Comparative Example 7 A vapor phase catalytic oxidation reaction of isobutane was carried out in the same manner as in Example 33 except that the oxide of Comparative Example 2 was used. As a result, the conversion rate of isobutane was 11.0%, the selectivity of methacrylonitrile was 42.7%, and the yield of methacrylonitrile was 4.7.
%Met.

【0049】実施例35 実験組成Mo1 0.3 Te0.23Nb0.12n を有する酸
化物に、更にシリカが全体の10wt%を占める物質を
次のように調製した。温水117mlに3.79gのメ
タバナジン酸アンモニウム塩を溶解し、これにテルル酸
3.72g、パラモリブデン酸アンモニウム塩14.3
0gを順次添加し、均一な水溶液を調製した。さらにシ
ュウ酸ニオブアンモニウム塩3.59gを17.9ml
の水に溶解した液、シリカゾル(シリカ含有量20wt
%)10.24gを混合し、スラリーを調製した。この
スラリーを150℃で蒸発乾固して乾燥物を得た。
Example 35 Experimental composition A material in which silica accounts for 10 wt% of the oxide having Mo 1 V 0.3 Te 0.23 Nb 0.12 O n was prepared as follows. 3.79 g of ammonium metavanadate was dissolved in 117 ml of warm water, and 3.72 g of telluric acid and ammonium paramolybdate 14.3 were dissolved in the solution.
0 g was sequentially added to prepare a uniform aqueous solution. Furthermore, 3.59 g of niobium ammonium oxalate salt was added to 17.9 ml.
Liquid dissolved in water, silica sol (silica content 20 wt
%) 10.24 g was mixed to prepare a slurry. This slurry was evaporated to dryness at 150 ° C. to obtain a dried product.

【0050】この乾燥物を、打錠成型器を用いて5mm
φ×3mmLに成型したのち、粉砕し、16〜28メッ
シュに篩別し、窒素気流中600℃で4時間焼成した。
このようにして得た酸化物の粉末X線回折測定を行なっ
たところ、回折角2θ(°)として、22.1(10
0)、28.2(41.7)、36.2(10.0)、
45.2(13.1)、50.0(7.1)に主要回折
ピークが観察された(数字のカッコ内は、22.1℃の
ピークを100としたときの相対ピーク強度を示
す。)。
5 mm of this dried product was obtained using a tablet molding machine.
After being molded into φ × 3 mmL, it was crushed, sieved to 16 to 28 mesh, and fired at 600 ° C. for 4 hours in a nitrogen stream.
The powder X-ray diffraction measurement of the thus-obtained oxide was carried out and found to be 22.1 (10) as a diffraction angle 2θ (°).
0), 28.2 (41.7), 36.2 (10.0),
Major diffraction peaks were observed at 45.2 (13.1) and 50.0 (7.1) (the numbers in parentheses indicate relative peak intensities when the peak at 22.1 ° C. is 100). ).

【0051】このようにして得た物質0.5mlを反応
器に充填し、反応温度420℃、空間速度SVを100
0h-1に固定して、プロパン:アンモニア:空気=1:
1.2:15のモル比でガスを供給し気相接触酸化反応
を行なった。その結果、プロパンの転化率は88.9
%、アクリロニトリル選択率は60.5%、アクリロニ
トリルの収率は53.8%であった。
0.5 ml of the substance thus obtained was charged into a reactor and the reaction temperature was 420 ° C. and the space velocity SV was 100.
Fixed at 0 h -1 , propane: ammonia: air = 1:
Gas was supplied at a molar ratio of 1.2: 15 to carry out a gas phase catalytic oxidation reaction. As a result, the conversion rate of propane was 88.9.
%, The acrylonitrile selectivity was 60.5%, and the acrylonitrile yield was 53.8%.

【0052】[0052]

【発明の効果】本発明方法によれば、アルカンを原料と
して新規な酸化物を使用することにより、反応系にハロ
ゲン化物や水等を存在させることなく、しかも400〜
450℃程度の比較的に低い温度において、高い収率で
目的とするニトリルを製造することができる。
EFFECTS OF THE INVENTION According to the method of the present invention, the use of a novel oxide from an alkane as a raw material allows the reaction system to have a temperature of 400-400 without the presence of halide or water.
The target nitrile can be produced in a high yield at a relatively low temperature of about 450 ° C.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の酸化物の粉末X線回折パターンを示
す。
1 shows a powder X-ray diffraction pattern of the oxide of Example 1. FIG.

【図2】比較例2の酸化物の粉末X線回折パターンを示
す。
FIG. 2 shows a powder X-ray diffraction pattern of the oxide of Comparative Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅沢 智明 三重県四日市市東邦町1番地 三菱化成株 式会社四日市工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Tomoaki Umezawa 1 Toho-cho, Yokkaichi-shi, Mie Mitsubishi Kasei Co., Ltd. Yokkaichi Plant

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 以下の,の条件を満たすアルカンよ
りニトリルを製造するための触媒。 触媒の実験式が、 Moa b Tec x n (1) (式(1)において、XはNb,Ta,W,Ti,A
l,Zr,Cr,Mn,Fe,Ru,Co,Rh,N
i,Pd,Pt,Sb,BiおよびCeの中から選ばれ
た1つまたはそれ以上の元素を表わし、 a=1とするとき、 b=0.01〜1.0 c=0.01〜1.0 x=0.01〜1.0 であり、また、nは他の元素の酸化状態により決定され
る。)により表わされる。 触媒のX線回折線において、下記に示す回折角2θ
にX線回折ピークを示す。 【表1】回折角2θ(°) 22.1±0.3 28.2±0.3 36.2±0.3 45.2±0.3 50.0±0.3
1. A catalyst for producing a nitrile from an alkane satisfying the following conditions: Empirical formula of the catalyst, Mo a V b Te c X x O in n (1) (Formula (1), X is Nb, Ta, W, Ti, A
1, Zr, Cr, Mn, Fe, Ru, Co, Rh, N
represents one or more elements selected from i, Pd, Pt, Sb, Bi and Ce, and when a = 1, b = 0.01 to 1.0 c = 0.01 to 1 0.0x = 0.01 to 1.0, and n is determined by the oxidation states of other elements. ). In the X-ray diffraction line of the catalyst, the diffraction angle 2θ shown below
Shows the X-ray diffraction peak. [Table 1] Diffraction angle 2θ (°) 22.1 ± 0.3 28.2 ± 0.3 36.2 ± 0.3 45.2 ± 0.3 50.0 ± 0.3
【請求項2】 モリブデン、バナジウムおよびテルルの
化合物と、ニオブ、タンタル、タングステン、チタン、
アルミニウム、ジルコニウム、クロム、マンガン、鉄、
ルテニウム、コバルト、ロジウム、ニッケル、パラジウ
ム、白金、アンチモン、ビスマスおよびセリウムの中か
ら選ばれた1つまたはそれ以上の元素の化合物とから成
る水溶液を乾燥し、残った乾燥物を酸素不存在下で焼成
することを特徴とする請求項1の触媒の製造法。
2. A compound of molybdenum, vanadium and tellurium, and niobium, tantalum, tungsten, titanium,
Aluminum, zirconium, chromium, manganese, iron,
An aqueous solution containing a compound of one or more elements selected from ruthenium, cobalt, rhodium, nickel, palladium, platinum, antimony, bismuth and cerium is dried, and the remaining dried product is obtained in the absence of oxygen. The method for producing the catalyst according to claim 1, wherein the catalyst is calcined.
【請求項3】 アルカンを、以下の,の条件を満た
す触媒の存在下、アンモニアと気相接触酸化反応させる
ことを特徴とするニトリルの製造法。 触媒の実験式が、 Moa b Tec x n (1) (式(1)において、XはNb,Ta,W,Ti,A
l,Zr,Cr,Mn,Fe,Ru,Co,Rh,N
i,Pd,Pt,Sb,BiおよびCeの中から選ばれ
た1つまたはそれ以上の元素を表わし、 a=1とするとき、 b=0.01〜1.0 c=0.01〜1.0 x=0.01〜1.0 であり、また、nは他の元素の酸化状態により決定され
る。)により表わされる。 触媒のX線回折線において、下記に示す回折角2θ
にX線回折ピークを示す。 【表2】回折角2θ(°) 22.1±0.3 28.2±0.3 36.2±0.3 45.2±0.3 50.0±0.3
3. A process for producing a nitrile, which comprises subjecting an alkane to a gas phase catalytic oxidation reaction with ammonia in the presence of a catalyst satisfying the following conditions: Empirical formula of the catalyst, Mo a V b Te c X x O in n (1) (Formula (1), X is Nb, Ta, W, Ti, A
1, Zr, Cr, Mn, Fe, Ru, Co, Rh, N
represents one or more elements selected from i, Pd, Pt, Sb, Bi and Ce, and when a = 1, b = 0.01 to 1.0 c = 0.01 to 1 0.0x = 0.01 to 1.0, and n is determined by the oxidation states of other elements. ). In the X-ray diffraction line of the catalyst, the diffraction angle 2θ shown below
Shows the X-ray diffraction peak. [Table 2] Diffraction angle 2θ (°) 22.1 ± 0.3 28.2 ± 0.3 36.2 ± 0.3 45.2 ± 0.3 50.0 ± 0.3
【請求項4】 モリブデン、バナジウムおよびテルルの
化合物と、ニオブ、タンタル、タングステン、チタン、
アルミニウム、ジルコニウム、クロム、マンガン、鉄、
ルテニウム、コバルト、ロジウム、ニッケル、パラジウ
ム、白金、アンチモン、ビスマスおよびセリウムの中か
ら選ばれた1つまたはそれ以上の元素の化合物とから成
る水溶液を乾燥し、残った乾燥物を酸素不存在下で焼成
して得られる以下のの条件を満たす触媒の存在下、ア
ンモニアと気相接触酸化反応させることを特徴とするニ
トリルの製造法。 触媒の実験式が、 Moa b Tec x n (1) (式(1)において、XはNb,Ta,W,Ti,A
l,Zr,Cr,Mn,Fe,Ru,Co,Rh,N
i,Pd,Pt,Sb,BiおよびCeの中から選ばれ
た1つまたはそれ以上の元素を表わし、 a=1とするとき、 b=0.01〜1.0 c=0.01〜1.0 x=0.01〜1.0 であり、また、nは他の元素の酸化状態により決定され
る。)により表わされる。
4. A compound of molybdenum, vanadium and tellurium with niobium, tantalum, tungsten, titanium,
Aluminum, zirconium, chromium, manganese, iron,
An aqueous solution containing a compound of one or more elements selected from ruthenium, cobalt, rhodium, nickel, palladium, platinum, antimony, bismuth and cerium is dried, and the remaining dried product is obtained in the absence of oxygen. A process for producing a nitrile, which comprises subjecting ammonia to a gas-phase catalytic oxidation reaction in the presence of a catalyst that satisfies the following conditions obtained by calcination. Empirical formula of the catalyst, Mo a V b Te c X x O in n (1) (Formula (1), X is Nb, Ta, W, Ti, A
1, Zr, Cr, Mn, Fe, Ru, Co, Rh, N
represents one or more elements selected from i, Pd, Pt, Sb, Bi and Ce, and when a = 1, b = 0.01 to 1.0 c = 0.01 to 1 0.0x = 0.01 to 1.0, and n is determined by the oxidation states of other elements. ).
JP21142592A 1991-08-08 1992-08-07 Catalyst for the production of nitriles from alkanes Expired - Fee Related JP3331629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21142592A JP3331629B2 (en) 1991-08-08 1992-08-07 Catalyst for the production of nitriles from alkanes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19957391 1991-08-08
JP3-199573 1991-08-08
JP21142592A JP3331629B2 (en) 1991-08-08 1992-08-07 Catalyst for the production of nitriles from alkanes

Publications (2)

Publication Number Publication Date
JPH05208136A true JPH05208136A (en) 1993-08-20
JP3331629B2 JP3331629B2 (en) 2002-10-07

Family

ID=26511611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21142592A Expired - Fee Related JP3331629B2 (en) 1991-08-08 1992-08-07 Catalyst for the production of nitriles from alkanes

Country Status (1)

Country Link
JP (1) JP3331629B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1142434A (en) * 1997-05-28 1999-02-16 Mitsubishi Chem Corp Production of vapor phase catalytic oxidation reaction catalyst of hydrocarbon and vapor phase catalytic oxidation reaction method of hydrocarbon using the same
JPH11169716A (en) * 1997-12-09 1999-06-29 Mitsubishi Chemical Corp Catalyst for preparing unsaturated nitrile and/or unsaturated carboxylic acid
US6080882A (en) * 1997-07-16 2000-06-27 Asahi Kasei Kogyo Kabushiki Kaisha Process for producing acrylonitrile or methacrylonitrile from propane or isobutane by ammoxidation
US6171571B1 (en) * 1999-05-10 2001-01-09 Uop Llc Crystalline multinary metal oxide compositions, process for preparing and processes for using the composition
JP2001137709A (en) * 1999-10-01 2001-05-22 Rohm & Haas Co Catalyst
US6475948B1 (en) 1999-09-09 2002-11-05 Japan Science And Technology Corporation Sb-Re composite oxide catalyst ammoxidation
JP2007326737A (en) * 2006-06-07 2007-12-20 Asahi Kasei Chemicals Corp Oxide containing nb and v and its production method
JP2008156351A (en) * 2006-12-21 2008-07-10 Rohm & Haas Co Improved method for selective (amm)oxidation of low-molecular-weight alkanes and alkenes
WO2012117605A1 (en) * 2011-03-02 2012-09-07 旭化成ケミカルズ株式会社 Method for producing unsaturated nitrile

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1142434A (en) * 1997-05-28 1999-02-16 Mitsubishi Chem Corp Production of vapor phase catalytic oxidation reaction catalyst of hydrocarbon and vapor phase catalytic oxidation reaction method of hydrocarbon using the same
US6080882A (en) * 1997-07-16 2000-06-27 Asahi Kasei Kogyo Kabushiki Kaisha Process for producing acrylonitrile or methacrylonitrile from propane or isobutane by ammoxidation
JPH11169716A (en) * 1997-12-09 1999-06-29 Mitsubishi Chemical Corp Catalyst for preparing unsaturated nitrile and/or unsaturated carboxylic acid
US6171571B1 (en) * 1999-05-10 2001-01-09 Uop Llc Crystalline multinary metal oxide compositions, process for preparing and processes for using the composition
US6475948B1 (en) 1999-09-09 2002-11-05 Japan Science And Technology Corporation Sb-Re composite oxide catalyst ammoxidation
JP2001137709A (en) * 1999-10-01 2001-05-22 Rohm & Haas Co Catalyst
JP2007326737A (en) * 2006-06-07 2007-12-20 Asahi Kasei Chemicals Corp Oxide containing nb and v and its production method
JP2008156351A (en) * 2006-12-21 2008-07-10 Rohm & Haas Co Improved method for selective (amm)oxidation of low-molecular-weight alkanes and alkenes
WO2012117605A1 (en) * 2011-03-02 2012-09-07 旭化成ケミカルズ株式会社 Method for producing unsaturated nitrile
JPWO2012117605A1 (en) * 2011-03-02 2014-07-07 旭化成ケミカルズ株式会社 Process for producing unsaturated nitrile
JP5730984B2 (en) * 2011-03-02 2015-06-10 旭化成ケミカルズ株式会社 Process for producing unsaturated nitrile
US9464039B2 (en) 2011-03-02 2016-10-11 Asahi Kasei Chemicals Corporation Method for producing unsaturated nitrile

Also Published As

Publication number Publication date
JP3331629B2 (en) 2002-10-07

Similar Documents

Publication Publication Date Title
US5281745A (en) Process for producing nitriles
JP3235177B2 (en) Nitrile manufacturing method
US5472925A (en) Catalyst for the production of nitriles
US7053022B2 (en) Hydrothermally synthesized MO-V-M-NB-X oxide catalysts for the selective oxidation of hydrocarbons
EP0767164B1 (en) Method for producing a nitrile
JP3500682B2 (en) Catalyst for the production of nitriles from alkanes
JP4809531B2 (en) Catalytic oxidation of alkanes to the corresponding acids
US4075127A (en) Catalyst for production of α,β-unsaturated carboxylic acids
JP3237314B2 (en) Method for producing α, β-unsaturated carboxylic acid
US5534650A (en) Method for producing a nitrile
JP3331629B2 (en) Catalyst for the production of nitriles from alkanes
JP3669077B2 (en) Nitrile production method
JP3536326B2 (en) Method for producing catalyst for nitrile production
JP4182237B2 (en) Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same
JPH06228073A (en) Production of nitrile
JP3168716B2 (en) Nitrile manufacturing method
JP2003511213A (en) Catalyst for catalytic oxidation of propane to acrylic acid, its production and use
JP3728762B2 (en) Nitrile production method
JP3353345B2 (en) Nitrile manufacturing method
JP3306950B2 (en) Nitrile manufacturing method
JPH07215925A (en) Production of nitrile
JP2002355556A (en) Catalyst for oxidation of alkyl benzenes and method for preparing aromatic aldehyde
JPH07215926A (en) Production of nitrile
JP2000001464A (en) Production of nitrile from alkane
JP3894986B2 (en) Ammoxidation catalyst and method for producing nitrile using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees