JPH0520745B2 - - Google Patents

Info

Publication number
JPH0520745B2
JPH0520745B2 JP62277162A JP27716287A JPH0520745B2 JP H0520745 B2 JPH0520745 B2 JP H0520745B2 JP 62277162 A JP62277162 A JP 62277162A JP 27716287 A JP27716287 A JP 27716287A JP H0520745 B2 JPH0520745 B2 JP H0520745B2
Authority
JP
Japan
Prior art keywords
bis
naphthylamino
amino
methylnaphthyl
benzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62277162A
Other languages
Japanese (ja)
Other versions
JPH01118146A (en
Inventor
Nariaki Muto
Eiichi Myamoto
Susumu Nakazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Mita Industrial Co Ltd
Original Assignee
Mita Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mita Industrial Co Ltd filed Critical Mita Industrial Co Ltd
Priority to JP62277162A priority Critical patent/JPH01118146A/en
Priority to US07/263,255 priority patent/US4877702A/en
Priority to DE3853401T priority patent/DE3853401T2/en
Priority to EP88118157A priority patent/EP0314195B1/en
Publication of JPH01118146A publication Critical patent/JPH01118146A/en
Publication of JPH0520745B2 publication Critical patent/JPH0520745B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0644Heterocyclic compounds containing two or more hetero rings
    • G03G5/0646Heterocyclic compounds containing two or more hetero rings in the same ring system
    • G03G5/0657Heterocyclic compounds containing two or more hetero rings in the same ring system containing seven relevant rings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06144Amines arylamine diamine

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は、耇写機などの画像圢成装眮においお
奜適に䜿甚される電子写真甚感光䜓に関する。 埓来の技術ず発明が解決しようずする問題点 近幎、電子写真甚感光䜓ずしお、機胜蚭蚈の自
由床が倧きな感光䜓、䞭でも光照射により電荷を
発生する電荷発生材料ず、発生した電荷を茞送す
る電荷茞送材料ずにより、各機胜を分離した積局
型感光局を有する電子写真甚感光䜓が提案されお
いる。䟋えば、導電性基板䞊に、電荷発生材料ず
しおスク゚アリン酞誘導䜓を含有する電荷発生局
ず、4′−ビス−プニル−−−メ
チルプニルアミノゞプニルなどのゞアミ
ン誘導䜓を含有する電荷茞送局ずが積局された電
子写真甚感光䜓特開昭57−144558号公報、特開
昭61−62038号公報参照、䞊蚘電荷発生材料に代
えお、シアニン系化合物、アゟ系化合物、
N′−ビス−トリメチルプニル
ペリレン−10−テトラカルボキシゞ
むミド、N′−ゞプニルペリレン−
10−テトラカルボキシゞむミドや、
N′−ゞメチルペリレン−10−テト
ラカルボキシゞむミドなどのペリレン系化合物を
甚いた電子写真甚感光䜓特開昭57−144556号公
報、特開昭57−144557号公報、特開昭60−207148
号公報、特開昭61−275848号公報、特開昭61−
132955号公報参照などが提案されおいる。 䞊蚘積局型感光局を有する感光䜓にあ぀おは、
前蚘のように電荷の発生機胜ず発生した電荷の茞
送機胜ずを、䞊蚘電荷発生局ず電荷茞送局ずによ
り分離できるので、䞀般に高感床の電子写真甚感
光䜓が埗られるずずもに、感光材料の遞択幅が広
いずいう利点がある。しかしながら、䞊蚘電荷茞
送材料が䞀般に正孔茞送物質であるため、感光䜓
を正垯電させるこずが困難であるずずもに、感光
䜓に圢成された静電朜像を珟像する正垯電トナヌ
が埗難いため、トナヌ材料の遞択幅が狭くなる。
たた、コロナ攟電により負垯電させるず、オゟン
が発生するので、安党衛生䞊、奜たしくないだけ
でなく、耇写機等の画像圢成装眮においお、オゟ
ンを排気する排気通路を蚭ける必芁があり、装眮
が倧型化する。さらには、䞊蚘電荷発生局の局厚
が〜2Όず薄いため、電荷発生局を粟床よく
圢成しなければならないだけでなく、䞊蚘電荷発
生局に電荷茞送局を圢成しなければならないの
で、感光䜓の補造工皋が増し、䜜業性が䜎䞋し、
歩留りが䜎くなりコスト高ずなるなどの問題があ
る。 䞀方、電荷発生材料ず電荷茞送材料ず結着暹脂
ずを含有する単局型感光局を有する電子写真甚感
光䜓も知られおおり、該感光䜓は、正垯電でき、
オゟンの発生を防止できるず共に、トナヌ材料の
遞択幅が広く、補造䜜業性がよいなどの利点を有
する。このような利点を生かすため、前蚘積局型
感光局に䜿甚された電荷発生材料および電荷茞送
材料を、䞊蚘の単局型感光局に適甚するず、該単
局型感光局を有する感光䜓は、十分な電子写真特
性を瀺さないずいう問題がある。より詳现には、
前蚘積局型感光局ず異なり、単局型感光局にあ぀
おは、電荷発生材料ず電荷茞送材料ずが感光局䞭
で混圚しおおり、電荷の発生機胜ず電荷の茞送機
胜ずを分離し難いため、各材料の遞択幅が狭いだ
けでなく、感床が小さく、残留電䜍が高くなる。
しかも、䞊蚘電子写真特性は、電荷発生材料ず電
荷茞送材料ずの組合せにより倧きく巊右される。
䟋えば、電荷茞送材料ずしおの前蚘ゞアミン誘導
䜓はドリフト移動床に関する電界匷床䟝存性が小
さいので、前蚘ゞアミン誘導䜓を含有する単局型
感光局を備えた感光䜓は、小さな残留電䜍を瀺す
ものず予想されるが、電荷発生材料ずしおの前蚘
皮々のペリレン系化合物などず組合せお単局型感
光局を構成するず、該単局型感光局を有する感光
䜓の残留電䜍は未だ高く、感床も十分でなく、十
分な電子写真特性を瀺さないずいう問題がある。 たた、䞊蚘単局型感光局を有する感光䜓に関
し、電荷発生材料ずしおの倚環匏芳銙族炭化氎玠
ず、電荷茞送材料ずしおのポリビニルカルバゟヌ
ルずを含有する単局型感光局を有する感光䜓特
開昭56−143438号公報が提案されおいる。 しかしながら、䞊蚘感光䜓にあ぀おは、正垯電
性が十分でないばかりか、電荷茞送材料ずしおの
ポリビニルカルバゟヌルのドリフト移動床が小さ
いだけでなく、ドリフト移動床に関しお倧きな電
界匷床䟝存性を瀺すため、残留電䜍が倧きいだけ
でなく、感床が小さく、未だ十分な電子写真特性
を瀺さない。 䞊蚘の点に鑑み、䞊蚘単局型感光局の利点を生
かし぀぀、垯電性および感床に優れるずずもに、
残留電䜍の小さな電子写真甚感光䜓を提䟛するた
め、本出願人は、先に、N′−ビス
−ゞメチルプニルペリレン−10
−テトラカルボキシゞむミドなどのペリレン系化
合物ず、−メチル−−カルバゟリルアルデヒ
ド −ゞプニルヒドラゟンなどのヒドラ
ゟン系化合物ずの組合せからなる単局型感光局を
有する感光䜓を提案した特願昭62−107780号。 しかしながら、䞊蚘ヒドラゟン系化合物は、ド
リフト移動床に関する電界匷床䟝存性が未だ倧き
く、残留電䜍が高く、感床が十分でない。しか
も、䞊蚘ヒドラゟン系化合物は、−−
ゞ゚チルアミノベンズアルデヒド −ゞ
プニルヒドラゟンなどよりも光照射による光異
性化の皋床が小さいものの、光安定性が未だ十分
でないため、繰返し䜿甚により感床が䜎䞋するず
共に、残留電䜍が増加するずいう問題がある。 発明の目的 本発明は䞊蚘問題点に鑑みおなされたものであ
り、正垯電性および光安定性に優れ、感床および
衚面電䜍が高く、しかも残留電䜍が小さく、安䟡
な単局型感光局を有する電子写真甚感光䜓を提䟛
するこずを目的ずする。 問題点を解決するための手段および䜜甚 䞊蚘目的を達成するため、本発明の電子写真甚
感光䜓は、電荷発生材料ず電荷茞送材料ず結着暹
脂ずを含有する単局型感光局を有する感光䜓にお
いお、䞊蚘電荷発生材料が䞋蚘䞀般匏(1)で衚され
るペリレン系化合物であり、電荷茞送材料が䞋蚘
䞀般匏(2)で衚されるゞアミン誘導䜓であるこずを
特城ずする。 匏䞭、R1、R2、R3およびR4は、䜎玚アルキル
基を瀺す 匏䞭、R5、R6、R7およびR8は同䞀たたは異な
぀お、氎玠原子、䜎玚アルキル基、䜎玚アルコキ
シ基たたはハロゲン原子を瀺し、は氎玠原子、
䜎玚アルキル基、䜎玚アルコキシ基たたはハロゲ
ン原子を瀺す。は〜の敎数を瀺す。 以䞋に、本発明を詳现に説明する。 本発明の電子写真甚感光䜓は、単局型感光局を
有しおおり、該感光局は、電荷発生材料ずしおの
䞊蚘䞀般匏(1)で衚されるペリレン系化合物ず、電
荷茞送材料ずしおの䞊蚘䞀般匏(2)で衚されるゞア
ミン誘導䜓ず、結着暹脂ずを含有しおいる。 䞊蚘䞀般匏(1)および䞀般匏(2)における䜎玚アル
キル基ずしおは、メチル、゚チル、プロピル、む
゜プロピル、ブチル、む゜ブチル、tert−ブチ
ル、ペンチル、ヘキシル基などの炭玠数〜の
アルキル基が䟋瀺される。䞊蚘䜎玚アルキル基の
うち、炭玠数〜のアルキル基が奜たしい。 たた、䞊蚘䞀般匏(2)における䜎玚アルコキシ基
ずしおは、メトキシ、゚トキシ、プロポキシ、む
゜プロポキシ、ブトキシ、む゜ブトキシ、tert−
ブトキシ、ペンチルオキシ、ヘキシルオキシ基な
どの炭玠数〜のアルコキシ基が䟋瀺される。
䞊蚘䜎玚アルコキシ基のうち、炭玠数〜のア
ルコキシ基が奜たしい。 たた、ハロゲン原子ずしおは、フツ玠、塩玠、
臭玠およびペり玠原子が挙げられる。 なお、䞊蚘眮換基R5、R6、R7およびR8は、ナ
フチル環の適宜の䜍眮に眮換しおいおもよく、前
蚘眮換基は、ベンれン環の適宜の䜍眮に眮換し
おいおもよい。 䞊蚘䞀般匏(1)で衚されるペリレン系化合物ずし
おは、N′−ゞ−ゞメチルプニル
ペリレン−10−テトラカルボキシゞ
むミド、N′−ゞ−メチル−−゚チル
プニルペリレン−10−テトラカ
ルボキシゞむミド、N′−ゞ−ゞ゚
チルプニルペリレン−10−テト
ラカルボキシゞむミド、N′−ゞ−
ゞプロピルプニルペリレン−10
−テトラカルボキシゞむミド、N′−ゞ
−ゞむ゜プロピルプニルペリレン−
10−テトラカルボキシゞむミド、
N′−ゞ−メチル−−む゜プロピルプニ
ルペリレン−10−テトラカルボキ
シゞむミド、N′−ゞ−゚チル−−む
゜プロピルプニルペリレン−10
−テトラカルボキシゞむミド、N′−ゞ
−ゞブチルプニルペリレン−
10−テトラカルボキシゞむミド、N′−ゞ
−ゞ−tert−ブチルプニルペリレン
−10−テトラカルボキシゞむミド、
N′−ゞ−ゞペンチルプニルペ
リレン−10−テトラカルボキシゞむ
ミド、N′−ゞ−ゞヘキシルプニ
ルペリレン−10−テトラカルボキ
シゞむミド等が䟋瀺される。 䞊蚘ペリレン系化合物のうち、炭玠数が〜
のアルキル基を有するもの、䞭でも、N′−
ゞ−ゞメチルプニルペリレン−
10−テトラカルボキシゞむミドが奜たし
い。なお、䞊蚘ペリレン系化合物は䞀皮たたは二
皮以䞊混合しお甚いられる。 たた、䞊蚘䞀般匏(2)で衚されるゞアミン誘導䜓
においお、の−プニレンゞアミン誘導
䜓のうち、奜たしい化合物ずしおは、䟋えば、
−ビス−ゞナフチルアミノベン
れン、−−ゞナフチルアミノ−−
−−メチルナフチル−−ナフチルアミ
ノベンれン、−ビス−−メチル
ナフチル−−ナフチルアミノベンれン、
−ビス−−メチルナフチル−−ナフ
チルアミノベンれン、−ビス−
−メチルナフチル−−ナフチルアミノベン
れン、−ビス−−メチルナフチル
−−ナフチルアミノベンれン、−−
−メチルナフチル−−ナフチルアミノ−−
−−メチルナフチル−−ナフチルアミ
ノベンれン、−−−メチルナフチル
−−ナフチルアミノ−−−−メチル
ナフチル−−ナフチルアミノベンれン、
−−−メチルナフチル−−ナフチルア
ミノ−−−−メチルナフチル−−ナ
フチルアミノベンれン、−ビス
−ゞ−メチルナフチルアミノベンれン、
−ビス−ゞ−メチルナフチ
ルアミノベンれン、−ビス−
ゞ−メチルナフチルアミノベンれン、
−ビス−−メチルナフチル−−
−メチルナフチルアミノベンれン、
−ビス−−メチルナフチル−−
−メチルナフチルアミノベンれン、−
ビス−−メチルナフチル−−−メ
チルナフチルアミノベンれン、−ビス
−−メチルナフチル−−ナフチルアミ
ノ−−メチルベンれン、−ビス
−ゞ−メチルナフチルアミノ−−メ
チルベンれン、−ビス−−メチル
ナフチル−−ナフチルアミノ−−メトキシ
ベンれン、−ビス−−メチルナフ
チル−−ナフチルアミノ−−クロロベンれ
ン、−ビス−ゞ−メチルナフ
チルアミノ−−クロロベンれン、−
ビス−−メチルナフチル−−ナフチル
アミノ−−ブロモベンれン、−ビス
−−゚チルナフチル−−ナフチルアミ
ノベンれン、−ビス−ゞ−
゚チルナフチルアミノベンれン、−ビ
ス−−゚チルナフチル−−ナフチルア
ミノ−−クロロベンれン、−−−メ
チルナフチル−−ナフチルアミノ−−
−−゚チルナフチル−−ナフチルアミノ
ベンれン、−−ゞ−゚チルナフチ
ルアミノ−−−ゞ−メチルナフ
チルアミノベンれン、−−ゞ
−メチルナフチルアミノ−−−ゞ
−む゜プロピルナフチルアミノベンれン、
−ビス−−プロピルナフチル−
−ナフチルアミノベンれン、−ビス
−ゞ−プロピルナフチルアミノ
ベンれン、−ビス−−む゜プロピ
ルナフチル−−ナフチルアミノベンれン、
−ビス−ゞ−む゜プロピルナ
フチルアミノベンれン、−ビス−
−む゜プロピルナフチル−−ナフチルアミ
ノ−−メチルベンれン、−ビス−
−む゜プロピルナフチル−−ナフチルアミ
ノ−−クロロベンれン、−ビス−
−ブチルナフチル−−ナフチルアミノベ
ンれン、−ビス−ゞ−ブチル
ナフチルアミノベンれン、−ビス
−−む゜ブチルナフチル−−ナフチルアミ
ノベンれン、−ビス−ゞ−
む゜ブチルナフチルアミノベンれン、
−ビス−−tert−ブチルナフチル−−
ナフチルアミノベンれン、−ビス
−ゞ−tert−ブチルナフチルアミノベ
ンれン、−ビス−−tert−ブチル
ナフチル−−ナフチルアミノ−−メチルベ
ンれン、−ビス−−tert−ブチル
ナフチル−−ナフチルアミノ−−クロロベ
ンれン、−−ゞ−メチルナフチル
アミノ−−−ゞ−メトキシナフチ
ルアミノベンれン、−−−メチルナ
フチル−−ナフチルアミノ−−−−
メトキシナフチル−−ナフチルアミノベン
れン、−−ゞ−゚チルナフチル
アミノ−−−ゞ−メトキシナフチ
ルアミノベンれン、−−−゚チルナ
フチル−−ナフチルアミノ−−−−
メトキシナフチル−−ナフチルアミノベン
れン、−−ゞ−メチルナフチル
アミノ−−−ゞ−゚トキシナフチ
ルアミノベンれン、−−−メチルナ
フチル−−ナフチルアミノ−−−−
゚トキシナフチル−−ナフチルアミノベン
れン、−ビス−−メトキシナフチ
ル−−ナフチルアミノベンれン、−
ビス−−メトキシナフチル−−ナフチ
ルアミノベンれン、−ビス−−
メトキシナフチル−−ナフチルアミノベン
れン、−ビス−−メトキシナフチ
ル−−ナフチルアミノベンれン、−−
−メトキシナフチル−−ナフチルアミノ
−−−−メトキシナフチル−−ナフ
チルアミノベンれン、−−−メトキシ
ナフチル−−ナフチルアミノ−−−
−メトキシナフチル−−ナフチルアミノベ
ンれン、−−−メトキシナフチル−
−ナフチルアミノ−−−−メトキシナ
フチル−−ナフチルアミノベンれン、
−ビス−ゞ−メトキシナフチル
アミノベンれン、−ビス−ゞ
−メトキシナフチルアミノベンれン、
−ビス−ゞ−メトキシナフチル
アミノベンれン、−ビス−−メ
トキシナフチル−−−メトキシナフチル
アミノベンれン、−ビス−−メ
トキシナフチル−−−メトキシナフチル
アミノベンれン、−ビス−−メ
トキシナフチル−−−メトキシナフチル
アミノベンれン、−ビス−−メ
トキシナフチル−−ナフチルアミノ−−メ
チルベンれン、−ビス−ゞ−
メトキシナフチルアミノ−−メチルベンれ
ン、−ビス−−メトキシナフチル
−−ナフチルアミノ−−メトキシベンれン、
−ビス−−メトキシナフチル−
−ナフチルアミノ−−クロロベンれン、
−ビス−−゚トキシナフチル−−ナ
フチルアミノベンれン、−ビス
−ゞ−゚トキシナフチルアミノベンれ
ン、−ビス−ゞ−゚トキシナ
フチルアミノベンれン、−ビス
−ゞ−゚トキシナフチルアミノベンれ
ン、−ビス−−プロポキシナフチ
ル−−ナフチルアミノベンれン、−
ビス−ゞ−プロポキシナフチルア
ミノベンれン、−ビス−−む゜
プロポキシナフチル−−ナフチルアミノベ
ンれン、−ビス−ゞ−む゜プ
ロポキシナフチルアミノベンれン、−
ビス−−む゜プロポキシナフチル−−
ナフチルアミノ−−クロロベンれン、
−ビス−−ブトキシナフチル−−ナフ
チルアミノベンれン、−ビス−
ゞ−ブトキシナフチルアミノベンれン、
−ビス−−む゜ブトキシナフチル
−−ナフチルアミノベンれン、−ビス
−ゞ−む゜ブトキシナフチルアミ
ノベンれン、−ビス−−tert−
ブトキシナフチル−−ナフチルアミノベン
れン、−ビス−ゞ−tert−ブ
トキシナフチルアミノベンれン、−ビ
ス−−tert−ブトキシナフチル−−ナ
フチルアミノ−−メチルベンれン、−
ビス−−tert−ブトキシナフチル−−
ナフチルアミノ−−クロロベンれン、
−ビス−−クロロナフチル−−ナフチ
ルアミノベンれン、−ビス−−
クロロナフチル−−ナフチルアミノベンれ
ン、−ビス−−クロロナフチル−
−ナフチルアミノベンれン、−ビス
−−クロロナフチル−−ナフチルアミ
ノベンれン、−ビス−−クロロ
ナフチル−−−クロロナフチルアミノ
ベンれン、−ビス−−クロロナフ
チル−−−クロロナフチルアミノベン
れン、−ビス−−クロロナフチル
−−−クロロナフチルアミノベンれン、
−ビス−ゞ−クロロナフチ
ルアミノベンれン、−ビス−
ゞ−クロロナフチルアミノベンれン、
−ビス−−ブロモナフチル−−
ナフチルアミノベンれン、−ビス
−ゞ−ブロモナフチルアミノベンれン
などが䟋瀺される。 たた、のベンゞゞン誘導䜓のうち、奜た
しい化合物ずしおは、䟋えば、4′−ビス
−ゞナフチルアミノゞプニル、
4′−ビス−−メチルナフチル−−ナフ
チルアミノゞプニル、4′−ビス−
−メチルナフチル−−ナフチルアミノゞ
プニル、4′−ビス−−メチルナフ
チル−−ナフチルアミノゞプニル、
4′−ビス−−メチルナフチル−−ナフ
チルアミノゞプニル、−−−メチル
ナフチル−−ナフチルアミノ−4′−−
−メチルナフチル−−ナフチルアミノゞフ
゚ニル、−−−メチルナフチル−−
ナフチルアミノ−4′−−−メチルナフチ
ル−−ナフチルアミノゞプニル、−
−−メチルナフチル−−ナフチルアミノ
−4′−−−メチルナフチル−−ナフチ
ルアミノゞプニル、4′−ビス−
ゞ−メチルナフチルアミノゞプニル、
4′−ビス−ゞ−メチルナフチ
ルアミノゞプニル、4′−ビス
−ゞ−メチルナフチルアミノゞプニ
ル、4′−ビス−−メチルナフチル−
−−メチルナフチルアミノゞプニル、
4′−ビス−−メチルナフチル−−
−メチルナフチルアミノゞプニル、
4′−ビス−−メチルナフチル−−
−メチルナフチルアミノゞプニル、
4′−ビス−−メチルナフチル−−
−゚チルナフチルアミノゞプニル、
4′−ビス−−メチルナフチル−−
−む゜プロピルナフチルアミノゞプニル、
4′−ビス−−メチルナフチル−−
ナフチルアミノ−3′−ゞメチルゞプニル、
4′−ビス−ゞ−メチルナフチ
ルアミノ−3′−ゞメチルゞプニル、
4′−ビス−−メチルナフチル−−ナフ
チルアミノ−3′−ゞメトキシゞプニル、
4′−ビス−ゞ−メチルナフチ
ルアミノ−3′−ゞメトキシゞプニル、
4′−ビス−−メチルナフチル−−
ナフチルアミノ−3′−ゞクロロゞプニル、
4′−ビス−ゞ−メチルナフチ
ルアミノ−3′−ゞクロロゞプニル、
4′−ビス−−゚チルナフチル−−ナフ
チルアミノゞプニル、4′−ビス
−ゞ−゚チルナフチルアミノゞプニ
ル、4′−ビス−ゞ−゚チルナフ
チル−−ナフチルアミノ−3′−ゞメチル
ゞプニル、4′−ビス−ゞ−゚
チルナフチルアミノ−3′−ゞクロロゞフ
゚ニル、4′−ビス−−プロピルナフ
チル−−ナフチルアミノゞプニル、
4′−ビス−ゞ−プロピルナフチル
アミノゞプニル、4′−ビス−−
む゜プロピルナフチル−−ナフチルアミノ
ゞプニル、4′−ビス−ゞ−む
゜プロピルナフチルアミノゞプニル、
4′−ビス−−ブチルナフチル−−ナフ
チルアミノゞプニル、4′−ビス
−ゞ−ブチルナフチルアミノゞプニ
ル、4′−ビス−−む゜ブチルナフチ
ル−−ナフチルアミノゞプニル、
4′−ビス−ゞ−む゜ブチルナフチ
ルアミノゞプニル、4′−ビス−
−tert−ブチルナフチル−−ナフチルアミ
ノゞプニル、4′−ビス−ゞ
−tert−ブチルナフチルアミノゞプニル、
4′−ビス−−メトキシナフチル−
−ナフチルアミノゞプニル、4′−ビス
−−メトキシナフチル−−ナフチルア
ミノゞプニル、4′−ビス−−メ
トキシナフチル−−ナフチルアミノゞプ
ニル、4′−ビス−−メトキシナフチ
ル−−ナフチルアミノゞプニル、−
−−メトキシナフチル−−ナフチルアミ
ノ−4′−−−メトキシナフチル−−ナ
フチルアミノゞプニル、−−−メト
キシナフチル−−ナフチルアミノ−4′−
−−メトキシナフチル−−ナフチルアミ
ノゞプニル、−−−メトキシナフチ
ル−−ナフチルアミノ−4′−−−メト
キシナフチル−−ナフチルアミノゞプニ
ル、4′−ビス−ゞ−メトキシナ
フチルアミノゞプニル、4′−ビス
−ゞ−メトキシナフチルアミノ
ゞプニル、4′−ビス−ゞ−メ
トキシナフチルアミノゞプニル、4′−
ビス−−メトキシナフチル−−−
メトキシナフチルアミノゞプニル、
4′−ビス−−メトキシナフチル−−
−メトキシナフチルアミノゞプニル、
4′−ビス−−メトキシナフチル−
−−メトキシナフチルアミノゞプニル、
4′−ビス−−メトキシナフチル−
−ナフチルアミノ−3′−ゞメチルゞプニ
ル、4′−ビス−ゞ−メトキシナ
フチルアミノ−3′−ゞメチルゞプニル、
4′−ビス−−メトキシナフチル−
−ナフチルアミノ−3′−ゞメトキシゞプ
ニル、4′−ビス−ゞ−メトキシ
ナフチルアミノ−3′−ゞメトキシゞプ
ニル、4′−ビス−−メトキシナフチ
ル−−ナフチルアミノ−3′−ゞクロロゞ
プニル、4′−ビス−ゞ−メト
キシナフチルアミノ−3′−ゞクロロゞフ
゚ニル、4′−ビス−−メトキシナフ
チル−−−゚トキシナフチルアミノゞ
プニル、4′−ビス−−メトキシナ
フチル−−−む゜プロポキシナフチルア
ミノゞプニル、4′−ビス−−゚
トキシナフチル−−ナフチルアミノゞプ
ニル、4′−ビス−ゞ−゚トキシ
ナフチルアミノゞプニル、4′−ビス
−−プロポキシナフチル−−ナフチル
アミノゞプニル、4′−ビス−ゞ
−プロポキシナフチルアミノゞプニル、
4′−ビス−−む゜プロポキシナフチ
ル−−ナフチルアミノゞプニル、
4′−ビス−ゞ−む゜プロポキシナフ
チルアミノゞプニル、4′−ビス−
−ブトキシナフチル−−ナフチルアミノ
ゞプニル、4′−ビス−ゞ−ブ
トキシナフチルアミノゞプニル、4′−
ビス−−む゜ブトキシナフチル−−ナ
フチルアミノゞプニル、4′−ビス
−ゞ−む゜ブトキシナフチルアミノゞ
プニル、4′−ビス−−tert−ブトキ
シナフチル−−ナフチルアミノゞプニル、
4′−ビス−ゞ−tert−ブトキシ
ナフチルアミノゞプニル、4′−ビス
−−クロロナフチル−−ナフチルアミ
ノゞプニル、4′−ビス−−クロ
ロナフチル−−ナフチルアミノゞプニル、
4′−ビス−−クロロナフチル−−
ナフチルアミノゞプニル、4′−ビス
−−クロロナフチル−−ナフチルアミノ
ゞプニル、−−−クロロナフチル−
−ナフチルアミノ−4′−−−クロロナ
フチル−−ナフチルアミノゞプニル、
−−−クロロナフチル−−ナフチルア
ミノ−4′−−−クロロナフチル−−ナ
フチルアミノゞプニル、−−−クロ
ロナフチル−−ナフチルアミノ−4′−−
−クロロナフチル−−ナフチルアミノゞ
プニル、4′−ビス−ゞ−クロ
ロナフチルアミノゞプニル、4′−ビス
−ゞ−クロロナフチルアミノゞ
プニル、4′−ビス−ゞ−クロ
ロナフチルアミノゞプニル、4′−ビス
−−クロロナフチル−−−クロロナ
フチルアミノゞプニル、4′−ビス
−−クロロナフチル−−−クロロナフ
チルアミノゞプニル、4′−ビス−
−クロロナフチル−−−クロロナフチ
ルアミノゞプニル、4′−ビス−
−ブロモナフチル−−ナフチルアミノゞ
プニル、4′−ビス−ゞ−ブロ
モナフチルアミノゞプニル、4′−ビス
−−クロロナフチル−−ナフチルアミ
ノ−3′−ゞクロロゞプニル、4′−ビ
ス−ゞ−クロロナフチルアミノ
−3′−ゞクロロゞプニルなどが䟋瀺され
る。 たた、の4″−テルプニルゞアミン
誘導䜓のうち、奜たしい化合物ずしおは、䟋え
ば、4″−ビス−ゞナフチルアミノ
−1′4′1″−テルプニル、4″−ビス
−−メチルナフチル−−ナフチルアミ
ノ−1′4′1″−テルプニル、4″−ビ
ス−−メチルナフチル−−ナフチルア
ミノ−1′4′1″−テルプニル、4″−
ビス−−メチルナフチル−−ナフチル
アミノ−1′4′1″−テルプニル、
4″−ビス−−メチルナフチル−−ナフ
チルアミノ−1′4′1″−テルプニル、
−−−メチルナフチル−−ナフチルア
ミノ−4″−−−メチルナフチル−−ナ
フチルアミノ−1′4′1″−テルプニル、
−−−メチルナフチル−−ナフチル
アミノ−4″−−−メチルナフチル−−
ナフチルアミノ−1′4′1″−テルプニ
ル、−−−メチルナフチル−−ナフ
チルアミノ−4″−−−メチルナフチル−
−ナフチルアミノ−1′4′1″−テルプ
ニル、4″−ビス−ゞ−メチルナ
フチルアミノ−1′4′1″−テルプニ
ル、4″−ビス−ゞ−メチルナフ
チルアミノ−1′4′1″−テルプニル、
4″−ビス−ゞ−メチルナフチ
ルアミノ−1′4′1″−テルプニル、
4″−ビス−−メチルナフチル−−
−メチルナフチルアミノ−1′4′
1″−テルプニル、4″−ビス−−メ
チルナフチル−−−メチルナフチルアミ
ノ−1′4′1″−テルプニル、4″−ビ
ス−−メチルナフチル−−−メチ
ルナフチルアミノ−1′4′1″−テルプ
ニル、4″−ビス−−メチルナフチル
−−−゚チルナフチルアミノ−1′
4′1″−テルプニル、4″−ビス−
−メチルナフチル−−−む゜プロピルナフ
チルアミノ−1′4′1″−テルプニル、
4″−ビス−−メチルナフチル−−
ナフチルアミノ−3″−ゞメチル−1′
4′1″−テルプニル、4″−ビス−
−メチルナフチル−−ナフチルアミノ−
3′3″−トリメチル−1′4′1″−テルプ
ニル、4″−ビス−ゞ−メチルナ
フチルアミノ−3″−ゞメチル−1′
4′1″−テルプニル、4″−ビス−
−メチルナフチル−−ナフチルアミノ−
3′3″−トリメトキシ−1′4′1″−テルフ
゚ニル、4″−ビス−ゞ−メチル
ナフチルアミノ−3″−ゞメトキシ−
1′4′1″−テルプニル、4″−ビス−
−メチルナフチル−−ナフチルアミノ−
3′3″−トリクロロ−1′4′1″−テル
プニル、4″−ビス−ゞ−メチ
ルナフチルアミノ−3′3″−トリクロロ
−1′4′1″−テルプニル、4″−ビス
−−メトキシナフチル−−ナフチルア
ミノ−1′4′1″−テルプニル、4″−
ビス−−メトキシナフチル−−ナフチ
ルアミノ−1′4′1″−テルプニル、
4″−ビス−−メトキシナフチル−−ナ
フチルアミノ−1′4′1″−テルプニル、
4″−ビス−−メトキシナフチル−
−ナフチルアミノ−1′4′1″−テルプニ
ル、−−−メトキシナフチル−−ナ
フチルアミノ−4″−−−メトキシナフチ
ル−−ナフチルアミノ−1′4′1″−テ
ルプニル、−−−メトキシナフチル
−−ナフチルアミノ−4″−−−メトキ
シナフチル−−ナフチルアミノ−1′
4′1″−テルプニル、−−−メトキシ
ナフチル−−ナフチルアミノ−4″−−
−メトキシナフチル−−ナフチルアミノ−
1′4′1″−テルプニル、4″−ビス
−ゞ−メトキシナフチルアミノ−
1′4′1″−テルプニル、4″−ビス
−ゞ−メトキシナフチルアミノ−
1′4′1″−テルプニル、4″−ビス
−ゞ−メトキシナフチルアミノ−
1′4′1″−テルプニル、4″−ビス
−−メトキシナフチル−−−メトキ
シナフチルアミノ−1′4′1″−テルプ
ニル、4″−ビス−−メトキシナフチ
ル−−−メトキシナフチルアミノ−
1′4′1″−テルプニル、4″−ビス−
−メトキシナフチル−−−メトキシナ
フチルアミノ−1′4′1″−テルプニ
ル、4″−ビス−−゚トキシナフチル
−−ナフチルアミノ−1′4′1″−テルフ
゚ニル、4″−ビス−ゞ−゚トキ
シナフチルアミノ−1′4′1″−テルプ
ニル、4″−ビス−−プロポキシナフ
チル−−ナフチルアミノ−1′4′1″−
テルプニル、4″−ビス−ゞ−
プロポキシナフチルアミノ−1′4′1″−
テルプニル、4″−ビス−−む゜プ
ロポキシナフチル−−ナフチルアミノ−
1′4′1″−テルプニル、4″−ビス
−ゞ−む゜プロポキシナフチルアミノ
−1′4′1″−テルプニル、4″−ビス
−−ブトキシナフチル−−ナフチルア
ミノ−1′4′1″−テルプニル、4″−
ビス−ゞ−ブトキシナフチルアミ
ノ−1′4′1″−テルプニル、4″−ビ
ス−−む゜ブトキシナフチル−−ナフ
チルアミノ−1′4′1″−テルプニル、
4″−ビス−ゞ−む゜ブトキシナ
フチルアミノ−1′4′1″−テルプニ
ル、4″−ビス−−tert−ブトキシナ
フチル−−ナフチルアミノ−1′4′
1″−テルプニル、4″−ビス−ゞ
−tert−ブトキシナフチルアミノ−
1′4′1″−テルプニル、4″−ビス−
−クロロナフチル−−ナフチルアミノ−
1′4′1″−テルプニル、4″−ビス
−−クロロナフチル−−ナフチルアミ
ノ−1′4′1″−テルプニル、4″−ビ
ス−−クロロナフチル−−ナフチルア
ミノ−1′4′1″−テルプニル、4″−
ビス−−クロロナフチル−−ナフチル
アミノ−1′4′1″−テルプニル、−
−−クロロナフチル−−ナフチルアミ
ノ−4″−−−クロロナフチル−−ナフ
チルアミノ−1′4′1″−テルプニル、
−−−クロロナフチル−−ナフチルア
ミノ−4″−−−クロロナフチル−−ナ
フチルアミノ−1′4′1″−テルプニル、
−−−クロロナフチル−−ナフチル
アミノ−4″−−−クロロナフチル−−
ナフチルアミノ−1′4′1″−テルプニ
ル、4″−ビス−ゞ−クロロナフ
チルアミノ−1′4′1″−テルプニル、
4″−ビス−ゞ−クロロナフチ
ルアミノ−1′4′1″−テルプニル、
4″−ビス−ゞ−クロロナフチ
ルアミノ−1′4′1″−テルプニル、
4″−ビス−−クロロナフチル−−
−クロロナフチルアミノ−1′4′
1″−テルプニル、4″−ビス−−ク
ロロナフチル−−−クロロナフチルアミ
ノ−1′4′1″−テルプニル、4″−ビ
ス−−クロロナフチル−−−クロ
ロナフチルアミノ−1′4′1″−テルプ
ニルなどが䟋瀺される。 䞊蚘ゞアミン誘導䜓は䞀皮たたは二皮以䞊混合
しお甚いられる。なお、䞊蚘ゞアミン誘導䜓は、
分子の察称性がよく、埓来の−−ゞ゚
チルアミノベンズアルデヒド −ゞプ
ニルヒドラゟンや、−メチル−−カルバゟリ
ルアルデヒド −ゞプニルヒドラゟンな
どのように光照射により異性化反応などが生じ
ず、光安定性に優れおいるだけでなく、ドリフト
移動床が倧きく、しかもドリフト移動床に関する
電界匷床䟝存性が小さい。より具䜓的には、
4′−ビス−−メチルナフチル−−ナフ
チルアミノゞプニル化合物を䟋にず぀
お説明するず、電界ずしお2.0×105Vcm2䜎電
界および5.0×105Vcm2高電界を䜜甚させ
た堎合、埓来の電荷茞送材料、䟋えば、ポリビニ
ルカルバゟヌル化合物や−゚チル−−
カルバゟリルアルデヒド −ゞプニルヒ
ドラゟン化合物や、−プニル−−
−ゞ゚チルアミノスチリル−−−ゞ゚
チルアミノプニルピラゟリン化合物に
比べお、䞋衚に瀺すようにドリフト移動床が倧き
く電界匷床䟝存性が小さい。 䞊蚘のような特性を有するゞアミン誘導䜓ず、
前蚘ペリレン系化合物ずを組合せるこずにより、
単局型感光局を有する感光䜓であ぀おも、高感床
で残留電䜍の小さなものが埗られる。
<Industrial Application Field> The present invention relates to an electrophotographic photoreceptor suitably used in an image forming apparatus such as a copying machine. <Prior art and problems to be solved by the invention> In recent years, electrophotographic photoreceptors have been developed that have a greater degree of freedom in functional design.In particular, charge-generating materials that generate electric charges when irradiated with light and electric charges that generate electric charges have been developed. An electrophotographic photoreceptor has been proposed that has a laminated photosensitive layer in which each function is separated by a charge transporting material. For example, a charge generation layer containing a squaric acid derivative as a charge generation material and a diamine derivative such as 4,4'-bis[N-phenyl-N-(3-methylphenyl)amino]diphenyl are formed on a conductive substrate. An electrophotographic photoreceptor laminated with a charge transport layer (see JP-A-57-144558, JP-A-61-62038), cyanine-based compounds, azo-based compound, N,
N'-bis(2,4,6-trimethylphenyl)
perylene-3,4,9,10-tetracarboxydiimide, N,N'-diphenylperylene-3,4,
9,10-tetracarboxydiimide, N,
Electrophotographic photoreceptors using perylene compounds such as N'-dimethylperylene-3,4,9,10-tetracarboxydiimide (JP-A-57-144556, JP-A-57-144557, Kaisho 60-207148
Publication No. 61-275848, Japanese Patent Publication No. 61-275848
(see Publication No. 132955) have been proposed. In the case of a photoreceptor having the above laminated photosensitive layer,
As described above, since the charge generation function and the charge transport function can be separated by the charge generation layer and the charge transport layer, it is generally possible to obtain a highly sensitive electrophotographic photoreceptor and also to facilitate the selection of photosensitive materials. It has the advantage of being wide. However, since the charge transport material is generally a hole transport material, it is difficult to positively charge the photoreceptor, and it is also difficult to obtain a positively charged toner that develops the electrostatic latent image formed on the photoreceptor. The selection range of materials becomes narrower.
In addition, when negatively charged by corona discharge, ozone is generated, which is not only undesirable from a safety and health perspective, but also requires an exhaust passage to exhaust ozone in image forming devices such as copying machines, which makes the device large. become Furthermore, since the charge generation layer has a thin layer thickness of 1 to 2 ÎŒm, it is not only necessary to form the charge generation layer with high precision, but also a charge transport layer must be formed on the charge generation layer. The number of body manufacturing processes increases, workability decreases,
There are problems such as low yield and high cost. On the other hand, an electrophotographic photoreceptor having a single-layer photoreceptor layer containing a charge-generating material, a charge-transporting material, and a binder resin is also known, and the photoreceptor can be positively charged,
It has advantages such as being able to prevent the generation of ozone, having a wide range of toner materials to choose from, and having good manufacturing workability. In order to take advantage of these advantages, when the charge generating material and charge transporting material used in the laminated photosensitive layer are applied to the single layer photosensitive layer, the photoreceptor having the single layer photosensitive layer can be There is a problem in that it does not exhibit suitable electrophotographic characteristics. More specifically,
Unlike the laminated photosensitive layer described above, in a single layer photosensitive layer, a charge generation material and a charge transport material are mixed in the photosensitive layer, and it is difficult to separate the charge generation function and the charge transport function. Therefore, not only the selection range for each material is narrow, but also the sensitivity is low and the residual potential is high.
Moreover, the electrophotographic properties described above are greatly influenced by the combination of the charge generating material and the charge transporting material.
For example, since the diamine derivative used as a charge transport material has a small dependence of drift mobility on electric field intensity, a photoreceptor having a single-layer photosensitive layer containing the diamine derivative is expected to exhibit a small residual potential. However, when a single-layer photosensitive layer is constructed by combining the above-mentioned various perylene compounds as charge-generating materials, the residual potential of the photoreceptor having the single-layer photosensitive layer is still high and the sensitivity is insufficient. There is a problem in that it does not exhibit sufficient electrophotographic properties. Regarding the photoreceptor having a single layer type photoreceptor mentioned above, the photoreceptor having a single layer type photoreceptor (specially 1983-143438) has been proposed. However, in the case of the above-mentioned photoreceptor, not only does it not have sufficient positive chargeability, but also the drift mobility of polyvinylcarbazole as a charge transporting material is small, and the drift mobility exhibits a large dependence on electric field strength. Not only is the potential high, but the sensitivity is low, and it still does not exhibit sufficient electrophotographic properties. In view of the above points, while taking advantage of the advantages of the single-layer type photosensitive layer, it has excellent chargeability and sensitivity, and
In order to provide an electrophotographic photoreceptor with a small residual potential, the applicant first developed N,N'-bis(3,5
-dimethylphenyl)perylene-3,4,9,10
- We proposed a photoreceptor having a single-layer photosensitive layer consisting of a combination of a perylene compound such as tetracarboxydiimide and a hydrazone compound such as N-methyl-3-carbazolylaldehyde N,N-diphenylhydrazone. (Special Application No. 107780, 1982). However, the above-mentioned hydrazone-based compounds still have a large dependence of drift mobility on electric field strength, a high residual potential, and insufficient sensitivity. Moreover, the above hydrazone compound is 4-(N,N-
Diethylamino)benzaldehydeAlthough the degree of photoisomerization upon light irradiation is smaller than that of N,N-diphenylhydrazone, etc., the photostability is still insufficient, so repeated use causes sensitivity to decrease and residual potential to increase. There is. <Object of the Invention> The present invention has been made in view of the above-mentioned problems, and provides an inexpensive single-layer photosensitive layer that has excellent positive chargeability and photostability, has high sensitivity and surface potential, and has a small residual potential. An object of the present invention is to provide an electrophotographic photoreceptor having the following characteristics. <Means and effects for solving the problems> In order to achieve the above object, the electrophotographic photoreceptor of the present invention has a single-layer type photoreceptor layer containing a charge generation material, a charge transport material, and a binder resin. The photoreceptor is characterized in that the charge generating material is a perylene compound represented by the following general formula (1), and the charge transporting material is a diamine derivative represented by the following general formula (2). (In the formula, R 1 , R 2 , R 3 and R 4 represent a lower alkyl group) (In the formula, R 5 , R 6 , R 7 and R 8 are the same or different and represent a hydrogen atom, a lower alkyl group, a lower alkoxy group or a halogen atom, and Y is a hydrogen atom,
Indicates a lower alkyl group, lower alkoxy group, or halogen atom. n represents an integer of 1 to 3. ) The present invention will be explained in detail below. The electrophotographic photoreceptor of the present invention has a single-layer photosensitive layer, and the photosensitive layer contains a perylene compound represented by the above general formula (1) as a charge-generating material and a charge-transporting material. It contains a diamine derivative represented by the above general formula (2) and a binder resin. The lower alkyl group in the above general formula (1) and general formula (2) includes an alkyl group having 1 to 6 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, and hexyl group. Illustrated. Among the lower alkyl groups mentioned above, alkyl groups having 1 to 4 carbon atoms are preferred. In addition, as the lower alkoxy group in the above general formula (2), methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, tert-
Examples include alkoxy groups having 1 to 6 carbon atoms such as butoxy, pentyloxy, and hexyloxy groups.
Among the lower alkoxy groups mentioned above, alkoxy groups having 1 to 4 carbon atoms are preferred. In addition, halogen atoms include fluorine, chlorine,
Mention may be made of bromine and iodine atoms. The above substituents R 5 , R 6 , R 7 and R 8 may be substituted at appropriate positions on the naphthyl ring, and the above substituent Y may be substituted at appropriate positions on the benzene ring. good. As the perylene compound represented by the above general formula (1), N,N'-di(3,5-dimethylphenyl)
Perylene-3,4,9,10-tetracarboxydiimide, N,N'-di(3-methyl-5-ethylphenyl)perylene-3,4,9,10-tetracarboxydiimide, N,N'-di( 3,5-diethylphenyl)perylene-3,4,9,10-tetracarboxydiimide, N,N'-di(3,5-
dipropylphenyl) perylene-3,4,9,10
-tetracarboxydiimide, N,N'-di(3,
5-diisopropylphenyl)perylene-3,
4,9,10-tetracarboxydiimide, N,
N'-di(3-methyl-5-isopropylphenyl)perylene-3,4,9,10-tetracarboxydiimide, N,N'-di(3-ethyl-5-isopropylphenyl)perylene-3, 4,9,10
-tetracarboxydiimide, N,N'-di(3,
5-dibutylphenyl)perylene-3,4,9,
10-tetracarboxydiimide, N,N'-di(3,5-di-tert-butylphenyl)perylene-3,4,9,10-tetracarboxydiimide,
N,N'-di(3,5-dipentylphenyl)perylene-3,4,9,10-tetracarboxydiimide, N,N'-di(3,5-dihexylphenyl)perylene-3,4, Examples include 9,10-tetracarboxydiimide. Among the above perylene compounds, carbon number is 1 to 4
those having an alkyl group of N,N′-
di(3,5-dimethylphenyl)perylene-3,
4,9,10-tetracarboxydiimide is preferred. The above perylene compounds may be used alone or in combination of two or more. In addition, among the diamine derivatives represented by the above general formula (2), among the p-phenylenediamine derivatives where n=1, preferred compounds include, for example,
1,4-bis(N,N-dinaphthylamino)benzene, 1-(N,N-dinaphthylamino)-4-
[N-(6-methylnaphthyl)-N-naphthylamino]benzene, 1,4-bis[N-(3-methylnaphthyl)-N-naphthylamino]benzene, 1,
4-bis[N-(4-methylnaphthyl)-N-naphthylamino]benzene, 1,4-bis[N-(6
-Methylnaphthyl)-N-naphthylamino]benzene, 1,4-bis[N-(8-methylnaphthyl)
-N-naphthylamino]benzene, 1-[N-(3
-methylnaphthyl)-N-naphthylamino]-4-
[N-(6-methylnaphthyl)-N-naphthylamino]benzene, 1-[N-(4-methylnaphthyl)
-N-naphthylamino]-4-[N-(6-methylnaphthyl)-N-naphthylamino]benzene, 1
-[N-(6-methylnaphthyl)-N-naphthylamino]-4-[N-(8-methylnaphthyl)-N-naphthylamino]benzene, 1,4-bis[N,N
-di(4-methylnaphthyl)amino]benzene,
1,4-bis[N,N-di(6-methylnaphthyl)amino]benzene, 1,4-bis[N,N-
di(8-methylnaphthyl)amino]benzene,
1,4-bis[N-(3-methylnaphthyl)-N-
(6-methylnaphthyl)amino]benzene, 1,
4-bis[N-(4-methylnaphthyl)-N-(6
-methylnaphthyl)amino]benzene, 1,4-
Bis[N-(6-methylnaphthyl)-N-(8-methylnaphthyl)amino]benzene, 1,4-bis[N-(6-methylnaphthyl)-N-naphthylamino]-2-methylbenzene, 1 ,4-bis[N,
N-di(6-methylnaphthyl)amino]-2-methylbenzene, 1,4-bis[N-(6-methylnaphthyl)-N-naphthylamino]-2-methoxybenzene, 1,4-bis[N -(6-methylnaphthyl)-N-naphthylamino]-2-chlorobenzene, 1,4-bis[N,N-di(6-methylnaphthyl)amino]-2-chlorobenzene, 1,4-
Bis[N-(6-methylnaphthyl)-N-naphthylamino]-2-bromobenzene, 1,4-bis[N-(6-ethylnaphthyl)-N-naphthylamino]benzene, 1,4-bis[ N,N-di(6-
ethylnaphthyl)amino]benzene, 1,4-bis[N-(6-ethylnaphthyl)-N-naphthylamino]-2-chlorobenzene, 1-[N-(6-methylnaphthyl)-N-naphthylamino]- 4-[N
-(6-ethylnaphthyl)-N-naphthylamino]
Benzene, 1-[N,N-di(6-ethylnaphthyl)amino]-4-[N,N-di(6-methylnaphthyl)amino]benzene, 1-[N,N-di(6
-methylnaphthyl)amino]-4-[N,N-di(6-isopropylnaphthyl)amino]benzene,
1,4-bis[N-(6-propylnaphthyl)-N
-naphthylamino]benzene, 1,4-bis[N,N-di(6-propylnaphthyl)amino]
Benzene, 1,4-bis[N-(6-isopropylnaphthyl)-N-naphthylamino]benzene,
1,4-bis[N,N-di(6-isopropylnaphthyl)amino]benzene, 1,4-bis[N-
(6-isopropylnaphthyl)-N-naphthylamino]-2-methylbenzene, 1,4-bis[N-
(6-isopropylnaphthyl)-N-naphthylamino]-2-chlorobenzene, 1,4-bis[N-
(6-Butylnaphthyl)-N-naphthylamino]benzene, 1,4-bis[N,N-di(6-butylnaphthyl)amino]benzene, 1,4-bis[N
-(6-isobutylnaphthyl)-N-naphthylamino]benzene, 1,4-bis[N,N-di(6-
isobutylnaphthyl)amino]benzene, 1,4
-bis[N-(6-tert-butylnaphthyl)-N-
naphthylamino]benzene, 1,4-bis[N,
N-di(6-tert-butylnaphthyl)amino]benzene, 1,4-bis[N-(6-tert-butylnaphthyl)-N-naphthylamino]-2-methylbenzene, 1,4-bis[N -(6-tert-butylnaphthyl)-N-naphthylamino]-2-chlorobenzene, 1-[N,N-di(6-methylnaphthyl)
amino]-4-[N,N-di(6-methoxynaphthyl)amino]benzene, 1-[N-(6-methylnaphthyl)-N-naphthylamino]-4-[N-(6-
methoxynaphthyl)-N-naphthylamino]benzene, 1-[N,N-di(6-ethylnaphthyl)
amino]-4-[N,N-di(6-methoxynaphthyl)amino]benzene, 1-[N-(6-ethylnaphthyl)-N-naphthylamino]-4-[N-(6-
methoxynaphthyl)-N-naphthylamino]benzene, 1-[N,N-di(6-methylnaphthyl)
amino]-4-[N,N-di(6-ethoxynaphthyl)amino]benzene, 1-[N-(6-methylnaphthyl)-N-naphthylamino]-4-[N-(6-
ethoxynaphthyl)-N-naphthylamino]benzene, 1,4-bis[N-(3-methoxynaphthyl)-N-naphthylamino]benzene, 1,4-
Bis[N-(4-methoxynaphthyl)-N-naphthylamino]benzene, 1,4-bis[N-(6-
methoxynaphthyl)-N-naphthylamino]benzene, 1,4-bis[N-(8-methoxynaphthyl)-N-naphthylamino]benzene, 1-[N-
(3-methoxynaphthyl)-N-naphthylamino]
-4-[N-(6-methoxynaphthyl)-N-naphthylamino]benzene, 1-[N-(4-methoxynaphthyl)-N-naphthylamino]-4-[N-(6
-methoxynaphthyl)-N-naphthylamino]benzene, 1-[N-(6-methoxynaphthyl)-N
-naphthylamino]-4-[N-(8-methoxynaphthyl)-N-naphthylamino]benzene, 1,
4-bis[N,N-di(4-methoxynaphthyl)
amino]benzene, 1,4-bis[N,N-di(6-methoxynaphthyl)amino]benzene, 1,
4-bis[N,N-di(8-methoxynaphthyl)
amino]benzene, 1,4-bis[N-(3-methoxynaphthyl)-N-(6-methoxynaphthyl)
amino]benzene, 1,4-bis[N-(4-methoxynaphthyl)-N-(6-methoxynaphthyl)
amino]benzene, 1,4-bis[N-(6-methoxynaphthyl)-N-(8-methoxynaphthyl)
amino]benzene, 1,4-bis[N-(6-methoxynaphthyl)-N-naphthylamino]-2-methylbenzene, 1,4-bis[N,N-di(6-
methoxynaphthyl)amino]-2-methylbenzene, 1,4-bis[N-(6-methoxynaphthyl)
-N-naphthylamino]-2-methoxybenzene,
1,4-bis[N-(6-methoxynaphthyl)-N
-naphthylamino]-2-chlorobenzene, 1,
4-bis[N-(4-ethoxynaphthyl)-N-naphthylamino]benzene, 1,4-bis[N,N
-di(6-ethoxynaphthyl)amino]benzene, 1,4-bis[N,N-di(4-ethoxynaphthyl)amino]benzene, 1,4-bis[N,
N-di(6-ethoxynaphthyl)amino]benzene, 1,4-bis[N-(6-propoxynaphthyl)-N-naphthylamino]benzene, 1,4-
Bis[N,N-di(6-propoxynaphthyl)amino]benzene, 1,4-bis[N-(6-isopropoxynaphthyl)-N-naphthylamino]benzene, 1,4-bis[N,N- Di(6-isopropoxynaphthyl)amino]benzene, 1,4-
Bis[N-(6-isopropoxynaphthyl)-N-
naphthylamino]-2-chlorobenzene, 1,4
-bis[N-(6-butoxynaphthyl)-N-naphthylamino]benzene, 1,4-bis[N,N-
di(6-butoxynaphthyl)amino]benzene,
1,4-bis[N-(6-isobutoxynaphthyl)
-N-naphthylamino]benzene, 1,4-bis[N,N-di(6-isobutoxynaphthyl)amino]benzene, 1,4-bis[N-(6-tert-
butoxynaphthyl)-N-naphthylamino]benzene, 1,4-bis[N,N-di(6-tert-butoxynaphthyl)amino]benzene, 1,4-bis[N-(6-tert-butoxynaphthyl) -N-naphthylamino]-2-methylbenzene, 1,4-
Bis[N-(6-tert-butoxynaphthyl)-N-
naphthylamino]-2-chlorobenzene, 1,4
-bis[N-(3-chloronaphthyl)-N-naphthylamino]benzene, 1,4-bis[N-(4-
chloronaphthyl)-N-naphthylamino]benzene, 1,4-bis[N-(6-chloronaphthyl)-
N-naphthylamino]benzene, 1,4-bis[N-(8-chloronaphthyl)-N-naphthylamino]benzene, 1,4-bis[N-(3-chloronaphthyl)-N-(6-chloro naphthyl) amino]
Benzene, 1,4-bis[N-(4-chloronaphthyl)-N-(6-chloronaphthyl)amino]benzene, 1,4-bis[N-(6-chloronaphthyl)
-N-(8-chloronaphthyl)amino]benzene,
1,4-bis[N,N-di(4-chloronaphthyl)amino]benzene, 1,4-bis[N,N-
di(6-chloronaphthyl)amino]benzene,
1,4-bis[N-(6-bromonaphthyl)-N-
naphthylamino]benzene, 1,4-bis[N,
Examples include N-di(6-bromonaphthyl)amino]benzene. Further, among the benzidine derivatives where n=2, preferred compounds include, for example, 4,4'-bis(N,N-dinaphthylamino)diphenyl, 4,
4'-bis[N-(3-methylnaphthyl)-N-naphthylamino]diphenyl, 4,4'-bis[N-
(4-Methylnaphthyl)-N-naphthylamino]diphenyl, 4,4'-bis[N-(6-methylnaphthyl)-N-naphthylamino]diphenyl, 4,
4'-bis[N-(8-methylnaphthyl)-N-naphthylamino]diphenyl, 4-[N-(3-methylnaphthyl)-N-naphthylamino]-4'-[N-(6
-Methylnaphthyl)-N-naphthylamino]diphenyl, 4-[N-(4-methylnaphthyl)-N-
naphthylamino]-4'-[N-(6-methylnaphthyl)-N-naphthylamino]diphenyl, 4-[N
-(6-methylnaphthyl)-N-naphthylamino]
-4'-[N-(8-methylnaphthyl)-N-naphthylamino]diphenyl, 4,4'-bis[N,N-
di(4-methylnaphthyl)amino]diphenyl,
4,4'-bis[N,N-di(6-methylnaphthyl)amino]diphenyl, 4,4'-bis[N,N
-di(8-methylnaphthyl)amino]diphenyl, 4,4'-bis[N-(3-methylnaphthyl)-
N-(6-methylnaphthyl)amino]diphenyl,
4,4'-bis[N-(4-methylnaphthyl)-N-
(6-methylnaphthyl)amino]diphenyl, 4,
4'-bis[N-(6-methylnaphthyl)-N-(8
-methylnaphthyl)amino]diphenyl, 4,
4'-bis[N-(6-methylnaphthyl)-N-(6
-ethylnaphthyl)amino]diphenyl, 4,
4'-bis[N-(6-methylnaphthyl)-N-(6
-isopropylnaphthyl)amino]diphenyl,
4,4'-bis[N-(6-methylnaphthyl)-N-
naphthylamino]-3,3'-dimethyldiphenyl,
4,4'-bis[N,N-di(6-methylnaphthyl)amino]-3,3'-dimethyldiphenyl, 4,
4'-bis[N-(6-methylnaphthyl)-N-naphthylamino]-3,3'-dimethoxydiphenyl,
4,4'-bis[N,N-di(6-methylnaphthyl)amino]-3,3'-dimethoxydiphenyl,
4,4'-bis[N-(6-methylnaphthyl)-N-
naphthylamino]-3,3'-dichlorodiphenyl,
4,4'-bis[N,N-di(6-methylnaphthyl)amino]-3,3'-dichlorodiphenyl, 4,
4'-bis[N-(6-ethylnaphthyl)-N-naphthylamino]diphenyl, 4,4'-bis[N,N
-di(6-ethylnaphthyl)amino]diphenyl, 4,4'-bis[N,N-di(6-ethylnaphthyl)-N-naphthylamino]-3,3'-dimethyldiphenyl, 4,4'-bis[N,N-di(6-ethylnaphthyl)amino]-3,3'-dichlorodiphenyl,4,4'-bis[N-(6-propylnaphthyl)-N-naphthylamino]diphenyl, 4 
4'-bis[N,N-di(6-propylnaphthyl)
amino]diphenyl, 4,4'-bis[N-(6-
isopropylnaphthyl)-N-naphthylamino]
Diphenyl, 4,4'-bis[N,N-di(6-isopropylnaphthyl)amino]diphenyl, 4,
4'-bis[N-(6-butylnaphthyl)-N-naphthylamino]diphenyl, 4,4'-bis[N,N
-di(6-butylnaphthyl)amino]diphenyl, 4,4'-bis[N-(6-isobutylnaphthyl)-N-naphthylamino]diphenyl, 4,
4'-bis[N,N-di(6-isobutylnaphthyl)amino]diphenyl, 4,4'-bis[N-
(6-tert-butylnaphthyl)-N-naphthylamino]diphenyl, 4,4'-bis[N,N-di(6
-tert-butylnaphthyl)amino]diphenyl,
4,4'-bis[N-(3-methoxynaphthyl)-N
-naphthylamino]diphenyl, 4,4'-bis[N-(4-methoxynaphthyl)-N-naphthylamino]diphenyl, 4,4'-bis[N-(6-methoxynaphthyl)-N-naphthylamino] Diphenyl, 4,4'-bis[N-(8-methoxynaphthyl)-N-naphthylamino]diphenyl, 4-[N
-(3-methoxynaphthyl)-N-naphthylamino]-4'-[N-(6-methoxynaphthyl)-N-naphthylamino]diphenyl, 4-[N-(4-methoxynaphthyl)-N-naphthylamino ]−4′−[N
-(6-methoxynaphthyl)-N-naphthylamino]diphenyl, 4-[N-(6-methoxynaphthyl)-N-naphthylamino]-4'-[N-(8-methoxynaphthyl)-N-naphthylamino ] Diphenyl, 4,4'-bis[N,N-di(4-methoxynaphthyl)amino]diphenyl, 4,4'-bis[N,N-di(6-methoxynaphthyl)amino]
Diphenyl, 4,4'-bis[N,N-di(8-methoxynaphthyl)amino]diphenyl, 4,4'-
Bis[N-(3-methoxynaphthyl)-N-(6-
methoxynaphthyl)amino]diphenyl, 4,
4'-bis[N-(4-methoxynaphthyl)-N-
(6-methoxynaphthyl)amino]diphenyl,
4,4'-bis[N-(6-methoxynaphthyl)-N
-(8-methoxynaphthyl)amino]diphenyl,
4,4'-bis[N-(3-methoxynaphthyl)-N
-naphthylamino]-3,3'-dimethyldiphenyl, 4,4'-bis[N,N-di(6-methoxynaphthyl)amino]-3,3'-dimethyldiphenyl,
4,4'-bis[N-(6-methoxynaphthyl)-N
-naphthylamino]-3,3'-dimethoxydiphenyl, 4,4'-bis[N,N-di(6-methoxynaphthyl)amino]-3,3'-dimethoxydiphenyl, 4,4'-bis [N-(6-methoxynaphthyl)-N-naphthylamino]-3,3'-dichlorodiphenyl, 4,4'-bis[N,N-di(6-methoxynaphthyl)amino]-3,3' -dichlorodiphenyl, 4,4'-bis[N-(6-methoxynaphthyl)-N-(6-ethoxynaphthyl)amino]diphenyl, 4,4'-bis[N-(6-methoxynaphthyl)-N -(6-isopropoxynaphthyl)amino]diphenyl, 4,4'-bis[N-(6-ethoxynaphthyl)-N-naphthylamino]diphenyl, 4,4'-bis[N,N-di(6- ethoxynaphthyl)amino]diphenyl, 4,4'-bis[N-(6-propoxynaphthyl)-N-naphthylamino]diphenyl, 4,4'-bis[N,N-di(6-propoxynaphthyl)amino] diphenyl,
4,4'-bis[N-(6-isopropoxynaphthyl)-N-naphthylamino]diphenyl, 4,
4'-bis[N,N-di(6-isopropoxynaphthyl)amino]diphenyl, 4,4'-bis[N-
(6-butoxynaphthyl)-N-naphthylamino]
Diphenyl, 4,4'-bis[N,N-di(6-butoxynaphthyl)amino]diphenyl, 4,4'-
Bis[N-(6-isobutoxynaphthyl)-N-naphthylamino]diphenyl, 4,4'-bis[N,
N-di(6-isobutoxynaphthyl)amino]diphenyl, 4,4'-bis[N-(6-tert-butoxynaphthyl)-N-naphthylamino]diphenyl,
4,4'-bis[N,N-di(6-tert-butoxynaphthyl)amino]diphenyl, 4,4'-bis[N-(3-chloronaphthyl)-N-naphthylamino]diphenyl, 4,4 '-bis[N-(4-chloronaphthyl)-N-naphthylamino]diphenyl,
4,4'-bis[N-(6-chloronaphthyl)-N-
naphthylamino]diphenyl, 4,4'-bis[N
-(8-chloronaphthyl)-N-naphthylamino]
Diphenyl, 4-[N-(3-chloronaphthyl)-
N-naphthylamino]-4'-[N-(6-chloronaphthyl)-N-naphthylamino]diphenyl, 4
-[N-(4-chloronaphthyl)-N-naphthylamino]-4'-[N-(6-chloronaphthyl)-N-naphthylamino]diphenyl, 4-[N-(6-chloronaphthyl)-N -naphthylamino]-4'-[N-
(8-Chloronaphthyl)-N-naphthylamino]diphenyl, 4,4'-bis[N,N-di(4-chloronaphthyl)amino]diphenyl, 4,4'-bis[N,N-di(6 -chloronaphthyl)amino]diphenyl, 4,4'-bis[N,N-di(8-chloronaphthyl)amino]diphenyl, 4,4'-bis[N-(3-chloronaphthyl)-N-(6 -chloronaphthyl)amino]diphenyl, 4,4'-bis[N
-(4-chloronaphthyl)-N-(6-chloronaphthyl)amino]diphenyl, 4,4'-bis[N-
(6-chloronaphthyl)-N-(8-chloronaphthyl)amino]diphenyl, 4,4'-bis[N-
(6-bromonaphthyl)-N-naphthylamino]diphenyl, 4,4'-bis[N,N-di(6-bromonaphthyl)amino]diphenyl, 4,4'-bis[N-(6-chloronaphthyl) )-N-naphthylamino]-3,3'-dichlorodiphenyl, 4,4'-bis[N,N-di(6-chloronaphthyl)amino]
-3,3'-dichlorodiphenyl and the like are exemplified. Among the 4,4''-terphenyldiamine derivatives where n=3, preferred compounds include, for example, 4,4''-bis(N,N-dinaphthylamino)
-1,1':4',1''-terphenyl, 4,4''-bis[N-(3-methylnaphthyl)-N-naphthylamino]-1,1':4',1''-terphenyl, 4 ,4″-bis[N-(4-methylnaphthyl)-N-naphthylamino]-1,1′:4′,1″-terphenyl, 4,4″-
Bis[N-(6-methylnaphthyl)-N-naphthylamino]-1,1':4',1''-terphenyl, 4,
4″-bis[N-(8-methylnaphthyl)-N-naphthylamino]-1,1′:4′,1″-terphenyl, 4
-[N-(3-methylnaphthyl)-N-naphthylamino]-4″-[N-(6-methylnaphthyl)-N-naphthylamino]-1,1′:4′,1″-terphenyl,
4-[N-(4-methylnaphthyl)-N-naphthylamino]-4″-[N-(6-methylnaphthyl)-N-
naphthylamino]-1,1′:4′,1″-terphenyl, 4-[N-(6-methylnaphthyl)-N-naphthylamino]-4″-[N-(8-methylnaphthyl)-
N-naphthylamino]-1,1′:4′,1″-terphenyl, 4,4″-bis[N,N-di(4-methylnaphthyl)amino]-1,1′:4′,1″ -terphenyl, 4,4″-bis[N,N-di(6-methylnaphthyl)amino]-1,1′:4′,1″-terphenyl,
4,4″-bis[N,N-di(8-methylnaphthyl)amino]-1,1′:4′,1″-terphenyl,
4,4″-bis[N-(3-methylnaphthyl)-N-
(6-methylnaphthyl)amino]-1,1':4',
1″-terphenyl, 4,4″-bis[N-(4-methylnaphthyl)-N-(6-methylnaphthyl)amino]-1,1′:4′,1″-terphenyl, 4,4″- Bis[N-(6-methylnaphthyl)-N-(8-methylnaphthyl)amino]-1,1′:4′,1″-terphenyl, 4,4″-bis[N-(6-methylnaphthyl)
-N-(6-ethylnaphthyl)amino]-1,1':
4′,1″-terphenyl, 4,4″-bis[N-(6
-methylnaphthyl)-N-(6-isopropylnaphthyl)amino]-1,1':4',1''-terphenyl,
4,4″-bis[N-(6-methylnaphthyl)-N-
naphthylamino]-3,3″-dimethyl-1,1′:
4′,1″-terphenyl, 4,4″-bis[N-(6
-methylnaphthyl)-N-naphthylamino]-3,
3′,3″-trimethyl-1,1′: 4′,1″-terphenyl, 4,4″-bis[N,N-di(6-methylnaphthyl)amino]-3,3″-dimethyl-1 ,1′
4′,1″-terphenyl, 4,4″-bis[N-(6
-methylnaphthyl)-N-naphthylamino]-3,
3′,3″-trimethoxy-1,1′: 4′,1″-terphenyl, 4,4″-bis[N,N-di(6-methylnaphthyl)amino]-3,3″-dimethoxy-1 
1′:4′,1″-terphenyl, 4,4″-bis[N-
(6-methylnaphthyl)-N-naphthylamino]-
3,3',3''-trichloro-1,1':4',1''-terphenyl, 4,4''-bis[N,N-di(6-methylnaphthyl)amino]-3,3',3 ″-Trichloro-1,1′:4′,1″-terphenyl, 4,4″-bis[N-(3-methoxynaphthyl)-N-naphthylamino]-1,1′:4′,1″- Terphenyl, 4,4″−
Bis[N-(4-methoxynaphthyl)-N-naphthylamino]-1,1':4',1''-terphenyl, 4,
4″-bis[N-(6-methoxynaphthyl)-N-naphthylamino]-1,1′:4′,1″-terphenyl,
4,4″-bis[N-(8-methoxynaphthyl)-N
-naphthylamino]-1,1′:4′,1″-terphenyl, 4-[N-(3-methoxynaphthyl)-N-naphthylamino]-4″-[N-(6-methoxynaphthyl)-N -naphthylamino]-1,1':4',1''-terphenyl, 4-[N-(4-methoxynaphthyl)
-N-naphthylamino]-4″-[N-(6-methoxynaphthyl)-N-naphthylamino]-1,1′:
4′,1″-terphenyl, 4-[N-(6-methoxynaphthyl)-N-naphthylamino]-4″-[N-(8
-methoxynaphthyl)-N-naphthylamino]-
1,1′:4′,1″-terphenyl, 4,4″-bis[N,N-di(4-methoxynaphthyl)amino]-
1,1′:4′,1″-terphenyl, 4,4″-bis[N,N-di(6-methoxynaphthyl)amino]-
1,1′:4′,1″-terphenyl, 4,4″-bis[N,N-di(8-methoxynaphthyl)amino]-
1,1′:4′,1″-terphenyl, 4,4″-bis[N-(3-methoxynaphthyl)-N-(6-methoxynaphthyl)amino]-1,1′:4′,1″ -terphenyl, 4,4″-bis[N-(4-methoxynaphthyl)-N-(6-methoxynaphthyl)amino]-1,
1′:4′,1″-terphenyl, 4,4″-bis[N-
(6-methoxynaphthyl)-N-(8-methoxynaphthyl)amino]-1,1′:4′,1″-terphenyl, 4,4″-bis[N-(6-ethoxynaphthyl)
-N-naphthylamino]-1,1':4',1''-terphenyl, 4,4''-bis[N,N-di(6-ethoxynaphthyl)amino]-1,1':4',1 ″-terphenyl, 4,4″-bis[N-(6-propoxynaphthyl)-N-naphthylamino]-1,1′:4′,1″-
Terphenyl, 4,4″-bis[N,N-di(6-
propoxynaphthyl)amino]-1,1′:4′,1″-
Terphenyl, 4,4″-bis[N-(6-isopropoxynaphthyl)-N-naphthylamino]-1,
1′:4′,1″-terphenyl, 4,4″-bis[N,
N-di(6-isopropoxynaphthyl)amino]
-1,1':4',1''-terphenyl, 4,4''-bis[N-(6-butoxynaphthyl)-N-naphthylamino]-1,1':4',1''-terphenyl, 4 ,4″−
Bis[N,N-di(6-butoxynaphthyl)amino]-1,1′:4′,1″-terphenyl, 4,4″-bis[N-(6-isobutoxynaphthyl)-N-naphthylamino ]-1,1′:4′,1″-terphenyl,
4,4″-bis[N,N-di(6-isobutoxynaphthyl)amino]-1,1′:4′,1″-terphenyl, 4,4″-bis[N-(6-tert-butoxy) naphthyl)-N-naphthylamino]-1,1':4',
1″-terphenyl, 4,4″-bis[N,N-di(6-tert-butoxynaphthyl)amino]-1,
1′:4′,1″-terphenyl, 4,4″-bis[N-
(3-chloronaphthyl)-N-naphthylamino]-
1,1′:4′,1″-terphenyl, 4,4″-bis[N-(4-chloronaphthyl)-N-naphthylamino]-1,1′:4′,1″-terphenyl, 4, 4″-bis[N-(6-chloronaphthyl)-N-naphthylamino]-1,1′:4′,1″-terphenyl, 4,4″-
Bis[N-(8-chloronaphthyl)-N-naphthylamino]-1,1':4',1''-terphenyl, 4-
[N-(3-chloronaphthyl)-N-naphthylamino]-4″-[N-(6-chloronaphthyl)-N-naphthylamino]-1,1′:4′,1″-terphenyl, 4
-[N-(4-chloronaphthyl)-N-naphthylamino]-4″-[N-(6-chloronaphthyl)-N-naphthylamino]-1,1′:4′,1″-terphenyl,
4-[N-(6-chloronaphthyl)-N-naphthylamino]-4″-[N-(8-chloronaphthyl)-N-
naphthylamino]-1,1′:4′,1″-terphenyl, 4,4″-bis[N,N-di(4-chloronaphthyl)amino]-1,1′:4′,1″-terphenyl ,
4,4″-bis[N,N-di(6-chloronaphthyl)amino]-1,1′:4′,1″-terphenyl,
4,4″-bis[N,N-di(8-chloronaphthyl)amino]-1,1′:4′,1″-terphenyl,
4,4″-bis[N-(3-chloronaphthyl)-N-
(6-chloronaphthyl)amino]-1,1':4',
1″-terphenyl, 4,4″-bis[N-(4-chloronaphthyl)-N-(6-chloronaphthyl)amino]-1,1′:4′,1″-terphenyl, 4,4″- Examples include bis[N-(6-chloronaphthyl)-N-(8-chloronaphthyl)amino]-1,1':4',1''-terphenyl. The above diamine derivatives may be used alone or in a mixture of two or more. The above diamine derivative is used as
The molecules have good symmetry and are photosensitive, such as conventional 4-(N,N-diethylamino)benzaldehyde N,N-diphenylhydrazone and N-methyl-3-carbazolyl aldehyde N,N-diphenylhydrazone. Not only does it not cause any isomerization reaction upon irradiation and has excellent photostability, but also has high drift mobility and low dependence of drift mobility on electric field strength. More specifically, 4,
Taking 4'-bis[N-(6-methylnaphthyl)-N-naphthylamino]diphenyl (compound A) as an example, the electric field is 2.0×10 5 V/cm 2 (low electric field) and 5.0×10 5 V/cm 2 (high electric field), conventional charge transport materials such as polyvinylcarbazole (compound B) and N-ethyl-3-
Carbazolyl aldehyde N,N-diphenylhydrazone (compound C) and 1-phenyl-3-
Compared to (4-diethylaminostyryl)-5-(4-diethylaminophenyl)pyrazoline (compound D), it has a large drift mobility and a small dependence on electric field strength, as shown in the table below. A diamine derivative having the above characteristics,
By combining with the perylene compound,
Even if the photoreceptor has a single-layer type photoreceptor layer, a photoreceptor with high sensitivity and a small residual potential can be obtained.

【衚】 たた、䞊蚘結着暹脂ずしおは、皮々のもの、䟋
えば、スチレン系重合䜓、アクリル系重合䜓、ス
チレン−アクリル系共重合䜓、ポリ゚チレン、゚
チレン−酢酞ビニル共重合䜓、塩玠化ポリ゚チレ
ン、ポリプロピレン、アむオノマヌ等のオレフむ
ン系重合䜓、ポリ塩化ビニル、塩化ビニル−酢酞
ビニル共重合䜓、ポリ゚ステル、アルキツド暹
脂、ポリアミド、ポリりレタン、゚ポキシ暹脂、
ポリカヌボネヌト、ポリアリレヌト、ポリスルホ
ン、ゞアリルフタレヌト暹脂、シリコヌン暹脂、
ケトン暹脂、ポリビニルブチラヌル暹脂、ポリ゚
ヌテル暹脂、プノヌル暹脂や、゚ポキシアクリ
レヌト等の光硬化型暹脂等、各皮の重合䜓が䜿甚
できるが、感光䜓の感床を高め、䞊蚘ゞアミン誘
導䜓等ずの盞溶性、感光䜓の耐摩耗性および繰返
し特性に優れるず共に結着暹脂を溶解する溶剀の
遞択幅が広いポリ4′−シクロヘキシリデン
ゞプニルカヌボネヌトが奜たしい。䞊蚘ポリ
4′−シクロヘキシリデンゞプニルカヌ
ボネヌトを甚いるず、埓来、溶液安定性等の点か
ら、ゞクロロメタン、モノクロロベンれン等の塩
玠系溶剀しか䜿甚できなか぀たビスプノヌル
型ポリカヌボネヌトず異なり、テトラヒドロフラ
ン、メチル゚チルケトン等のケトン系等の溶剀も
䜿甚するこずができるので、安党衛生䞊も奜たし
く、取扱いが容易である。なお、䞊蚘ポリ
4′−シクロヘキシリデンゞプニルカヌボネヌ
トずしおは、皮々のもの、䟋えば、重合床50〜
5000皋床のものが䜿甚し埗る。たた、䞊蚘結着暹
脂は䞀皮たたは二皮以䞊混合しお甚いられる。 䞊蚘ペリレン系化合物ずゞアミン誘導䜓ず䞊蚘
結着暹脂ずの䜿甚割合は、特に限定されず、所望
する電子写真甚感光䜓の特性等に応じお適宜遞択
するこずができるが、結着暹脂100重量郚に察し
お、ペリレン系化合物〜20重量郚、奜たしく
は、〜15重量郚、ゞアミン誘導䜓40〜200重量
郚、奜たしくは、50〜100重量郚䜿甚される。ペ
リレン系化合物およびゞアミン誘導䜓が䞊蚘䜿甚
量よりも少ないず、感光䜓の感床が十分でないば
かりか、残留電䜍が倧きくなる。たた䞊蚘範囲を
越えるず感光䜓の耐摩耗性等が十分でなくなる。 なお、通垞、䞊蚘ペリレン系化合物を倚量に䜿
甚するず正垯電性が十分でなくなり、少量である
ず感床等が䜎䞋するが、本発明の電子写真甚感光
䜓においおは、特定のペリレン系化合物ずゞアミ
ン誘導䜓ずを組合せおいるので、ペリレン系化合
物の量が少量であ぀おも感床および衚面電䜍が高
く、しかも残留電䜍の小さな正垯電性に優れた電
子写真甚感光䜓を埗るこずができる。 なお、䞊蚘組成、構造の単局型感光局を有する
感光䜓であ぀おも高感床で残留電䜍が小さいた
め、十分な電子写真特性を瀺すが、分光感床を高
めるため、皮々の分光増感剀を䜿甚するのが奜た
しく、特に電荷発生材料ずしお機胜するフタロシ
アニン系化合物、䟋えば、α型、β型、γ型な
ど、皮々の結晶型を有するアルミニりムフタロシ
アニン、銅フタロシアニン、䞭でもメタルフリヌ
フタロシアニンおよびたたはチタニルフタロシ
アニンを䜿甚するのが奜たしい。 䞊蚘フタロシアニン系化合物は、適宜の粒埄を
有しおいおもよいが、平均粒埄0.1Ό以䞋のもの
が奜たしい。メタルフリヌフタロシアニンの平均
粒埄が0.1Όを越えるず感光䜓の感床が䜎䞋す
る。たた、フタロシアニン系化合物は適宜量䜿甚
できるが、䞊蚘結着暹脂100重量郚に察しお〜
重量郚添加するのが奜たしい。添加量が重量
郚を越えるず、䞊蚘フタロシアニン系化合物が長
波長領域に分光感床を有するため、赀色再珟性が
十分でなくなる。 なお、䞊蚘の組成よりなる単局型感光局は、感
光特性等を阻害しない範囲で、他の電荷発生材料
および電荷茞送材料等を䜿甚しおもよい。䞊蚘電
荷発生材料ずしおは、䟋えば、セレン、セレン−
テルル、アモルフアスシリコン、ピリリりム塩、
アゟ系化合物、ゞスアゟ系化合物、アンサンスロ
ン系化合物、むンゞゎ系化合物、トリプニルメ
タン系化合物、スレン系化合物、トルむゞン系化
合物、ピラゟリン系化合物、他のペリレン系化合
物、キナクリドン系化合物等が䟋瀺される。た
た、䞊蚘電荷茞送材料ずしおは、䟋えば、テトラ
シアノ゚チレン、−トリニトロ−−
フルオレノン等のフルオレノン系化合物、
−トリニトロチオキサントン、ゞニトロア
ントラセン等のニトロ化化合物、無氎コハク酞、
無氎マレむン酞、ゞブロモ無氎マレむン酞、
−ゞ−ゞメチルアミノプニル−
−オキサゞアゟヌル等のオキサゞアゟヌル系化
合物、−−ゞ゚チルアミノスチリルアン
トラセン等のスチリル系化合物、ポリビニルカル
バゟヌル等のカルバゟヌル系化合物、−プニ
ル−−−ゞメチルアミノプニルピラゟ
リン等のピラゟリン系化合物、むンドヌル系化合
物、オキサゟヌル系化合物、む゜オキサゟヌル系
化合物、チアゟヌル系化合物、チアゞアゟヌル系
化合物、むミダゟヌル系化合物、ピラゟヌル系化
合物、トリアゟヌル系化合物等の含窒玠環匏化合
物、瞮合倚環族化合物等が䟋瀺される。 たた、感光局は、タヌプニル、ハロナフトキ
ノン類、アセナフチレン等、埓来公知の増感剀、
−−ゞプニルヒドラゞノフルオレ
ン、−カルバゟリルむミノフルオレンなどのフ
ルオレン系化合物、可塑剀、酞化防止剀、玫倖線
吞収剀などの劣化防止剀等、皮々の添加剀を含有
しおいおもよい。 䞊蚘のペリレン系化合物、ゞアミン誘導䜓およ
び結着暹脂等を含有する単局型感光局は、適宜の
厚みを有しおいおもよいが、10〜50Ό、特に15
〜25Όの厚みを有するものが奜たしい。 なお、䞊蚘電子写真甚感光䜓は、䞊蚘ペリレン
系化合物等の分散液を調補し、導電性基材に塗垃
し、溶媒を陀去するこずにより圢成できる。 䞊蚘導電性基材は、シヌト状やドラム状のいず
れであ぀おもよく、基材自䜓が導電性を有する
か、基材の衚面が導電性を有し、䜿甚に際し十分
な機械的匷床を有するものが奜たしい。䞊蚘導電
性基材ずしおは、導電性を有する皮々の材料が䜿
甚でき、䟋えば、アルミニりム、銅、錫、癜金、
金、銀、バナゞりム、モリブデン、クロム、カド
ミりム、チタン、ニツケル、パラゞりム、むンゞ
りム、ステンレス鋌、真鍮などの金属単䜓や、䞊
蚘金属が蒞着たたは積局されたプラスチツク材
料、ペり化アルミニりム、酞化錫、酞化むンゞり
ム等で被芆されたガラス等が䟋瀺される。䞊蚘導
電性基材のうち、アルミニりム、特に、アルミニ
りムの結晶粒が衚面に存圚せず、耇写画像等にお
いお黒点やピンホヌル等が発生するのを防止する
ず共に、䞊蚘ペリレン系化合物、ゞアミン誘導䜓
等を含有する感光局ず基材ずの密着性をよくする
ため、アルマむト凊理されたアルミニりム、䞭で
もアルマむト凊理局の膜厚が〜12Όであり、
衚面粗さが1.5S以䞋のアルマむト凊理されたアル
ミニりムが奜たしい。 たた、䞊蚘分散液の調補に際しおは、䜿甚され
る結着暹脂等の皮類に応じお皮々の有機溶剀を䜿
甚するこずができる。䞊蚘溶剀ずしおは、−ヘ
キサン、オクタン、シクロヘキサン等の脂肪族系
炭化氎玠、ベンれン、トル゚ン、キシレン等の芳
銙族炭化氎玠、ゞクロロメタン、ゞクロロ゚タ
ン、四塩化炭玠、クロロベンれン等のハロゲン化
炭化氎玠、ゞメチル゚ヌテル、ゞ゚チル゚ヌテ
ル、テトラヒドロフラン、゚チレングリコヌルゞ
メチル゚ヌテル、゚チレングリコヌルゞ゚チル゚
ヌテル、ゞ゚チレングリコヌルゞメチル゚ヌテル
等の゚ヌテル類、アセトン、メチル゚チルケト
ン、シクロヘキサノン等のケトン類、酢酞゚チ
ル、酢酞メチル等の゚ステル類、ゞメチルホルム
アミド、ゞメチルスルホキシド等、皮々の溶剀が
䟋瀺され、䞀皮たたは二皮以䞊混合しお甚いられ
る。なお、䞊蚘分散液を調補する際、分散性、塗
工性等をよくするため、界面掻性剀、レベリング
剀等を䜵甚しおもよい。 たた、䞊蚘分散液は、埓来慣甚の方法、䟋え
ば、ボヌルミル、ペむントシ゚ヌカヌ、サンドミ
ル、アトラむタヌ、超音波分散噚等を甚いお調補
するこずができ、埗られた分散液を前蚘導電性基
材に塗垃し、加熱しお溶剀を陀去するこずによ
り、本発明の電子写真甚感光䜓を埗るこずができ
る。 なお、前蚘導電性基材ず感光局ずの密着性を高
めるため、導電性基材ず感光局ずの間に䞋匕き局
を圢成しおもよい。該䞋匕き局は、倩然たたは合
成高分子を含有する溶液を塗垃し、也燥埌の膜厚
が0.01〜1Ό皋床になるように圢成される。た
た、前蚘感光局を保護するため、感光局䞊に衚面
保護局を圢成しおもよい。前蚘衚面保護局は、前
蚘皮々の結着暹脂や、該結着暹脂ず劣化防止剀等
の添加剀ずの混合液を通垞、也燥埌の膜厚0.1〜
10Ό、奜たしくは0.2〜5Ό皋床に塗垃するこず
により圢成される。 本発明の電子写真甚感光䜓は、感光局が、特定
のペリレン系化合物およびゞアミン誘導䜓を含有
しおいるため、正垯電性および光安定性に優れる
ず共に、単局型感光局を有する感光䜓でありなが
ら、感床および衚面電䜍が高く、しかも残留電䜍
が小さい。たた、単局型感光局を有する感光䜓で
あるため、安䟡な電子写真甚感光䜓を歩留りよく
容易に補造するこずができる。埓぀お、本発明の
電子写真甚感光䜓は、耇写機、レヌザビヌムプリ
ンタヌなどで䜿甚される感光䜓ずしお有甚であ
る。 実斜䟋 以䞋に、実斜䟋に基づき、この発明をより詳现
に説明する。 実斜䟋  ポリ4′−シクロヘキシリデンゞプニ
ルカヌボネヌト䞉菱瓊斯化孊瀟補、商品名ポ
リカヌボネヌト100重量郚、N′−ゞ
−ゞメチルプニルペリレン−
10−テトラカルボキシゞむミド重量郚、メ
タルフリヌフタロシアニン0.6重量郚、4′−
ビス−−メチルナフチル−−ナフチル
アミノビプニル100重量郚および所定量のテ
トラヒドロフランを、ボヌルミルに仕蟌み、24時
間、混合分散し単局型感光局甚分散液を調補する
ず共に、アルマむト凊理されたアルミニりム板䞊
に塗垃し、厚み玄20Όの感光局を有する電子写
真甚感光䜓を䜜補した。 実斜䟋  実斜䟋の4′−ビス−−メチルナ
フチル−−ナフチルアミノビプニルに代
えお、4′−ビス−−メトキシナフチ
ル−−ナフチルアミノビプニルを甚い、
䞊蚘実斜䟋ず同様にしお電子写真甚感光䜓を䜜
補した。 実斜䟋  実斜䟋の4′−ビス−−メチルナ
フチル−−ナフチルアミノビプニルに代
えお、4′−ビス−−クロロナフチル
−−ナフチルアミノビプニルを甚い、䞊蚘
実斜䟋ず同様にしお電子写真甚感光䜓を䜜補し
た。 実斜䟋  実斜䟋の4′−ビス−−メチルナ
フチル−−ナフチルアミノビプニルに代
えお、−−ゞ−メチルナフチル
アミノ−4′−−−メチルナフチル−−
ナフチルアミノビプニルを甚い、䞊蚘実斜䟋
ず同様にしお電子写真甚感光䜓を䜜補した。 実斜䟋  実斜䟋の4′−ビス−−メチルナ
フチル−−ナフチルアミノビプニルに代
えお、−−−メチルナフチル−−ナ
フチルアミノ−4′−−−メチルナフチル
−−ナフチルアミノビプニルを甚い、䞊蚘
実斜䟋ず同様にしお電子写真甚感光䜓を䜜補し
た。 実斜䟋  実斜䟋の4′−ビス−−メチルナ
フチル−−ナフチルアミノビプニルに代
えお、4′−ビス−ゞ−メチルナ
フチルアミノビプニルを甚い、䞊蚘実斜䟋
ず同様にしお電子写真甚感光䜓を䜜補した。 実斜䟋  実斜䟋の4′−ビス−−メチルナ
フチル−−ナフチルアミノビプニルに代
えお、−ビス−−メチルナフチル
−−ナフチルアミノベンれンを甚い、䞊蚘実
斜䟋ず同様にしお電子写真甚感光䜓を䜜補し
た。 実斜䟋  実斜䟋の4′−ビス−−メチルナ
フチル−−ナフチルアミノビプニルに代
えお、4″−ビス−−メチルナフチル
−−ナフチルアミノ−1′4′1″−テルフ
゚ニルを甚い、䞊蚘実斜䟋ず同様にしお電子写
真甚感光䜓を䜜補した。 比范䟋  実斜䟋の4′−ビス−−メチルナ
フチル−−ナフチルアミノビプニルに代
えお、−゚チル−−カルバゟリルアルデヒド
−ゞプニルヒドラゟンを甚いお、䞊蚘
実斜䟋ず同様にしお電子写真甚感光䜓を䜜補し
た。 比范䟋  実斜䟋のN′−ゞ−ゞメチルフ
゚ニルペリレン−10−テトラカル
ボキシゞむミドに代えお、N′−ゞ−メ
トキシプニルペリレン−10−テ
トラカルボキシゞむミドを甚いお、䞊蚘実斜䟋
ず同様にしお電子写真甚感光䜓を䜜補した。 比范䟋  実斜䟋のN′−ゞ−ゞメチルフ
゚ニルペリレン−10−テトラカル
ボキシゞむミドに代えお、N′−ゞ
−トリメチルプニルペリレン−
10−テトラカルボキシゞむミドを甚いお、䞊
蚘実斜䟋ず同様にしお電子写真甚感光䜓を䜜補
した。 比范䟋  実斜䟋のN′−ゞ−ゞメチルフ
゚ニルペリレン−10−テトラカル
ボキシゞむミドに代えお、ゞブロモアンサンスロ
ンを甚いお、䞊蚘実斜䟋ず同様にしお電子写真
甚感光䜓を䜜補した。 比范䟋  実斜䟋のN′−ゞ−ゞメチルフ
゚ニルペリレン−10−テトラカル
ボキシゞむミドに代えお、メタルフリヌフタロシ
アニンを甚いお、䞊蚘実斜䟋ず同様にしお電子
写真甚感光䜓を䜜補した。 比范䟋  実斜䟋の4′−ビス−−メチルナ
フチル−−ナフチルアミノビプニルに代
えお、−−ゞ゚チルアミノベンズア
ルデヒド −ゞプニルヒドラゟンを甚い
お、䞊蚘実斜䟋ず同様にしお電子写真甚感光䜓
を䜜補した。 比范䟋  実斜䟋の4′−ビス−−メチルナ
フチル−−ナフチルアミノビプニルに代
えお、−プニル−−−ゞ゚チルアミノ
スチリル−−−ゞ゚チルアミノプニル
ピラゟリンを甚いお、䞊蚘実斜䟋ず同様にしお
電子写真甚感光䜓を䜜補した。 比范䟋  実斜䟋の4′−ビス−−メチルナ
フチル−−ナフチルアミノビプニルに代
えお、ポリビニルカルバゟヌルを甚いお、䞊蚘実
斜䟋ず同様にしお電子写真甚感光䜓を䜜補し
た。 たた、参考たでに、䞊蚘実斜䟋〜の電荷発
生材料および電荷茞送材料を甚いた積局型感光局
を有する感光䜓の特性ず比范するため、䞊蚘実斜
䟋で甚いた電荷発生材料および電荷茞送材料を甚
いお、積局型感光局を有する感光䜓を以䞋のよう
にしお䜜補した。 ポリビニルブチラヌル積氎化孊瀟補、商品名
゚スレツク100重量郚に察しお、䞊蚘各実斜
䟋の電荷発生材料100重量郚、メタルフリヌフタ
ロシアニン0.6重量郚、および所定量のベンれン
をボヌルミルに仕蟌み、24時間混合分散しお電荷
発生局甚分散液を調補した。䞊蚘電荷発生局甚分
散液を前蚘実斜䟋で甚いた導電性基材に也燥埌
の膜厚玄0.5Όずなるように塗垃し、電荷発生局
を圢成した。 たた、ポリ゚ステル東掋玡瀟補、商品名バむ
ロン200100重量郚に察しお、䞊蚘各実斜䟋で甚
いた電荷茞送材料70重量郚および所定量のテトラ
ヒドロフランを甚い、攪拌混合しお、䞊蚘電荷茞
送局甚塗垃液を調補し、䞊蚘電荷発生局䞊に、也
燥埌の膜厚玄18Όの電荷茞送局を圢成するこず
により、䞊蚘実斜䟋に察応した積局型感光局を有
する電子写真甚感光䜓を䜜補した。 そしお、䞊蚘実斜䟋および比范䟋で埗られた電
子写真甚感光䜓の垯電特性、感光特性を調べるた
め、静電耇写玙詊隓装眮川口電機瀟補、SP−
428型を甚いお、単局型感光局を有する電子写
真甚感光䜓では6.0KVの条件で、積局型感光局
を有する電子写真甚感光䜓では−6.0KVの条件で
コロナ攟電を行なうこずにより、前蚘各実斜䟋お
よび比范䟋の電子写真甚感光䜓を垯電させた。 なお、各感光䜓の衚面電䜍Vs.p.(V)を枬定する
ず共に、照床10ルツクスのタングステンランプを
甚いお、感光䜓衚面を露光し、䞊蚘衚面電䜍Vs.
p.が1/2ずなるたでの時間を求め、半枛露光量
ΌJcm2を算出した。たた、露光埌、0.15
秒経過埌の衚面電䜍を残留電䜍Vr.p.(V)ずした。 䞊蚘実斜䟋および比范䟋で埗られた各電子写真
甚感光䜓の垯電特性、感光特性の結果を衚に瀺
す。 衚から明らかなように、比范䟋の感光䜓は、
いずれも感床が十分でなく、残留電䜍が高いもの
であ぀た。 これに察しお、実斜䟋の電子写真甚感光䜓は、
いずれも半枛露光量が小さく、感床がよいず共
に、残留電䜍が小さいこずが刀明した。
[Table] Various binder resins can be used, such as styrene polymers, acrylic polymers, styrene-acrylic copolymers, polyethylene, ethylene-vinyl acetate copolymers, chlorinated polyethylene, Olefin polymers such as polypropylene and ionomers, polyvinyl chloride, vinyl chloride-vinyl acetate copolymers, polyesters, alkyd resins, polyamides, polyurethanes, epoxy resins,
Polycarbonate, polyarylate, polysulfone, diallyl phthalate resin, silicone resin,
Various polymers can be used, such as ketone resins, polyvinyl butyral resins, polyether resins, phenolic resins, and photocurable resins such as epoxy acrylates, but these polymers can be used to increase the sensitivity of the photoreceptor and to improve compatibility with the diamine derivatives mentioned above. Preferred is poly(4,4'-cyclohexylidene diphenyl) carbonate, which has excellent abrasion resistance and repeatability of the photoreceptor and can be used in a wide range of solvents for dissolving the binder resin. When using the above poly(4,4'-cyclohexylidene diphenyl) carbonate, bisphenol A, which conventionally could only be used with chlorinated solvents such as dichloromethane and monochlorobenzene, due to solution stability etc.
Unlike type polycarbonate, it is also possible to use ketone solvents such as tetrahydrofuran and methyl ethyl ketone, which is preferable from the viewpoint of safety and hygiene, and is easy to handle. In addition, the above poly(4,
There are various types of 4'-cyclohexylidene diphenyl) carbonates, such as those with a degree of polymerization of 50 to
About 5000 can be used. Further, the above-mentioned binder resins may be used alone or in combination of two or more. The ratio of the perylene compound, diamine derivative, and binder resin to be used is not particularly limited and can be appropriately selected depending on the desired characteristics of the electrophotographic photoreceptor. The perylene compound is used in an amount of 2 to 20 parts by weight, preferably 3 to 15 parts by weight, and the diamine derivative is used in an amount of 40 to 200 parts by weight, preferably 50 to 100 parts by weight. If the amount of perylene compound and diamine derivative used is less than the above-mentioned amount, not only the sensitivity of the photoreceptor will not be sufficient, but also the residual potential will increase. Further, if the amount exceeds the above range, the abrasion resistance of the photoreceptor will not be sufficient. Note that normally, if a large amount of the above perylene compound is used, the positive charging property will not be sufficient, and if a small amount is used, the sensitivity etc. will decrease, but in the electrophotographic photoreceptor of the present invention, a specific perylene compound and a diamine Since it is combined with a derivative, it is possible to obtain an electrophotographic photoreceptor that has high sensitivity and surface potential even if the amount of perylene compound is small, and has excellent positive chargeability with a small residual potential. Note that even a photoreceptor having a single-layer type photosensitive layer with the above composition and structure has high sensitivity and a small residual potential, so it exhibits sufficient electrophotographic properties, but in order to increase the spectral sensitivity, various spectral sensitizers are It is preferable to use phthalocyanine-based compounds which function as charge-generating materials, such as aluminum phthalocyanine, copper phthalocyanine having various crystal forms such as α-type, β-type, γ-type, among others metal-free phthalocyanine and/or titanyl. Preference is given to using phthalocyanines. The phthalocyanine compound may have an appropriate particle size, but preferably has an average particle size of 0.1 Όm or less. When the average particle size of the metal-free phthalocyanine exceeds 0.1 Όm, the sensitivity of the photoreceptor decreases. Further, the phthalocyanine compound can be used in an appropriate amount, but from 0 to 100 parts by weight based on 100 parts by weight of the above binder resin.
It is preferable to add 2 parts by weight. If the amount added exceeds 2 parts by weight, the phthalocyanine compound has spectral sensitivity in a long wavelength region, resulting in insufficient red reproducibility. The single-layer type photosensitive layer having the above composition may contain other charge-generating materials, charge-transporting materials, etc., as long as the photosensitive properties etc. are not impaired. Examples of the charge generating material include selenium, selenium-
Tellurium, amorphous silicon, pyrylium salt,
Examples include azo compounds, disazo compounds, anthanthrone compounds, indigo compounds, triphenylmethane compounds, threne compounds, toluidine compounds, pyrazoline compounds, other perylene compounds, and quinacridone compounds. Further, examples of the charge transport material include tetracyanoethylene, 2,4,7-trinitro-9-
Fluorenone compounds such as fluorenone, 2,
Nitrated compounds such as 4,8-trinitrothioxanthone and dinitroanthracene, succinic anhydride,
Maleic anhydride, dibromomaleic anhydride, 2,
5-di(4-dimethylaminophenyl)-1,3,
Oxadiazole compounds such as 4-oxadiazole, styryl compounds such as 9-(4-diethylaminostyryl)anthracene, carbazole compounds such as polyvinylcarbazole, 1-phenyl-3-(p-dimethylaminophenyl) Nitrogen-containing cyclic compounds such as pyrazoline compounds such as pyrazoline, indole compounds, oxazole compounds, isoxazole compounds, thiazole compounds, thiadiazole compounds, imidazole compounds, pyrazole compounds, triazole compounds, and fused polycycles Examples include compounds of the above group. In addition, the photosensitive layer may contain conventionally known sensitizers such as terphenyl, halonaphthoquinones, acenaphthylene, etc.
Contains various additives such as fluorene compounds such as 9-(N,N-diphenylhydrazino)fluorene and 9-carbazolyliminofluorene, deterioration inhibitors such as plasticizers, antioxidants, and ultraviolet absorbers. You may do so. The single-layer type photosensitive layer containing the above-mentioned perylene compound, diamine derivative, binder resin, etc. may have an appropriate thickness, but is preferably 10 to 50 ÎŒm, particularly 15 ÎŒm.
Those having a thickness of ~25 ÎŒm are preferred. The electrophotographic photoreceptor can be formed by preparing a dispersion of the perylene compound, applying the dispersion to a conductive substrate, and removing the solvent. The conductive base material may be in the form of a sheet or a drum, and either the base material itself is conductive or the surface of the base material is conductive and has sufficient mechanical strength when used. Preferably. Various conductive materials can be used as the conductive base material, such as aluminum, copper, tin, platinum,
Single metals such as gold, silver, vanadium, molybdenum, chromium, cadmium, titanium, nickel, palladium, indium, stainless steel, and brass, plastic materials in which the above metals are vapor-deposited or laminated, aluminum iodide, tin oxide, and indium oxide. An example is glass coated with . Among the conductive substrates mentioned above, aluminum, especially aluminum crystal grains, are not present on the surface, preventing the occurrence of black spots and pinholes in copied images, etc., and the above-mentioned perylene compounds, diamine derivatives, etc. In order to improve the adhesion between the contained photosensitive layer and the base material, alumite-treated aluminum is used, in particular, the thickness of the alumite-treated layer is 5 to 12 ÎŒm,
Anodized aluminum with a surface roughness of 1.5S or less is preferred. Further, when preparing the above-mentioned dispersion liquid, various organic solvents can be used depending on the type of binder resin and the like used. Examples of the solvent include aliphatic hydrocarbons such as n-hexane, octane, and cyclohexane, aromatic hydrocarbons such as benzene, toluene, and xylene, halogenated hydrocarbons such as dichloromethane, dichloroethane, carbon tetrachloride, and chlorobenzene, dimethyl ether, Ethers such as diethyl ether, tetrahydrofuran, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, ketones such as acetone, methyl ethyl ketone, cyclohexanone, esters such as ethyl acetate, methyl acetate, dimethyl formamide, dimethyl sulfoxide, etc. Examples include solvents, which may be used singly or in combination of two or more. In addition, when preparing the above-mentioned dispersion, a surfactant, a leveling agent, etc. may be used in combination in order to improve dispersibility, coating properties, etc. Further, the above-mentioned dispersion liquid can be prepared using a conventional method, for example, a ball mill, a paint shaker, a sand mill, an attritor, an ultrasonic disperser, etc., and the obtained dispersion liquid is applied to the conductive substrate. The electrophotographic photoreceptor of the present invention can be obtained by applying the photoreceptor to a solvent and heating it to remove the solvent. Incidentally, in order to improve the adhesion between the conductive base material and the photosensitive layer, an undercoat layer may be formed between the conductive base material and the photosensitive layer. The undercoat layer is formed by applying a solution containing a natural or synthetic polymer so that the film thickness after drying is about 0.01 to 1 ÎŒm. Further, in order to protect the photosensitive layer, a surface protective layer may be formed on the photosensitive layer. The surface protective layer is usually formed by drying the various binder resins or a mixture of the binder resin and additives such as anti-deterioration agents to a film thickness of 0.1~
It is formed by coating to a thickness of about 10 ÎŒm, preferably about 0.2 to 5 ÎŒm. The electrophotographic photoreceptor of the present invention has a photoreceptor layer containing a specific perylene compound and a diamine derivative, so it has excellent positive chargeability and photostability, and is a photoreceptor having a single-layer type photoreceptor layer. However, it has high sensitivity and surface potential, and low residual potential. Furthermore, since the photoreceptor has a single-layer type photoreceptor layer, an inexpensive electrophotographic photoreceptor can be easily manufactured with high yield. Therefore, the electrophotographic photoreceptor of the present invention is useful as a photoreceptor used in copying machines, laser beam printers, and the like. <Examples> The present invention will be described in more detail below based on examples. Example 1 100 parts by weight of poly(4,4'-cyclohexylidene diphenyl) carbonate (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name Polycarbonate Z), N,N'-di(3,5-dimethylphenyl)perylene- 3, 4,
8 parts by weight of 9,10-tetracarboxydiimide, 0.6 parts by weight of metal-free phthalocyanine, 4,4'-
100 parts by weight of bis[N-(6-methylnaphthyl)-N-naphthylamino]biphenyl and a predetermined amount of tetrahydrofuran were charged into a ball mill and mixed and dispersed for 24 hours to prepare a dispersion for a single-layer photosensitive layer. An electrophotographic photoreceptor having a photosensitive layer with a thickness of about 20 ÎŒm was prepared by coating on an alumite-treated aluminum plate. Example 2 In place of 4,4'-bis[N-(6-methylnaphthyl)-N-naphthylamino]biphenyl in Example 1, 4,4'-bis[N-(6-methoxynaphthyl)-N -naphthylamino]biphenyl,
An electrophotographic photoreceptor was produced in the same manner as in Example 1 above. Example 3 4,4'-bis[N-(6-chloronaphthyl) was substituted for 4,4'-bis[N-(6-methylnaphthyl)-N-naphthylamino]biphenyl in Example 1.
An electrophotographic photoreceptor was prepared in the same manner as in Example 1 using -N-naphthylamino]biphenyl. Example 4 4-[N,N-di(6-methylnaphthyl) was substituted for 4,4'-bis[N-(6-methylnaphthyl)-N-naphthylamino]biphenyl in Example 1.
amino]-4'-[N-(6-methylnaphthyl)-N-
An electrophotographic photoreceptor was produced in the same manner as in Example 1 using naphthylamino]biphenyl. Example 5 In place of 4,4'-bis[N-(6-methylnaphthyl)-N-naphthylamino]biphenyl in Example 1, 4-[N-(4-methylnaphthyl)-N-naphthylamino] -4'-[N-(6-methylnaphthyl)
An electrophotographic photoreceptor was prepared in the same manner as in Example 1 using -N-naphthylamino]biphenyl. Example 6 4,4'-bis[N,N-di(6-methylnaphthyl) was substituted for 4,4'-bis[N-(6-methylnaphthyl)-N-naphthylamino]biphenyl in Example 1. ) An electrophotographic photoreceptor was prepared in the same manner as in Example 1 using Amino]biphenyl. Example 7 In place of 4,4'-bis[N-(6-methylnaphthyl)-N-naphthylamino]biphenyl in Example 1, 1,4-bis[N-(6-methylnaphthyl)
An electrophotographic photoreceptor was prepared in the same manner as in Example 1 using -N-naphthylamino]benzene. Example 8 4,4″-bis[N-(6-methylnaphthyl) was substituted for 4,4′-bis[N-(6-methylnaphthyl)-N-naphthylamino]biphenyl in Example 1.
-N-naphthylamino]-1,1':4',1''-terphenyl was used to produce an electrophotographic photoreceptor in the same manner as in Example 1. Comparative Example 1 4,4' of Example 1 - Bis[N-(6-methylnaphthyl)-N-naphthylamino]biphenyl was replaced with N-ethyl-3-carbazolylaldehyde N,N-diphenylhydrazone, but in the same manner as in Example 1 above. Comparative Example 2 In place of N,N'-di(3,5-dimethylphenyl)perylene-3,4,9,10-tetracarboxydiimide in Example 1, N , N'-di(4-methoxyphenyl)perylene-3,4,9,10-tetracarboxydiimide, the above Example 1
An electrophotographic photoreceptor was produced in the same manner as described above. Comparative Example 3 N,N'-di(2,4,
6-trimethylphenyl)perylene-3,4,
An electrophotographic photoreceptor was prepared in the same manner as in Example 1 using 9,10-tetracarboxydiimide. Comparative Example 4 In place of N,N'-di(3,5-dimethylphenyl)perylene-3,4,9,10-tetracarboxydiimide in Example 1, dibromoanthanthrone was used to produce the same result as in Example 1. An electrophotographic photoreceptor was produced in the same manner as described above. Comparative Example 5 Example 1 was prepared using metal-free phthalocyanine in place of N,N'-di(3,5-dimethylphenyl)perylene-3,4,9,10-tetracarboxydiimide in Example 1. An electrophotographic photoreceptor was produced in the same manner as described above. Comparative Example 6 4-(N,N-diethylamino)benzaldehyde N,N-diphenylhydrazone was used instead of 4,4'-bis[N-(6-methylnaphthyl)-N-naphthylamino]biphenyl in Example 1. An electrophotographic photoreceptor was produced in the same manner as in Example 1 using the following. Comparative Example 7 1-phenyl-3-(4-diethylaminostyryl)-5-(4 -diethylaminophenyl)
An electrophotographic photoreceptor was produced in the same manner as in Example 1 using pyrazoline. Comparative Example 8 A sample for electrophotography was prepared in the same manner as in Example 1, except that polyvinylcarbazole was used in place of 4,4'-bis[N-(6-methylnaphthyl)-N-naphthylamino]biphenyl in Example 1. A photoreceptor was produced. For reference, in order to compare the characteristics of a photoconductor having a laminated photosensitive layer using the charge generation materials and charge transport materials of Examples 1 to 3 above, the charge generation materials and charge transport materials used in the above Examples A photoreceptor having a laminated photosensitive layer was produced using the materials in the following manner. To 100 parts by weight of polyvinyl butyral (manufactured by Sekisui Chemical Co., Ltd., trade name Eslec C), 100 parts by weight of the charge-generating material of each of the above examples, 0.6 parts by weight of metal-free phthalocyanine, and a predetermined amount of benzene were charged into a ball mill. A dispersion liquid for a charge generation layer was prepared by time-mixing and dispersion. The charge generation layer dispersion was applied to the conductive substrate used in Example 1 to a dry film thickness of about 0.5 ÎŒm to form a charge generation layer. In addition, 70 parts by weight of the charge transport material used in each of the above examples and a predetermined amount of tetrahydrofuran were mixed with 100 parts by weight of polyester (manufactured by Toyobo Co., Ltd., trade name: Vylon 200) to form the charge transport layer. A photoreceptor for electrophotography having a laminated photosensitive layer corresponding to the above example was prepared by preparing a coating solution and forming a charge transport layer having a thickness of about 18 ÎŒm after drying on the charge generation layer. did. In order to investigate the charging characteristics and photosensitivity characteristics of the electrophotographic photoreceptors obtained in the above Examples and Comparative Examples, an electrostatic copying paper tester (manufactured by Kawaguchi Electric Co., Ltd., SP-
428 type), conduct corona discharge under +6.0KV conditions for electrophotographic photoreceptors with a single-layer type photosensitive layer, and under -6.0KV conditions for electrophotographic photoreceptors with laminated type photoreceptors. The electrophotographic photoreceptors of each of the Examples and Comparative Examples were charged. In addition, while measuring the surface potential Vs.p. (V) of each photoreceptor, the surface of the photoreceptor was exposed to light using a tungsten lamp with an illuminance of 10 lux, and the surface potential Vs.p.
Find the time until p. becomes 1/2, and calculate the halved exposure amount E.
1/2 (ÎŒJ/cm 2 ) was calculated. Also, after exposure, 0.15
The surface potential after seconds had elapsed was defined as the residual potential Vr.p. (V). Table 1 shows the charging characteristics and photosensitive characteristics of each electrophotographic photoreceptor obtained in the above Examples and Comparative Examples. As is clear from Table 1, the photoreceptor of the comparative example was
In either case, the sensitivity was insufficient and the residual potential was high. In contrast, the electrophotographic photoreceptor of the example
In both cases, it was found that the half-life exposure was small, the sensitivity was good, and the residual potential was small.

【衚】 たた、光照射による感光䜓の特性の倉化を調べ
るため、䞊蚘実斜䟋䟋および比范䟋の電子写
真甚感光䜓を、照床1000ルツクスの光源で分間
光照射した埌、䞊蚘各感光䜓の特性を䞊蚘ず同様
にしお調べ、圓初の特性ずの差を求めたずころ、
衚に瀺す結果を埗た。
[Table] In addition, in order to examine changes in the characteristics of photoreceptors due to light irradiation, the electrophotographic photoreceptors of Example 1 and Comparative Example 1 were irradiated with light for 5 minutes using a light source with an illuminance of 1000 lux. The characteristics of the photoreceptor were investigated in the same manner as above, and the difference from the original characteristics was determined.
The results shown in Table 2 were obtained.

【衚】 䞊蚘衚より明らかなように、比范䟋の電子
写真甚感光䜓は、光照射により、衚面電䜍、残留
電䜍が著しく倧きくなるだけでなく、感床が倧き
く䜎䞋し、繰返し特性が十分でないこずが刀明し
た。 これに察しお、実斜䟋の感光䜓は、光照射し
おも、垯電特性、感床特性の倉化が少なく、繰返
し䜿甚したずきでも、安定した特性を瀺すこずが
刀明した。 発明の効果 以䞊のように、本発明の電子写真甚感光䜓によ
れば、感光局が、特定のペリレン系化合物ずゞア
ミン誘導䜓ず結着暹脂ずからなるため、正垯電性
および光安定性に優れるず共に、単局型の構造を
有する感光䜓でありながら、感床および衚面電䜍
が高く、しかも残留電䜍が小さい。たた、単局型
の感光䜓であるため、歩留りよく容易に補造する
こずができ安䟡であるずいう特有の効果を奏す
る。
[Table] As is clear from Table 2 above, the electrophotographic photoreceptor of Comparative Example 1 not only significantly increases its surface potential and residual potential when exposed to light, but also greatly decreases its sensitivity and has insufficient repeatability. It turned out not to be. On the other hand, it was found that the photoreceptor of Example 1 shows little change in charging characteristics and sensitivity characteristics even when irradiated with light, and exhibits stable characteristics even when used repeatedly. <Effects of the Invention> As described above, according to the electrophotographic photoreceptor of the present invention, since the photosensitive layer is composed of a specific perylene compound, a diamine derivative, and a binder resin, positive chargeability and photostability are improved. Although it is a photoreceptor having a single-layer structure, it has high sensitivity and surface potential, and has a small residual potential. Further, since it is a single-layer type photoreceptor, it has the unique advantage of being easily manufactured with high yield and being inexpensive.

Claims (1)

【特蚱請求の範囲】  電荷発生材料ず電荷茞送材料ず結着暹脂ずを
含有する単局型感光局を有する感光䜓においお、
䞊蚘電荷発生材料が䞋蚘䞀般匏(1)で衚されるペリ
レン系化合物であり、電荷茞送材料が䞋蚘䞀般匏
(2)で衚されるゞアミン誘導䜓であるこずを特城ず
する電子写真甚感光䜓。 匏䞭、R1、R2、R3およびR4は、䜎玚アルキル
基を瀺す 匏䞭、R5、R6、R7およびR8は、同䞀たたは異
な぀お、氎玠原子、䜎玚アルキル基、䜎玚アルコ
キシ基たたはハロゲン原子を瀺し、は、氎玠原
子、䜎玚アルキル基、䜎玚アルコキシ基たたはハ
ロゲン原子を瀺す。は〜の敎数を瀺す。  R1、R2、R3およびR4が、炭玠数〜のア
ルキル基である䞊蚘特蚱請求の範囲第項蚘茉の
電子写真甚感光䜓。  R5、R6、R7およびR8が、同䞀たたは異な぀
お、炭玠数〜のアルキル基、炭玠数〜の
アルコキシ基たたはハロゲン原子である䞊蚘特蚱
請求の範囲第項蚘茉の電子写真甚感光䜓。  が、炭玠数〜のアルキル基、炭玠数
〜のアルコキシ基たたはハロゲン原子である䞊
蚘特蚱請求の範囲第項蚘茉の電子写真甚感光
䜓。  ペリレン系化合物が、N′−ビス
−ゞメチルプニルペリレン−
10−テトラカルボキシゞむミドである䞊蚘特蚱請
求の範囲第項蚘茉の電子写真甚感光䜓。  感光局が、結着暹脂100重量郚に察しお、ペ
リレン系化合物〜20重量郚およびゞアミン誘導
䜓40〜200重量郚含有する䞊蚘特蚱請求の範囲第
項蚘茉の電子写真甚感光䜓。  感光局が、メタルフリヌフタロシアニンたた
はチタニルフタロシアニンを含有する䞊蚘特蚱請
求の範囲第項たたは第項蚘茉の電子写真甚感
光䜓。
[Scope of Claims] 1. A photoconductor having a single-layer photoconductor layer containing a charge-generating material, a charge-transporting material, and a binder resin,
The above charge generating material is a perylene compound represented by the following general formula (1), and the charge transporting material is a perylene compound represented by the following general formula (1).
An electrophotographic photoreceptor characterized by being a diamine derivative represented by (2). (In the formula, R 1 , R 2 , R 3 and R 4 represent a lower alkyl group) (In the formula, R 5 , R 6 , R 7 and R 8 are the same or different and represent a hydrogen atom, a lower alkyl group, a lower alkoxy group or a halogen atom, and Y is a hydrogen atom, a lower alkyl group, a lower alkoxy group or a halogen atom. n is an integer of 1 to 3.) 2 R 1 , R 2 , R 3 and R 4 are alkyl groups having 1 to 4 carbon atoms, Claim 1 above The electrophotographic photoreceptor described above. 3 R 5 , R 6 , R 7 and R 8 are the same or different and are an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom, according to claim 1 above. photoreceptor for electrophotography. 4 Y is an alkyl group having 1 to 4 carbon atoms, 1 carbon number
The electrophotographic photoreceptor according to claim 1, which is an alkoxy group or a halogen atom of -4. 5 The perylene compound is N,N'-bis(3,
5-dimethylphenyl)perylene-3,4,9,
The electrophotographic photoreceptor according to claim 1, which is 10-tetracarboxydiimide. 6. The electrophotographic photoreceptor according to claim 1, wherein the photosensitive layer contains 2 to 20 parts by weight of a perylene compound and 40 to 200 parts by weight of a diamine derivative based on 100 parts by weight of a binder resin. 7. The electrophotographic photoreceptor according to claim 1 or 6, wherein the photosensitive layer contains metal-free phthalocyanine or titanyl phthalocyanine.
JP62277162A 1987-10-30 1987-10-30 Electrophotographic sensitive body Granted JPH01118146A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62277162A JPH01118146A (en) 1987-10-30 1987-10-30 Electrophotographic sensitive body
US07/263,255 US4877702A (en) 1987-10-30 1988-10-27 Electrophotographic sensitive material
DE3853401T DE3853401T2 (en) 1987-10-30 1988-10-31 Electrophotographic sensitive material.
EP88118157A EP0314195B1 (en) 1987-10-30 1988-10-31 Electrophotographic sensitive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62277162A JPH01118146A (en) 1987-10-30 1987-10-30 Electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPH01118146A JPH01118146A (en) 1989-05-10
JPH0520745B2 true JPH0520745B2 (en) 1993-03-22

Family

ID=17579667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62277162A Granted JPH01118146A (en) 1987-10-30 1987-10-30 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH01118146A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678022U (en) * 1993-04-21 1994-11-01 株匏䌚瀟オヌトバックスセブン Car air freshener container

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2371810A1 (en) * 2005-01-05 2011-10-05 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same
CN101317134A (en) 2005-12-02 2008-12-03 䞉菱化孊株匏䌚瀟 Electrophotographic photoreceptor and apparatus for image formation
EP2042481A1 (en) * 2006-06-27 2009-04-01 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescence device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678022U (en) * 1993-04-21 1994-11-01 株匏䌚瀟オヌトバックスセブン Car air freshener container

Also Published As

Publication number Publication date
JPH01118146A (en) 1989-05-10

Similar Documents

Publication Publication Date Title
JP3257910B2 (en) Electrophotography
JP2539641B2 (en) Electrophotographic photoreceptor
JP3171755B2 (en) Electrophotographic photoreceptor
JPH0520745B2 (en)
JPH0520742B2 (en)
JP2554681B2 (en) Electrophotographic photoreceptor
JPH0830904B2 (en) Electrophotographic photoreceptor
JP2573261B2 (en) Electrophotographic photoreceptor
JPH0520744B2 (en)
JPH0520743B2 (en)
JPS63271455A (en) Organic photosensitive body
JPH01118142A (en) Electrophotographic sensitive body
JPH0511467A (en) Electrophotographic sensitive body
JP2657997B2 (en) Electrophotographic photoreceptor
JPH01142646A (en) Electrophotographic sensitive body
JPH01142645A (en) Electrophotographic sensitive body
JP2003270811A (en) Electrophotographic photoreceptor and image forming apparatus
JPH05992A (en) Quinone compound and light sensitizer for electrophotography
JPH01142643A (en) Electrophotographic sensitive body
JPS63271463A (en) Organic photosensitive body
JP2539641C (en)
JPH01142640A (en) Electrophotographic sensitive body
JPH04285670A (en) Diphenoquinone-based compound and electrophotographic photosensitive sheet using the same compound
JPS63271461A (en) Organic photosensitive body
JPS63271462A (en) Organic photosensitive body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees