JPH0520809B2 - - Google Patents

Info

Publication number
JPH0520809B2
JPH0520809B2 JP59134943A JP13494384A JPH0520809B2 JP H0520809 B2 JPH0520809 B2 JP H0520809B2 JP 59134943 A JP59134943 A JP 59134943A JP 13494384 A JP13494384 A JP 13494384A JP H0520809 B2 JPH0520809 B2 JP H0520809B2
Authority
JP
Japan
Prior art keywords
emulsion
magnetic
ferromagnetic metal
thin film
glass transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59134943A
Other languages
Japanese (ja)
Other versions
JPS6113427A (en
Inventor
Kazunobu Chiba
Takashi Kishi
Takahiro Kawana
Kazumine Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP13494384A priority Critical patent/JPS6113427A/en
Publication of JPS6113427A publication Critical patent/JPS6113427A/en
Publication of JPH0520809B2 publication Critical patent/JPH0520809B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

〔産業䞊の利甚分野〕 本発明は蒞着、むオンプレヌテむング、スパツ
タリング等によ぀お非磁性支持䜓䞊に匷磁性金属
薄膜を圢成しおなるいわゆる匷磁性金属薄膜型の
磁気蚘録媒䜓に関するものである。 〔背景技術ずその問題点〕 埓来より磁気蚘録媒䜓ずしおは、非磁性支持䜓
䞊に−Fe2O3、Coを含有する−Fe2O3、
Fe3O4、Coを含有するFe3O4、−Fe2O3ず
Fe3O4のベルトラむド化合物、Coを含有するベル
トラむド化合物、CrO2等の酞化物磁性粉末ある
いはFe、Co、Ni等を䞻成分ずする合金磁性粉末
等の粉末磁性材料を塩化ビニル・酢酞ビニル共重
合䜓、ポリ゚ステル暹脂、ポリりレタン暹脂等の
有機バむンダヌ䞭に分散せしめ、塗垃、也燥させ
る塗垃型の磁気蚘録媒䜓が広く䜿甚されおきおい
る。 近幎高密床磁気蚘録ぞの芁求の高たりず共に、
非磁性支持䜓䞊に匷磁性金属からなる金属薄膜を
真空蒞着法、スパツタリング法、むオンブレヌテ
むング法、メツキ法の手法を甚いお盎接被着圢成
した匷磁性薄膜型磁気蚘録媒䜓が泚目を集めおい
る。この匷磁性金属薄膜型磁気蚘録媒䜓は抗磁力
Hcや残留磁束密床Brが倧きいばかりでなく、磁
性局の厚みを極めお薄くするこずが可胜であるた
め、蚘録枛磁や再生時の厚み損倱が著しく小さい
こず、磁性局䞭に非磁性材である有機バむンダヌ
を混入する必芁がないため磁性材料の充填密床を
高めるこずができるこず等、磁気特性の点で数々
の利点を有しおいる。 ずころでこの皮の磁気蚘録媒䜓にあ぀おは、䞊
蚘匷磁性金属薄膜を圢成する手段ずしお真空蒞着
法等を甚いるため非磁性支持䜓であるベヌスフむ
ルムに熱的損傷を受け易く、たたこのベヌスフむ
ルム䞊に蒞発金属原子が再結晶しお薄膜ずなる際
に収瞮しお内郚応力が発生し、匷磁性金属薄膜が
内偎ずなるように凹状にカヌルしおしたうずいう
欠点を有しおいる。このようなカヌルが生ずる
ず、この磁気蚘録媒䜓ず磁気ヘツドの圓りが悪く
な぀お、再生出力が䜎䞋しおした぀たり巻き乱れ
が生じたりする。 そこで埓来、䞊述のようなカヌルを解消するた
めに皮々の方法が提案されおいる。 䟋えば磁性薄膜被着埌、応力を加え磁性薄膜に
皮のヒビ割れを生じさせ歪応力を緩和させるこ
ずが特開昭53−83706号、特開昭53−104204号公
報等に開瀺されおいる。たた磁性薄膜被着埌、基
板に熱凊理を行぀お基板偎を収瞮させるこずによ
り応力緩和させるこずが特開昭57−16032号公報
等に開瀺されおいる。たた磁気蚘録媒䜓の裏面
偎、すなわち磁性局ず反察偎にバツクコヌト局を
蚭けるこずにより応力緩和させるこずが特開昭56
−11622号、特開昭56−16939号公報等に開瀺され
おいる。 しかしながらこれらの方法はいずれも成膜の際
のカヌルを防止できるものではなく、生産性その
他の点で欠点が倚い。 尚蒞着以倖のその他の被着法、スパツタリン
グ、むオンプレヌテむング等によるずきにも、成
膜の際のカヌルは極めお倧きな問題であり、その
十分な防止策は未だ実珟しおいない。 たた䞊蚘匷磁性金属薄膜型磁気蚘録媒䜓にあ぀
おは、磁性局である匷磁性金属を真空薄膜圢成技
術により䜜補するため、その衚面が極めお平滑性
に優れたものずなり、いわゆる鏡面状態ずなるこ
ずが知られおいる。 このように磁性局の衚面平滑性が良奜なものず
なるず、䟋えばスペヌシングロス等の点では有利
であるが、走行性や耐久性の面で支障をきたす虞
れがある。すなわち、䞊蚘磁性局の衚面が平滑に
なり過ぎるず、䟋えば磁気ヘツドやガむドポス
ト、回転ヘツド甚シリンダヌ等ずの接觊郚におい
お、凝着珟象いわゆるはり぀きが起こりやす
くなり、たた実質的な接觊面積が倧きいこずから
摩擊係数が倧きなものずなる等、走行性が極めお
悪化し、これに䌎な぀お耐久性も䜎䞋しおした
う。 〔発明の目的〕 本発明は、䞊述の埓来の実情に鑑みお提案され
たものであ぀お、カヌルがなく、磁気ヘツドや回
転ヘツド甚シリンダヌ等ずの接觊郚分においお安
定な走行性が埗られ、容易に衚面粗床のコントロ
ヌルを図るこずが可胜な磁気蚘録媒䜓を提䟛する
こずを目的ずするものである。 〔問題点を解決するための手段〕 すなわち本発明は、非磁性支持䜓䞊にガラス転
移点が30℃以䞋の゚マルゞペンずガラス転移点が
50℃以䞊の゚マルゞペンを塗垃し、前蚘ガラス転
移点が30℃以䞋の゚マルゞペンを連続皮膜ずし前
蚘ガラス転移点が50℃以䞊の゚マルゞペンよりな
る粒状突起を10×104個mm2〜2000×104個mm2な
る粒子密床で有する䞋塗局を圢成し、該䞋塗局䞊
に匷磁性金属薄膜を圢成したこずを特城ずする磁
気蚘録媒䜓に関するものである。 本発明による磁気蚘録媒䜓を第図に瀺す。図
においおは非磁性支持䜓、は匷磁性金属薄
膜、はガラス転移点Tgが30℃以䞋の゚マ
ルゞペンにより圢成される連続皮膜、はガラス
転移点Tgが50℃以䞊の゚マルゞペンにより
圢成される粒状突起である。本発明による磁気蚘
録媒䜓の䞋塗局はガラス転移点以䞋、Tgずい
う30℃以䞋の゚マルゞペンずTg50℃以䞊の゚
マルゞペンによ぀お構成され、Tg30℃以䞋の゚
マルゞペンは連続皮膜を圢成し、たたTg50℃
以䞊の゚マルゞペンは粒状突起を圢成する。䞊
蚘連続皮膜は磁性局である匷磁性金属薄膜及
び非磁性支持䜓よりも柔らかく、匷磁性金属薄
膜ず非磁性支持䜓ずの間に生ずる応力集䞭を
分散し、応力緩和させるためカヌルの発生を抑制
するこずができる。たた䞊蚘粒状突起により匷
磁性金属薄膜衚面の面粗床を制埡するこずがで
き、磁気蚘録媒䜓の走行性を改善するこずができ
る。曎に䞊蚘䞋塗局により磁気蚘録媒䜓の耐久性
を改善するこずができる。 Tg30℃以䞋の゚マルゞペンによ぀お構成され
る連続皮膜の膜厚が厚くなる皋、カヌルの量は
少なくなるが、連続皮膜の膜厚が厚くなるず衚
面平滑性が悪くなり、磁気蚘録媒䜓の電磁倉換特
性が悪くなる。よ぀お䞊蚘連続皮膜の膜厚は
1Ό以䞋であるのが望たしい。 たたTg50℃以䞊の゚マルゞペンによ぀お構成
される粒状突起においおは、その粒子密床が重
芁であ぀お、䞊蚘粒状突起が䞋塗局衚面に10侇
〜2000䞇個mm2皋床圢成されおいるこずが望たし
い。䞊蚘粒状突起の密床が10䞇個mm2未満であ
るず耐久性の向䞊は望めず、たた2000䞇個mm2を
越えるず画質が䜎䞋する。曎に䞊蚘゚マルゞペン
に含たれる分散質埮粒子の粒埄は300〜1000Åの
範囲内であるこずが奜たしい。䞊蚘粒埄が300Å
未満であるず耐久性の向䞊は望めず、たた1000Å
を越えるず画質が䜎䞋する。 Tgが30℃以䞋の゚マルゞペンずしおは、䟋え
ばポリ酢酞ビニル゚マルゞペン、ポリアクリル酞
゚ステル゚マルゞペン、ポリりレタン゚マルゞペ
ン、スチレン−ブタゞ゚ン共重合䜓゚マルゞペ
ン、ポリむ゜プレン゚マルゞペン、アクリロニト
リル・ブタゞ゚ン共重合䜓゚マルゞペン等が挙げ
られる。 たたTgが50℃以䞊の゚マルゞペンずしおは、
䟋えばポリスチレン゚マルゞペン、ポリ−α−メ
チルスチレン゚マルゞペン、ポリ塩化ビニル゚マ
ルゞペン、ポリメチルメタクリレヌト゚マルゞペ
ン、ポリアクリロニトリル゚マルゞペン等が挙げ
られる。 非磁性支持䜓の玠材ずしおは、ポリ゚チレン
テレフタレヌト等のポリ゚ステル類、ポリ゚チレ
ン、ポリプロピレン等のポリオレフむン類、セル
ロヌストリアセテヌト、セルロヌスダむアセテヌ
ト、セルロヌスアセテヌトブチレヌト等のセルロ
ヌス誘導䜓、ポリ塩化ビニル、ポリ塩化ビニリデ
ン等のビニル系暹脂、ポリカヌボネヌト、ポリむ
ミド、ポリアミドむミド等のプラスチツク等が挙
げられる。たた䞊蚘非磁性支持䜓の圢態ずしお
は、フむルム、テヌプ、シヌト、デむスク、カヌ
ド、ドラム等のいずれでもよい。 匷磁性金属薄膜の材料ずしおは、Fe、Co、
Ni等の金属あるいはCo−Ni合金、Fe−Co合金、
Fe−Ni合金、Fe−Co−Ni合金、Fe−Co−合
金、Co−Ni−Fe−合金あるいはこれらにCr、
Al等の金属が含有されたもの等が挙げられる。 䞊蚘匷磁性金属薄膜材料の被着手段ずしおは、
真空蒞着法、むオンプレヌテむング法、スパツタ
リング法等が挙げられる。䞊蚘真空蒞着法は、
10-4〜10-8Torrの真空䞋で䞊蚘匷磁性金属材料
を抵抗加熱、高呚波加熱、電子ビヌム加熱等によ
り蒞発させ非磁性支持䜓䞊に蒞発金属匷磁性
金属材料を沈着するずいうものであり、斜方蒞
着法及び垂盎蒞着法に倧別される。䞊蚘斜方蒞着
法は、高い抗磁力を埗るため非磁性支持䜓に察
しお䞊蚘匷磁性金属材料を斜め蒞着するものであ
぀お、より高い抗磁力を埗るために酞玠雰囲気䞭
で䞊蚘蒞着を行なうものも含たれる。䞊蚘垂盎蒞
着法は、蒞着効率や生産性を向䞊し、か぀高い抗
磁力を埗るために非磁性支持䜓䞊にあらかじめ
Bi、Sb、Pb、Sn、Ga、In、Cd、Ge、Si、Tl等
の䞋地金属局を圢成しおおき、この䞋地金属局䞊
に䞊蚘匷磁性金属材料を垂盎に蒞着するずいうも
のである。䞊蚘むオンプレヌテむング法も真空蒞
着法の䞀皮であり、10-4〜10-3Torrの䞍掻性ガ
ス雰囲気䞭でDCグロヌ攟電、RFグロヌ攟電を起
こし、攟電䞭で䞊蚘匷磁性金属を蒞発させるずい
うものである。䞊蚘スパツタリング法は、10-3〜
10-1Torrのアルゎンガスを䞻成分ずする雰囲気
䞭でグロヌ攟電を起こし、生じたアルゎンむオン
でタヌゲツト衚面の原子をたたき出すずいうもの
であり、グロヌ攟電の方法により盎流極、極
スパツタヌ法や、高呚波スパツタヌ法、たたマグ
ネトロン攟電を利甚したマグネトロンスパツタヌ
法等がある。 たた磁気蚘録媒䜓の走行性を改善するために、
前述した匷磁性金属薄膜衚面に最滑剀局を圢成
せしめるこずも可胜である。 最滑剀ずしおは、脂肪酞、脂肪酞゚ステル、脂
肪酞アミド、金属石ケン、脂肪族アルコヌル、パ
ラフむン、シリコヌン、フツ玠系界面掻性剀等が
䜿甚でき、最滑剀の塗垃量は〜1000mgm2であ
るのが奜たしい。 脂肪酞ずしおは、ラりリン酞、ミリスチン酞、
パルミチン酞、ステアリン酞、ベヘン酞、オレむ
ン酞、リノヌル酞、リノレン酞等の炭玠数が12個
以䞊のものが䜿甚できる。 脂肪酞゚ステルずしおは、ステアリン酞゚チ
ル、ステアリン酞ブチル、ステアリン酞アミル、
ステアリン酞モノグリセリド、オレむン酞モノグ
リセリド等が䜿甚できる。 脂肪酞アミドずしおは、カプロン酞アミド、カ
プリン酞アミド、ラりリン酞アミド、パルミチン
酞アミド、ステアリン酞アミド、ベヘン酞アミ
ド、オレむン酞アミド、リノヌル酞アミド、メチ
レンビスステアリン酞アミド、゚チレンビスステ
アリン酞アミド等が䜿甚できる。 金属石ケンずしおは、ラりリン酞、ミリスチン
酞、パルミチン酞、ステアリン酞、ベヘン酞、オ
レむン酞、リノヌル酞、リノレン酞等のZn、Pb、
Ni、Co、Fe、Al、Mg、Sr、Cu等ずの塩、ラり
リル、パルミチン、ミリスチル、ステアリル、ベ
ヘニル、オレむル、リノヌル、リノレン等のスル
ホン酞ず䞊蚘金属ずの塩等が䜿甚できる。 脂肪族アルコヌルずしおは、セチルアルコヌ
ル、ステアリルアルコヌル等が䜿甚できる。 パラフむンずしおは、−ノナデカン、−ト
リデカン、−ドコサン等の飜和炭化氎玠が䜿甚
できる。 シリコヌンずしおは、氎玠がアルキル基たたは
プニル基で郚分眮換されたポリシロキサン及び
それらを脂肪酞、脂肪族アルコヌル、脂肪酞アミ
ド等で倉性したもの等が䜿甚できる。 フツ玠系界面掻性剀ずしおは、パヌフロロアル
キルカルボン酞及びパヌフロロアルキルルホン酞
ずNa、、Mg、Zn、Al、Fe、Co、Ni等ずの
塩、パヌフロロアルキルリン酞゚ステル、パヌフ
ロロアルキルベタむン、パヌフロロアルキルトリ
メチルアンモニりム塩、パヌフロロ゚チレンオキ
サむド、パヌフロロアルキル脂肪族゚ステル等が
䜿甚できる。 〔実斜䟋〕 以䞋本発明の具䜓的な実斜䟋に぀いお説明する
が、本発明がこの実斜䟋に限定されるものでない
こずは蚀うたでもない。 実斜䟋  厚さ12Όのポリ゚チレンテレフタレヌトフむ
ルム䞊に、ガラス転移点が29℃のポリ酢酞ビニル
゚マルゞペンず粒埄が300Åでガラス転移点が105
℃のポリメチルメタクリレヌト゚マルゞペンをノ
ルマルプロピル・アルコヌルを60重量含有する
氎・ノルマルプロピルアルコヌル混合液に垌釈さ
せたものを塗垃し、ポリメチルメタクリレヌトの
粒子密床が200䞇個mm2で、連続皮膜の膜厚が200
Åである䞋塗局を圢成した。 次に䞊蚘䞋塗局䞊に真空蒞着装眮を甚いおコバ
ルトCoを入射角50°〜90°で斜方蒞着し、膜厚玄
1300Åの匷磁性金属薄膜を圢成したサンプルテヌ
プを䜜成した。 実斜䟋  厚さ12Όのポリ゚チレンテレフタレヌトフむ
ルム䞊に、ガラス転移点が℃のポルアクリル酞
゚ステル゚マルゞペンず粒埄が300Åでガラス転
移点が100℃のポリスチレン゚マルゞペンをノル
マルプロピルアルコヌルを60重量含有する氎・
ノルマルプロピルアルコヌル混合液に垌釈させた
ものを塗垃し、ポリスチレンの粒子密床が400侇
個mm2で、連続皮膜の膜厚が200Åである䞋塗局
を圢成した。 次いで実斜䟋ず同様の方法によりサンプルテ
ヌプを䜜成した。 実斜䟋  厚さ12Όのポリ゚チレンテレフタレヌトフむ
ルム䞊にガラス転移点が−20℃のポル゚ステル゚
マルゞペンず粒埄が300Åでガラス転移点が100℃
のポリスチレン゚マルゞペンをノルマルプロピル
アルコヌル混合液に垌釈させたものを塗垃し、ポ
リスチレンの粒子密床が500䞇個mm2で、連続皮
膜の膜厚が200Åである䞋塗局を圢成した。 次いで実斜䟋ず同様の方法によりサンプルテ
ヌプを䜜成した。 比范䟋 厚さ12Όのポリ゚チレンテレフタレヌトフむ
ルム䞊に、真空蒞着装眮を甚いおコバルトCoを
入射角50°〜90°で斜方蒞着し、膜厚玄1300Åの匷
磁性金属薄膜を圢成しサンプルテヌプを䜜成し
た。 䞊述の各実斜䟋及び比范䟋で埗られたサンプル
テヌプに぀いお、カヌル量、スチル特性及び画質
を枬定したずころ、次衚に瀺すような結果が埗ら
れた。尚カヌル量は1/2むンチ幅の磁気蚘録媒䜓
における第図䞭で瀺す量を枬定し、スチル特
性はサンプルテヌプに4.2MHzの映像信号を蚘録
し、この再生出力が50に枛衰するたでの時間ず
しお枬定した。
[Industrial Application Field] The present invention relates to a so-called ferromagnetic metal thin film type magnetic recording medium in which a ferromagnetic metal thin film is formed on a nonmagnetic support by vapor deposition, ion plating, sputtering, etc. . [Background technology and its problems] Traditionally, magnetic recording media have been made of r-Fe 2 O 3 , Co-containing r-Fe 2 O 3 , Co-containing r-Fe 2 O 3 ,
Fe 3 O 4 , Co-containing Fe 3 O 4 , r-Fe 2 O 3 and
Powder magnetic materials such as bertolide compounds of Fe 3 O 4 , bertolide compounds containing Co, oxide magnetic powders such as CrO 2 , or alloy magnetic powders whose main components are Fe, Co, Ni, etc., are mixed with vinyl chloride and acetic acid. Coating-type magnetic recording media, in which magnetic recording media are dispersed in an organic binder such as a vinyl copolymer, polyester resin, or polyurethane resin, coated, and dried, have been widely used. In recent years, with the increasing demand for high-density magnetic recording,
Ferromagnetic thin-film magnetic recording media, in which a thin metal film made of ferromagnetic metal is directly deposited on a non-magnetic support using vacuum evaporation, sputtering, ion blating, or plating, have been attracting attention. There is. This ferromagnetic metal thin film magnetic recording medium has coercive force.
Not only does it have high Hc and residual magnetic flux density Br, but the thickness of the magnetic layer can be made extremely thin, so the thickness loss during recording demagnetization and reproduction is extremely small, and the magnetic layer is made of non-magnetic material. It has many advantages in terms of magnetic properties, such as the ability to increase the packing density of the magnetic material since it is not necessary to mix an organic binder. However, in this type of magnetic recording medium, since a vacuum evaporation method or the like is used as a means of forming the ferromagnetic metal thin film, the base film, which is a non-magnetic support, is susceptible to thermal damage. However, when the evaporated metal atoms recrystallize to form a thin film, they shrink and generate internal stress, which causes the ferromagnetic metal thin film to curl into a concave shape. When such curling occurs, the contact between the magnetic recording medium and the magnetic head becomes poor, resulting in a reduction in the reproduction output and the occurrence of irregular winding. Therefore, various methods have been proposed to eliminate the above-mentioned curls. For example, it is disclosed in JP-A-53-83706, JP-A-53-104204, etc. that stress is applied after a magnetic thin film is deposited to cause a type of crack in the magnetic thin film to relieve strain stress. . Further, it is disclosed in Japanese Patent Laid-Open No. 16032/1983 that stress is relaxed by subjecting the substrate to heat treatment to shrink the substrate side after the magnetic thin film is deposited. In addition, it has been proposed in Japanese Patent Application Laid-Open No. 56-1997 that stress can be alleviated by providing a back coat layer on the back side of the magnetic recording medium, that is, on the side opposite to the magnetic layer.
-11622, JP-A-56-16939, etc. However, none of these methods can prevent curling during film formation and has many drawbacks in terms of productivity and other aspects. Curling during film formation is also an extremely serious problem even when using other deposition methods other than vapor deposition, such as sputtering and ion plating, and a sufficient preventive measure has not yet been realized. In addition, in the case of the above-mentioned ferromagnetic metal thin film type magnetic recording medium, since the ferromagnetic metal that is the magnetic layer is manufactured using vacuum thin film formation technology, the surface thereof has extremely excellent smoothness, resulting in a so-called mirror surface state. It has been known. If the surface smoothness of the magnetic layer is improved in this manner, it is advantageous in terms of spacing loss, etc., but there is a risk that it may cause problems in terms of runnability and durability. In other words, if the surface of the magnetic layer becomes too smooth, adhesion (so-called sticking) will easily occur at the contact area with, for example, a magnetic head, guide post, rotating head cylinder, etc., and the actual contact area will be reduced. Since the friction coefficient is large, running properties are extremely deteriorated, and durability is also reduced accordingly. [Object of the Invention] The present invention has been proposed in view of the above-mentioned conventional situation, and is free from curling and provides stable running performance at the contact portion with magnetic heads, rotary head cylinders, etc. The object of the present invention is to provide a magnetic recording medium whose surface roughness can be easily controlled. [Means for solving the problem] That is, the present invention provides an emulsion with a glass transition point of 30°C or less and an emulsion with a glass transition point of 30°C or less on a non-magnetic support.
An emulsion with a temperature of 50°C or higher is applied, and the emulsion with a glass transition point of 30°C or lower is used as a continuous film, and granular protrusions made of the emulsion with a glass transition point of 50°C or higher are formed at 10×10 4 pieces/mm 2 to 2000×10 The present invention relates to a magnetic recording medium characterized in that an undercoat layer having a particle density of 4 particles/mm 2 is formed, and a ferromagnetic metal thin film is formed on the undercoat layer. A magnetic recording medium according to the present invention is shown in FIG. In the figure, 1 is a non-magnetic support, 2 is a ferromagnetic metal thin film, 3 is a continuous film formed from an emulsion with a glass transition point (Tg) of 30°C or lower, and 4 is a continuous film formed of an emulsion with a glass transition point (Tg) of 50°C or higher. These are granular protrusions formed by emulsion. The undercoat layer of the magnetic recording medium according to the present invention is composed of an emulsion with a glass transition point (hereinafter referred to as Tg) of 30°C or lower and an emulsion with a Tg of 50°C or higher, and the emulsion with a Tg of 30°C or lower forms a continuous film 3, Also Tg50℃
The above emulsion forms granular protrusions 4. The continuous film 3 is softer than the ferromagnetic metal thin film 2 and the non-magnetic support 1, which are magnetic layers, and is used to disperse stress concentration generated between the ferromagnetic metal thin film 2 and the non-magnetic support 1 and to relieve the stress. It is possible to suppress the occurrence of curls. Moreover, the surface roughness of the surface of the ferromagnetic metal thin film 2 can be controlled by the granular projections 4, and the running properties of the magnetic recording medium can be improved. Furthermore, the durability of the magnetic recording medium can be improved by the undercoat layer. The thicker the continuous film 3 made of emulsion with a Tg of 30°C or less, the less the amount of curl. However, as the continuous film 3 becomes thicker, the surface smoothness deteriorates and Electromagnetic conversion characteristics deteriorate. Therefore, the film thickness of the continuous film 3 is
It is desirable that the thickness is 1 ÎŒm or less. In addition, for the granular protrusions 4 made of emulsion with a Tg of 50°C or more, the particle density is important, and the granular protrusions 4 are formed on the surface of the undercoat layer at about 100,000 to 20 million pieces/mm 2 . It is desirable to be present. If the density of the granular projections 4 is less than 100,000 pieces/mm 2 , no improvement in durability can be expected, and if it exceeds 20 million pieces/mm 2 , the image quality will deteriorate. Further, the particle size of the dispersoid particles contained in the emulsion is preferably within the range of 300 to 1000 Å. The above particle size is 300Å
If it is less than 1000Å, no improvement in durability can be expected.
Exceeding this will reduce the image quality. Examples of emulsions with a Tg of 30°C or less include polyvinyl acetate emulsion, polyacrylic acid ester emulsion, polyurethane emulsion, styrene-butadiene copolymer emulsion, polyisoprene emulsion, acrylonitrile-butadiene copolymer emulsion, etc. Can be mentioned. In addition, as an emulsion with a Tg of 50℃ or higher,
Examples include polystyrene emulsion, poly-α-methylstyrene emulsion, polyvinyl chloride emulsion, polymethyl methacrylate emulsion, and polyacrylonitrile emulsion. Materials for the non-magnetic support 1 include polyesters such as polyethylene terephthalate, polyolefins such as polyethylene and polypropylene, cellulose derivatives such as cellulose triacetate, cellulose diacetate, and cellulose acetate butyrate, polyvinyl chloride, polyvinylidene chloride, etc. Examples include plastics such as vinyl resin, polycarbonate, polyimide, and polyamideimide. The nonmagnetic support may be in any form such as a film, tape, sheet, disk, card, or drum. Materials for the ferromagnetic metal thin film 2 include Fe, Co,
Metals such as Ni or Co-Ni alloy, Fe-Co alloy,
Fe-Ni alloy, Fe-Co-Ni alloy, Fe-Co-B alloy, Co-Ni-Fe-B alloy or these with Cr,
Examples include those containing metals such as Al. The means for depositing the ferromagnetic metal thin film material is as follows:
Examples include a vacuum evaporation method, an ion plating method, and a sputtering method. The above vacuum evaporation method is
The ferromagnetic metal material is evaporated by resistance heating, high frequency heating, electron beam heating, etc. under a vacuum of 10 -4 to 10 -8 Torr, and the evaporated metal (ferromagnetic metal material) is deposited on the non-magnetic support 1. It is broadly divided into oblique deposition method and vertical deposition method. The above-mentioned oblique vapor deposition method is a method in which the above-mentioned ferromagnetic metal material is obliquely vapor-deposited on the non-magnetic support 1 in order to obtain a high coercive force. It also includes things that are done. In the vertical evaporation method described above, in order to improve the evaporation efficiency and productivity, and to obtain high coercive force,
A base metal layer such as Bi, Sb, Pb, Sn, Ga, In, Cd, Ge, Si, Tl, etc. is formed in advance, and the above-mentioned ferromagnetic metal material is vertically deposited on this base metal layer. . The above-mentioned ion plating method is also a type of vacuum evaporation method, and involves generating DC glow discharge and RF glow discharge in an inert gas atmosphere of 10 -4 to 10 -3 Torr, and evaporating the above-mentioned ferromagnetic metal during the discharge. It is something. The above sputtering method is 10 -3 ~
A glow discharge is generated in an atmosphere mainly composed of argon gas at 10 -1 Torr, and the generated argon ions are used to knock out atoms on the target surface. , high-frequency sputtering method, and magnetron sputtering method using magnetron discharge. In addition, in order to improve the running properties of magnetic recording media,
It is also possible to form a lubricant layer on the surface of the ferromagnetic metal thin film 2 described above. As the lubricant, fatty acids, fatty acid esters, fatty acid amides, metal soaps, aliphatic alcohols, paraffins, silicones, fluorine surfactants, etc. can be used, and the amount of the lubricant applied is 1 to 1000 mg/ m2 . is preferable. Fatty acids include lauric acid, myristic acid,
Those having 12 or more carbon atoms such as palmitic acid, stearic acid, behenic acid, oleic acid, linoleic acid, and linolenic acid can be used. Fatty acid esters include ethyl stearate, butyl stearate, amyl stearate,
Stearic acid monoglyceride, oleic acid monoglyceride, etc. can be used. Examples of fatty acid amides include caproic acid amide, capric acid amide, lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, oleic acid amide, linoleic acid amide, methylene bisstearic acid amide, ethylene bis stearic acid amide, etc. Can be used. Metal soaps include Zn, Pb, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, linoleic acid, linolenic acid, etc.
Salts with Ni, Co, Fe, Al, Mg, Sr, Cu, etc., salts of sulfonic acids such as lauryl, palmitin, myristyl, stearyl, behenyl, oleyl, linole, linolenic, etc. and the above metals, etc. can be used. As the aliphatic alcohol, cetyl alcohol, stearyl alcohol, etc. can be used. As paraffin, saturated hydrocarbons such as n-nonadecane, n-tridecane, n-docosane, etc. can be used. As silicones, polysiloxanes in which hydrogen is partially substituted with alkyl groups or phenyl groups, and those modified with fatty acids, aliphatic alcohols, fatty acid amides, etc. can be used. Examples of fluorosurfactants include salts of perfluoroalkylcarboxylic acids and perfluoroalkylsulfonic acids with Na, K, Mg, Zn, Al, Fe, Co, Ni, etc., perfluoroalkyl phosphate esters, and perfluoroalkyl phosphates. Alkyl betaines, perfluoroalkyltrimethylammonium salts, perfluoroethylene oxide, perfluoroalkyl aliphatic esters, etc. can be used. [Examples] Specific examples of the present invention will be described below, but it goes without saying that the present invention is not limited to these examples. Example 1 A polyvinyl acetate emulsion with a glass transition point of 29°C and a polyvinyl acetate emulsion with a glass transition point of 105 and a particle size of 300 Å were placed on a 12 ÎŒm thick polyethylene terephthalate film.
℃ polymethyl methacrylate emulsion diluted with a mixture of water and normal propyl alcohol containing 60 % by weight of normal propyl alcohol. Film thickness is 200
An undercoat layer of Å was formed. Next, cobalt Co was obliquely evaporated onto the undercoat layer using a vacuum evaporation device at an incident angle of 50° to 90°, and the film thickness was approx.
A sample tape with a 1300 Å ferromagnetic metal thin film was created. Example 2 On a polyethylene terephthalate film with a thickness of 12 ÎŒm, a polyacrylate emulsion with a glass transition point of 0°C and a polystyrene emulsion with a particle size of 300 Å and a glass transition point of 100°C were mixed with 60% by weight of n-propyl alcohol. Water contained
A diluted solution of normal propyl alcohol mixture was applied to form an undercoat layer with a polystyrene particle density of 4 million particles/mm 2 and a continuous film thickness of 200 Å. Next, a sample tape was prepared in the same manner as in Example 1. Example 3 A polyester emulsion with a glass transition temperature of -20°C and a polyester emulsion with a particle size of 300 Å and a glass transition temperature of 100°C were placed on a polyethylene terephthalate film with a thickness of 12 ÎŒm.
A polystyrene emulsion diluted with a n-propyl alcohol mixture was applied to form an undercoat layer with a polystyrene particle density of 5 million particles/mm 2 and a continuous film thickness of 200 Å. Next, a sample tape was prepared in the same manner as in Example 1. Comparative example Cobalt Co was obliquely evaporated onto a 12 ÎŒm thick polyethylene terephthalate film at an incident angle of 50° to 90° using a vacuum evaporator to form a ferromagnetic metal thin film with a thickness of approximately 1300 Å, and a sample tape was created. did. When the amount of curl, still characteristics, and image quality of the sample tapes obtained in the above-mentioned Examples and Comparative Examples were measured, the results shown in the following table were obtained. The amount of curl was measured by the amount indicated by h in Figure 2 on a 1/2 inch wide magnetic recording medium, and the still characteristics were measured by recording a 4.2MHz video signal on a sample tape, and the playback output was attenuated to 50%. It was measured as the time until.

〔発明の効果〕〔Effect of the invention〕

䞊述の実斜䟋の説明からも明らかなように、本
発明においおは、ガラス転移点が30℃以䞋の゚マ
ルゞペンずガラス転移点が50℃以䞊の゚マルゞペ
ンにより䞋塗局を圢成しおいるので、カヌルの解
消ず衚面粗床のコントロヌルが同時に達成され、
走行性や磁気ヘツドぞの圓りが極めお優れた磁気
蚘録媒䜓が埗られるのである。
As is clear from the description of the above examples, in the present invention, the undercoat layer is formed of an emulsion with a glass transition point of 30°C or lower and an emulsion with a glass transition point of 50°C or higher, so that curling is prevented. and control of surface roughness is achieved at the same time.
A magnetic recording medium with excellent running properties and excellent contact with a magnetic head can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は本発明を適甚した磁気蚘録媒䜓の構成
を瀺す芁郚拡倧断面図であり、第図は匷磁性金
属薄膜型の磁気蚘録媒䜓のカヌル状態を説明する
抂略断面図である。   非磁性支持䜓、  匷磁性金属薄膜、
  連続皮膜䞋塗局、  粒状突起䞋
塗局。
FIG. 1 is an enlarged sectional view of a main part showing the structure of a magnetic recording medium to which the present invention is applied, and FIG. 2 is a schematic sectional view illustrating a curled state of a ferromagnetic metal thin film type magnetic recording medium. 1...Nonmagnetic support, 2...Ferromagnetic metal thin film,
3... Continuous film (undercoat layer), 4... Granular protrusions (undercoat layer).

Claims (1)

【特蚱請求の範囲】[Claims]  非磁性支持䜓䞊にガラス転移点が30℃以䞋の
゚マルゞペンずガラス転移点が50℃以䞊の゚マル
ゞペンを塗垃し、前蚘ガラス転移点が30℃以䞋の
゚マルゞペンを連続皮膜ずし前蚘ガラス転移点が
50℃以䞊の゚マルゞペンよりなる粒状突起を10×
104個mm2〜2000×104個mm2なる粒子密床で有す
る䞋塗局を圢成し、該䞋塗局䞊に匷磁性金属薄膜
を圢成したこずを特城ずする磁気蚘録媒䜓。
1. An emulsion with a glass transition point of 30°C or lower and an emulsion with a glass transition point of 50°C or higher are coated on a non-magnetic support, and the emulsion with a glass transition point of 30°C or lower is used as a continuous coating.
10x granular projections made of emulsion at 50℃ or higher
1. A magnetic recording medium comprising: an undercoat layer having a particle density of 10 4 particles/mm 2 to 2000×10 4 particles/mm 2 ; and a ferromagnetic metal thin film formed on the undercoat layer.
JP13494384A 1984-06-29 1984-06-29 Magnetic recording medium Granted JPS6113427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13494384A JPS6113427A (en) 1984-06-29 1984-06-29 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13494384A JPS6113427A (en) 1984-06-29 1984-06-29 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6113427A JPS6113427A (en) 1986-01-21
JPH0520809B2 true JPH0520809B2 (en) 1993-03-22

Family

ID=15140181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13494384A Granted JPS6113427A (en) 1984-06-29 1984-06-29 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6113427A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05314454A (en) * 1992-05-08 1993-11-26 Fuji Photo Film Co Ltd Magnetic recording medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919230A (en) * 1982-07-21 1984-01-31 Fuji Photo Film Co Ltd Magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919230A (en) * 1982-07-21 1984-01-31 Fuji Photo Film Co Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPS6113427A (en) 1986-01-21

Similar Documents

Publication Publication Date Title
US5370928A (en) Magnetic recording medium
JPH0132572B2 (en)
JP2897840B2 (en) Magnetic recording media
JP2581090B2 (en) Magnetic recording media
JP2590482B2 (en) Magnetic recording media
JPH0520809B2 (en)
JPH0522966B2 (en)
JPS6113437A (en) Magnetic recording medium
JPH0685211B2 (en) Method of manufacturing magnetic recording medium
JPS5948826A (en) Magnetic recording medium
JP3167128B2 (en) Magnetic recording media
JPS6182323A (en) Magnetic recording medium
JPH0357532B2 (en)
JPS6182322A (en) Magnetic recording medium
JP3167129B2 (en) Magnetic recording media
JPS5942637A (en) Magnetic recording medium
JPS6182326A (en) Magnetic recording medium
JPS61178719A (en) Magnetic recording medium
JPS62102414A (en) Magnetic recording medium
JPS6182324A (en) Magnetic recording medium
JPS619822A (en) Magnetic recording medium
JPH0762908B2 (en) Magnetic recording medium
JPH0758537B2 (en) Magnetic recording medium
JPS61178721A (en) Magnetic recording medium
JPH01319120A (en) Magnetic recording medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term