JPH05207404A - Cathode ray tube device and cathode ray tube picture display device - Google Patents

Cathode ray tube device and cathode ray tube picture display device

Info

Publication number
JPH05207404A
JPH05207404A JP4189149A JP18914992A JPH05207404A JP H05207404 A JPH05207404 A JP H05207404A JP 4189149 A JP4189149 A JP 4189149A JP 18914992 A JP18914992 A JP 18914992A JP H05207404 A JPH05207404 A JP H05207404A
Authority
JP
Japan
Prior art keywords
ray tube
cathode ray
electric field
deflection
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4189149A
Other languages
Japanese (ja)
Inventor
Koichi Soneda
耕一 曽根田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4189149A priority Critical patent/JPH05207404A/en
Publication of JPH05207404A publication Critical patent/JPH05207404A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress an AC electric field leaked from the cathode ray tube device and a cathode ray tube picture display device. CONSTITUTION:The device is provided with a cathode ray tube 10, a deflector 13 deflecting and scanning an electronic beam emitted from an electron gun (not shown in figure) mounted to an outside of the cathode ray tube 10 and inserted into the inside of a bottle neck 12 of a funnel 11, a reverse voltage application section 14 to obtain a voltage with a reverse polarity to a deflection voltage waveform applied to a deflection coil of the deflector 13, and a couple of compensation electrodes 15 receiving a voltage of a polarity opposite to the deflection voltage waveform by the reverse voltage application section 14 arranged to an upper and a lower part of a panel side wall. Then the compensation electrode 15 is formed to generate an electric field of the opposite polarity to a leakage electric field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は陰極線管装置および陰極
線管画像表示装置に係り、特に陰極線管装置および陰極
線管画像表示装置からの漏洩電場対策に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cathode ray tube device and a cathode ray tube image display device, and more particularly to a cathode ray tube device and a countermeasure against a leakage electric field from the cathode ray tube image display device.

【0002】[0002]

【従来の技術】OA(Office Automation )機器の発展
は近年めざましいものがあり、オフィスおよび家庭でも
OA機器は身近なものとなっている。こうした状況の中
で、電子機器のノイズ防止や電磁波が人体に及ぼす影響
の防止等の面から、漏洩電磁波および漏洩電磁場を遮蔽
する技術が重要となっている。特に北欧においては、人
体に対する影響が懸念され、交流磁場・交流電場の許容
値が示されており、また、その規格が広がりつつある。
2. Description of the Related Art The development of OA (Office Automation) devices has been remarkable in recent years, and OA devices have become familiar in offices and homes. Under such circumstances, a technique of shielding leaked electromagnetic waves and leaked electromagnetic fields is important from the viewpoint of preventing noise of electronic devices and preventing the influence of electromagnetic waves on the human body. Especially in Northern Europe, there are concerns about the influence on the human body, and the allowable values of the AC magnetic field and AC electric field have been shown, and the standard thereof is spreading.

【0003】OA機器の中では、電子銃から放出された
電子ビームを偏向装置により偏向走査する陰極線管装置
をキャビネット内に設置した陰極線管画像表示装置が広
く用いられている。陰極線管装置は、図18に示すよう
に、パネル1とファンネル2とからなる外囲器と、パネ
ル1内面に形成された蛍光体スクリーン3と、ファンネ
ル2のネック4内に挿入され蛍光体スクリーン3を励起
発光せしめる電子ビームを放出する電子銃5と、ファン
ネル2外部に装着され電子ビームを偏向走査する偏向磁
界を発生する偏向装置6とからなる。そこで、この装置
からの漏洩電磁波を遮蔽する必要がある。
Among OA equipment, a cathode ray tube image display device in which a cathode ray tube device for deflecting and scanning an electron beam emitted from an electron gun by a deflecting device is installed in a cabinet is widely used. As shown in FIG. 18, the cathode ray tube device includes an envelope including a panel 1 and a funnel 2, a phosphor screen 3 formed on the inner surface of the panel 1, and a phosphor screen inserted in a neck 4 of the funnel 2. An electron gun 5 that emits an electron beam that excites and emits 3 and a deflection device 6 that is mounted outside the funnel 2 and that generates a deflection magnetic field that deflects and scans the electron beam. Therefore, it is necessary to shield the leaked electromagnetic waves from this device.

【0004】一般に、遮蔽には次のような種類がある。
すなわち、電気抵抗の低い材料を利用して電気力線が外
部に出ないようにする静電遮蔽、低抵抗の金属を用い、
その中に電流が流れることを利用する電磁遮蔽、磁気抵
抗の低い材料を利用して磁力線を遮蔽導体の内部に閉じ
込める磁気遮蔽である。
Generally, there are the following types of shielding.
That is, by using a material with low electric resistance, an electrostatic shield that prevents the lines of electric force from going out, and a metal with low resistance,
It is an electromagnetic shield that utilizes the flow of a current in it, and a magnetic shield that uses magnetic materials with low magnetic resistance to confine the lines of magnetic force inside the shield conductor.

【0005】そこで、偏向装置をステンレス等の金属板
で覆う方法、陰極線管装置の上下・左右および後部を金
属板等で覆う方法、陰極線管のスクリーン前面に透視可
能な電磁波遮蔽板を設ける方法等が採られている。しか
し、堅強な金属板で装置を覆う方法や陰極線管のスクリ
ーン前面に例えば導電性酸化物等からなる膜を形成する
方法はコストの面で問題がある。
Therefore, a method of covering the deflection device with a metal plate such as stainless steel, a method of covering the top, bottom, left and right and the rear part of the cathode ray tube device with a metal plate, a method of providing a transparent electromagnetic wave shielding plate on the front surface of the screen of the cathode ray tube, etc. Has been taken. However, the method of covering the device with a strong metal plate or the method of forming a film made of, for example, a conductive oxide on the screen front surface of the cathode ray tube has a problem in terms of cost.

【0006】以上のような方法では、スクリーン前面か
ら漏洩する交流磁場の遮蔽は充分ではない。そこで、偏
向装置のスクリーン側に透磁性リングを設ける方法、偏
向電流に同期した電流が流れ漏洩磁場と逆向きの磁場を
発生する補償コイルを用いて漏洩磁場を補償する方法等
の手段がとられている。
In the above method, the shielding of the AC magnetic field leaking from the front surface of the screen is not sufficient. Therefore, means such as a method of providing a magnetically permeable ring on the screen side of the deflecting device and a method of compensating for the leakage magnetic field by using a compensation coil that causes a current flowing in synchronization with the deflection current to generate a magnetic field in the opposite direction to the leakage magnetic field are taken. ing.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、陰極線
管および陰極線管画像表示装置からは交流電場も漏洩し
ており、最近は、この交流電場の人体への影響などが憂
慮されている。この漏洩交流電場を遮蔽するために陰極
線管装置および陰極線管画像表示装置の全面を覆う構造
はコストの面で問題があり、簡単な方法で充分な効果を
得ることはできない。
However, an AC electric field is leaking from the cathode ray tube and the cathode ray tube image display device, and recently, the influence of the AC electric field on the human body is concerned. The structure of covering the entire surface of the cathode ray tube device and the cathode ray tube image display device to shield the leakage AC electric field has a problem in terms of cost, and a sufficient effect cannot be obtained by a simple method.

【0008】本発明は上記問題点に鑑みてなされたもの
であり、漏洩交流電場を容易にかつ効果的に抑制する陰
極線管装置および陰極線管画像表示装置を提供すること
を目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a cathode ray tube device and a cathode ray tube image display device which easily and effectively suppress a leakage AC electric field.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、電子銃から放出される電子ビームを偏向
走査する水平偏向コイルまたは垂直偏向コイルを有する
偏向装置を備える陰極線管装置において、前記水平偏向
コイルまたは垂直偏向コイルに印加される偏向電圧波形
に同期しこれと極性が逆の電圧波形を発生する逆電圧供
給部と、この逆電圧供給部に接続された補償電極を少な
くとも1つ具備することを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a cathode ray tube device including a deflecting device having a horizontal deflection coil or a vertical deflection coil for deflecting and scanning an electron beam emitted from an electron gun. At least one compensating electrode connected to the reverse voltage supply unit and a reverse voltage supply unit that generates a voltage waveform having a polarity opposite to that of the deflection voltage waveform applied to the horizontal deflection coil or the vertical deflection coil. It is characterized by having.

【0010】また、電子銃から放出される電子ビームを
偏向走査する水平偏向コイルまたは垂直偏向コイルを有
する偏向装置を備える陰極線管装置をキャビネット内に
設置してなる陰極線管画像表示装置において、前記水平
偏向コイルまたは垂直偏向コイルに印加される偏向電圧
波形に同期しこれと極性が逆の電圧波形を発生する逆電
圧供給部と、この逆電圧供給部に接続された補償電極を
少なくとも1つ具備することを特徴とする。
In addition, in the cathode ray tube image display device in which a cathode ray tube device having a deflection device having a horizontal deflection coil or a vertical deflection coil for deflecting and scanning an electron beam emitted from an electron gun is installed in a cabinet, A reverse voltage supply unit that generates a voltage waveform having a polarity opposite to that of the deflection voltage waveform applied to the deflection coil or the vertical deflection coil, and at least one compensation electrode connected to the reverse voltage supply unit are provided. It is characterized by

【0011】[0011]

【作用】本発明を使用しない陰極線管装置または陰極線
管画像表示装置から発生し偏向装置に印加される電圧波
形に同期して変化している交流電場に対して、本発明の
陰極線管装置または陰極線管画像表示装置に配置される
補償電極から発生する電場は、前記電圧波形に同期して
変化している電場と逆の極性の電場となるため、両電場
を合成すると相殺し、遮蔽・抑制される。
The cathode ray tube device or the cathode ray tube of the present invention is applied to the AC electric field generated from the cathode ray tube device or the cathode ray tube image display device not using the present invention and changing in synchronization with the voltage waveform applied to the deflecting device. The electric field generated from the compensation electrode arranged in the tube image display device has a polarity opposite to that of the electric field that is changing in synchronization with the voltage waveform. It

【0012】[0012]

【実施例】以下、本発明の実施例について図面を参照し
て詳細に説明する。 (実施例1)図1ないし図7を用いて本発明の一実施例
について説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings. (Embodiment 1) An embodiment of the present invention will be described with reference to FIGS.

【0013】図1は本実施例における陰極線管装置の斜
視図であり、陰極線管10と、陰極線管10のファンネル11
外部に装着され、ファンネル11のネック12内部に挿入さ
れている電子銃(図示せず)から放出される電子ビーム
を偏向走査する水平偏向コイルおよび垂直偏向コイルを
有する偏向装置13と、偏向装置13の偏向コイルに印加さ
れる偏向電圧波形と逆の極性の電圧を得るための逆電圧
供給部14と、逆電圧供給部14による偏向電圧波形と逆の
極性の電圧が印加される補償電極15とから構成される。
逆電圧供給部14は入力側に偏向電圧が印加され、逆電圧
出力端子の一端が補償電極15につながれ、他端が接地電
位につながれている。陰極線管の表面で通常接地電位に
導かれている箇所として外部導電膜17及び防爆バンド18
がある。本実施例では逆電圧供給部14の一端を防爆バン
ド18に接続することで接地電位に導いている。
FIG. 1 is a perspective view of a cathode ray tube apparatus according to this embodiment, which includes a cathode ray tube 10 and a funnel 11 of the cathode ray tube 10.
A deflecting device 13 having a horizontal deflecting coil and a vertical deflecting coil for deflecting and scanning an electron beam emitted from an electron gun (not shown) inserted into the neck 12 of the funnel 11 and mounted outside, and a deflecting device 13 A reverse voltage supply unit 14 for obtaining a voltage having a polarity opposite to that of the deflection voltage waveform applied to the deflection coil, and a compensation electrode 15 to which a voltage having a polarity opposite to that of the deflection voltage waveform by the reverse voltage supply unit 14 is applied. Composed of.
A deflection voltage is applied to the input side of the reverse voltage supply unit 14, one end of the reverse voltage output terminal is connected to the compensation electrode 15, and the other end is connected to the ground potential. An external conductive film 17 and an explosion-proof band 18 are provided on the surface of the cathode ray tube, which are normally led to the ground potential.
There is. In the present embodiment, one end of the reverse voltage supply unit 14 is connected to the explosion-proof band 18 so as to lead to the ground potential.

【0014】陰極線管10は、従来例と同様の構造で、主
として、略矩形上のパネル16とこのパネル16と連接する
フャンネル11とからなるガラス外囲器と、パネル16内面
に形成された蛍光体スクリーンと、この蛍光体スクリー
ンと対向しファンネル11のネック12内に挿入され蛍光体
スクリーンを励起発光せしめる電子ビームを放出する電
子銃とから構成される。
The cathode ray tube 10 has a structure similar to that of the conventional example, and mainly has a glass envelope composed of a substantially rectangular panel 16 and a funnel 11 connected to the panel 16, and fluorescent light formed on the inner surface of the panel 16. It is composed of a body screen and an electron gun which faces the phosphor screen and is inserted into the neck 12 of the funnel 11 to emit an electron beam for exciting and causing the phosphor screen to emit light.

【0015】ファンネル11の外部に装着される偏向装置
13は、電子ビームを水平方向に偏向する水平偏向磁界を
発生する水平偏向コイルと、電子ビームを垂直方向に偏
向する垂直偏向磁界を発生する垂直偏向コイルとにより
構成され、通常、水平偏向コイルを上下一対のサドル型
偏向コイル、垂直偏向コイルを左右一対のサドル型偏向
コイルで構成するサドル・サドル型、水平偏向コイルを
上下一対のサドル型偏向コイル、垂直偏向コイルを上下
一対のトロイダル型コイルで構成するサドル・トロイダ
ル型が一般的である。そして、水平偏向コイルおよび垂
直偏向コイルには、それぞれ所定の周期で変化する所定
の電圧波形が印加されて偏向磁界を発生している。水平
偏向コイルの場合は、通常数百〜1kVのパルス状の電
圧波形となっている。
Deflection device mounted outside the funnel 11
Reference numeral 13 is composed of a horizontal deflection coil that generates a horizontal deflection magnetic field that deflects the electron beam in the horizontal direction and a vertical deflection coil that generates a vertical deflection magnetic field that deflects the electron beam in the vertical direction. A pair of upper and lower saddle type deflection coils, a vertical saddle type saddle type which consists of a pair of left and right saddle type deflecting coils, a horizontal deflecting coil a pair of upper and lower saddle type deflecting coils, and a vertical deflecting coil by a pair of upper and lower toroidal type coils. A saddle toroidal type is generally used. The horizontal deflection coil and the vertical deflection coil are each applied with a predetermined voltage waveform that changes in a predetermined cycle to generate a deflection magnetic field. In the case of the horizontal deflection coil, a pulse-shaped voltage waveform of several hundred to 1 kV is usually used.

【0016】陰極線管装置からは交流電場が漏洩してい
るが、発明者が検討したところ、発生原因は偏向装置で
あることがわかった。つまり、偏向周波数に同期して時
間変動する偏向電圧が供給されることにより、偏向コイ
ル内での電位の空間的変化が高圧側から低圧側にかけて
生じ、この電位は接地電位つまり地上に対しても高くな
っていることから地上との間に変動電場を生じるのであ
る。
Although an AC electric field is leaking from the cathode ray tube device, the inventors of the present invention have examined it and found that the cause is the deflecting device. In other words, the time-varying deflection voltage is supplied in synchronization with the deflection frequency, causing a spatial change in the potential in the deflection coil from the high-voltage side to the low-voltage side. Because it is high, it creates a fluctuating electric field with the ground.

【0017】このように偏向装置に偏向電圧が印加され
たとき、偏向装置からは偏向電圧波形に略同期して変化
する交流電場が発生する。そして、この交流電場は陰極
線管装置の周囲に漏洩する。本発明は、この交流電場を
補償・抑制するための逆の交流電場を発生させ、両電場
を合成して交流電場を遮蔽・抑制するものである。
When the deflecting voltage is applied to the deflecting device as described above, the deflecting device generates an AC electric field which changes substantially in synchronization with the deflection voltage waveform. Then, this AC electric field leaks around the cathode ray tube device. The present invention is to generate an opposite AC electric field for compensating / suppressing the AC electric field, combine the electric fields, and shield / suppress the AC electric field.

【0018】以下、そのための構成について詳述する。
本実施例は、漏洩交流電場を補償するため、図1に示す
ように、逆電圧供給部14とパネル16の側壁部近傍に配置
される上下一対の補償電圧15を備えている(下側の補償
電極は図示せず)。逆電圧供給部14は、図2に示すよう
に、閉磁路であるリング状コア20にコイル21a、21bが
巻回され、コイル21aには偏向電流が流れ、コイル21a
の両端は入力側端子となり、逆電圧出力端子となるコイ
ル21bの一端22は補償電極につながれ他端23が接地電位
に導かれている。そして、コイル21aに偏向電流が流れ
るとコア20に磁束が発生し、コイル21bには誘導起電力
が発生する。コイル21bに発生する起電力の向きはコア
20内を流れる磁束の向きで決まるが、それだけでは偏向
電圧波形と逆の極性、すなわち偏向電圧が正のときに補
償電極が負の電位を印加することはできない。そこで、
出力側の一端を基準電位として接地電位に導くことでコ
イル21aに印加される電圧波形24aと逆の極性の電圧波
形24bを補償電極に印加している。この等価回路図を描
くと図3に示すようになる。図3において、30は主偏向
コイルを示しており、本実施例の場合は水平偏向コイル
であり、水平偏向に略同期して変化する漏洩電場と逆の
極性の電場を補償電極により発生・放射している。な
お、図3に示す等価回路図において、上下一対の補償電
極のそれぞれに印加される電圧は同一として、一つで代
表して表している。
The structure for that purpose will be described in detail below.
In this embodiment, in order to compensate the leakage AC electric field, as shown in FIG. 1, a reverse voltage supply unit 14 and a pair of upper and lower compensating voltages 15 arranged near the side wall of the panel 16 (lower side The compensation electrode is not shown). As shown in FIG. 2, in the reverse voltage supply unit 14, coils 21a and 21b are wound around a ring-shaped core 20 which is a closed magnetic circuit, a deflection current flows through the coil 21a, and the coil 21a
Both ends of the coil 21b are input side terminals, and one end 22 of the coil 21b serving as a reverse voltage output terminal is connected to the compensation electrode and the other end 23 is guided to the ground potential. When a deflection current flows through the coil 21a, a magnetic flux is generated in the core 20 and an induced electromotive force is generated in the coil 21b. The direction of the electromotive force generated in the coil 21b is the core
Although it is determined by the direction of the magnetic flux flowing inside 20, the compensation electrode cannot apply a negative potential to the polarity opposite to the deflection voltage waveform, that is, when the deflection voltage is positive. Therefore,
By guiding one end on the output side to the ground potential with the reference potential, a voltage waveform 24b having the opposite polarity to the voltage waveform 24a applied to the coil 21a is applied to the compensation electrode. FIG. 3 is a drawing of this equivalent circuit diagram. In FIG. 3, reference numeral 30 denotes a main deflection coil, which is a horizontal deflection coil in the present embodiment, and an electric field having a polarity opposite to that of the leakage electric field which changes substantially in synchronization with horizontal deflection is generated and radiated by the compensation electrode. is doing. In the equivalent circuit diagram shown in FIG. 3, the voltages applied to the pair of upper and lower compensation electrodes are the same and are represented by one.

【0019】次に本実施例に漏洩電場の補償作用につい
て図4ないし図7を用いて説明する。図4は、陰極線管
装置の偏向装置により発生する交流電場のうちのある時
間の電場を模式的に示すものである。模式的といったの
は、偏向装置による電場を簡単に近似して、地上(接地
電位)との間に形成する電位分布で代表して示したから
である。図4に示す例では、等電位線40aは偏向装置41
の中心から放射状に広がり、中心から遠ざかるにつれて
電位は低くなっており、電気力線42aの向きとしては中
心から放射方向に向いている。図5は、上下一対の補償
電極43による交流電場のうちのある時間の電場を同じく
模式的に示すものである。図5の場合、等電位線40bは
上下一対の補償電極43を中心として広がり、補償電極43
には偏向電圧と逆の極性の電圧が印加されるようになっ
ているので、電気力線42bの向きは陰極線管装置の上下
では補償電極の方向を向き、スクリーン前面ではスクリ
ーン方向に向くことになる。そこで図4に示す漏洩交流
電場と図5に示す補償電場を合成すると図6に示すよう
になる。図6に示すように、補償電極43を配置すること
で陰極線管装置の周囲、とくにスクリーン前面に広がる
漏洩電場を抑制できることがわかる。図7は、図4ない
し図6のA−A´,B−B´,C−C´断面での電位を
示すものである。電場は電位の傾きとして計算できる。
図7からも陰極線管装置から発生する電場は抑制される
ことがわかる。
Next, the compensation function of the leakage electric field in this embodiment will be described with reference to FIGS. 4 to 7. FIG. 4 schematically shows an electric field of an AC electric field generated by the deflection device of the cathode ray tube device at a certain time. The reason why it is “schematic” is that the electric field due to the deflecting device is simply approximated and represented by the potential distribution formed with the ground (ground potential). In the example shown in FIG. 4, the equipotential line 40a is the deflection device 41.
The electric potential line 42a extends in a radial direction from the center of the electric field line 42a. FIG. 5 also schematically shows the electric field of the AC electric field due to the pair of upper and lower compensation electrodes 43 at a certain time. In the case of FIG. 5, the equipotential line 40b spreads around the pair of upper and lower compensation electrodes 43, and
Since a voltage having a polarity opposite to that of the deflection voltage is applied to the cathode, the electric force lines 42b are directed toward the compensation electrodes above and below the cathode ray tube device and toward the screen on the front of the screen. Become. Then, when the leakage AC electric field shown in FIG. 4 and the compensation electric field shown in FIG. 5 are combined, it becomes as shown in FIG. As shown in FIG. 6, by arranging the compensation electrode 43, it can be seen that the leakage electric field spreading around the cathode ray tube device, particularly on the front surface of the screen can be suppressed. FIG. 7 shows the potentials on the cross sections AA ′, BB ′, and CC ′ of FIGS. 4 to 6. The electric field can be calculated as the slope of the electric potential.
It can be seen from FIG. 7 that the electric field generated from the cathode ray tube device is suppressed.

【0020】なお、補償電極は陰極線管の外部表面で接
地電位に導かれる部分との絶縁が必要である。なぜな
ら、補償電極と接地電位に導かれる部分の絶縁が保たれ
ないと、補償電場を発生できなくなるからである。
The compensating electrode needs to be insulated from the portion of the outer surface of the cathode ray tube which is led to the ground potential. This is because the compensating electric field cannot be generated unless insulation between the compensating electrode and the part led to the ground potential is maintained.

【0021】次に、本発明による補償電極の変形例を図
8ないし図11に示す。図8に示す例は、陰極線管10の
パネル16側壁の左右に一対の補償電極61を配置したもの
である。図9に示す例は、陰極線管10のパネル16側壁全
周に補償電極62を配置したものである。この場合、導線
をパネル16側壁全周に巻回す構造でもよいので、簡単な
構造となる。この場合、図1に示す例と比較して、左右
にも連続して補償電極62が配置された構造となるが、補
償電極62の電位が全周にわたって均一になるようにした
方が望ましい。図10に示す例は、陰極線管10のパネル
16の四隅に補償電極63を配置したものである。図11に
示す例は、陰極線管装置の偏向装置13のスクリーン側フ
ランジ部に補償電極64を配置したものである。さらに、
補償電極の形状も上述の実施例に限られず、円盤状、四
角形状など様々なものが適用可能である。
Next, modifications of the compensation electrode according to the present invention are shown in FIGS. In the example shown in FIG. 8, a pair of compensation electrodes 61 are arranged on the left and right of the side wall of the panel 16 of the cathode ray tube 10. In the example shown in FIG. 9, the compensation electrode 62 is arranged on the entire circumference of the side wall of the panel 16 of the cathode ray tube 10. In this case, since the conductive wire may be wound around the entire side wall of the panel 16, the structure is simple. In this case, compared to the example shown in FIG. 1, the compensation electrode 62 is arranged continuously on the left and right, but it is desirable that the potential of the compensation electrode 62 be uniform over the entire circumference. The example shown in FIG. 10 is a panel of the cathode ray tube 10.
The compensation electrodes 63 are arranged at the four corners of 16. In the example shown in FIG. 11, the compensation electrode 64 is arranged on the screen side flange portion of the deflection device 13 of the cathode ray tube device. further,
The shape of the compensation electrode is not limited to the above-mentioned embodiment, and various shapes such as a disc shape and a square shape can be applied.

【0022】上述の種々の補償電極における漏洩電場の
角度依存性について図12及び図13を用いて説明す
る。図12は、本発明の陰極管装置をキャビネット内の
金属製シャーシに組み込み漏洩交流電場を測定した結果
を示す。図13は、陰極線管装置をシャーシ68に組み込
んだ状態として図1に示す陰極線管装置の場合を代表し
て示すものである。シャーシに組み込んだ状態で測定し
たのは、実際の使用状況に近い状態で評価を行なうため
である。図12に示すようにスクリ−ン前面に補償電極
を設置した図1、図8及び図9に示す陰極線管装置の場
合、漏洩電場対策を施していない陰極線管装置に比較し
漏洩電場を半減することが可能である。図11に示す陰
極線管装置では他の補償電極と同じ印加電圧のため、漏
洩電場の抑制量が小さくなっている。図12に示すよう
な電場補償の角度依存性は、陰極線管装置が組込まれる
キャビネット内のシャーシとの相関関係により変化する
ので、補償電極の配置位置は適宜決定するのが望まし
い。なお、図11に示す例のように、偏向装置近傍に補
償電極を配置すれば補償電場の分布状態を漏洩電場の分
布状態に近づけることができる。しかし、偏向装置近傍
に補償電極を配置すると補償電極に印加する逆電位を偏
向電圧程度の数百〜1kV程度に大きくする必要があ
り、耐電圧特性の面から別の絶縁対策等が必要になる。
実際には陰極線管装置はシャーシ内に取り付けられ、ス
クリーンの前面に以外はシャーシによりある程度漏洩電
場を抑制することができるので、漏洩電場対策はスクリ
ーン前面に漏洩してくる電場を抑制するようにすればよ
い。また、スクリーン前面に近づける程つまり偏向装置
から遠ざけるほど補償電極に印加すべき電圧は偏向電圧
の略半分程度以下と低くできるので、スクリーン近傍に
補償電極を配置するのが望ましい。
The angle dependence of the leakage electric field in the various compensation electrodes described above will be described with reference to FIGS. 12 and 13. FIG. 12 shows the results of measuring the leakage AC electric field by incorporating the cathode ray tube device of the present invention into a metal chassis in a cabinet. FIG. 13 shows the cathode-ray tube device shown in FIG. 1 as a representative state in which the cathode-ray tube device is incorporated in the chassis 68. The reason why the measurement is performed in the state of being incorporated in the chassis is to perform the evaluation in a state close to the actual usage condition. As shown in FIG. 12, in the case of the cathode ray tube device shown in FIGS. 1, 8 and 9 in which the compensating electrode is installed on the front surface of the screen, the leakage electric field is halved as compared with the cathode ray tube device without the leakage electric field countermeasure. It is possible. In the cathode ray tube device shown in FIG. 11, the amount of suppression of the leakage electric field is small because of the same applied voltage as the other compensation electrodes. Since the angle dependence of the electric field compensation as shown in FIG. 12 changes depending on the correlation with the chassis in the cabinet in which the cathode ray tube device is incorporated, it is desirable to appropriately determine the arrangement position of the compensation electrode. As in the example shown in FIG. 11, if the compensating electrode is arranged near the deflecting device, the distribution state of the compensation electric field can be brought close to the distribution state of the leakage electric field. However, when the compensating electrode is arranged in the vicinity of the deflecting device, the reverse potential applied to the compensating electrode needs to be increased to about several hundred to 1 kV, which is about the deflection voltage, and another insulation measure or the like is required in terms of withstand voltage characteristics. ..
In practice, the cathode ray tube device is installed in the chassis, and the leakage electric field can be suppressed to some extent by the chassis except for the front surface of the screen.Therefore, the leakage electric field countermeasure should be to suppress the electric field leaking to the front surface of the screen. Good. Further, since the voltage to be applied to the compensation electrode can be lowered to about half or less of the deflection voltage as it is closer to the front surface of the screen, that is, farther from the deflecting device, it is desirable to dispose the compensation electrode near the screen.

【0023】このように、スクリーン面に近い位置に補
償電極を配置し、陰極線管装置の後方に漏洩する電場に
対してはシャーシによる遮蔽効果を利用することによ
り、補償電極に印加する電圧を小さくすることができる
ので、対電圧特性上好ましく、また、簡単な構造による
補償・抑制が可能となる。
As described above, the voltage applied to the compensation electrode is reduced by disposing the compensation electrode near the screen surface and utilizing the shielding effect of the chassis for the electric field leaking behind the cathode ray tube device. Therefore, it is preferable in terms of voltage resistance characteristics, and compensation / suppression can be performed with a simple structure.

【0024】さらに、逆電圧供給部の変形例を図14及
び図15に示す。図14は、偏向装置70の主偏向磁界か
らの磁束による誘導起電力を利用するもので、偏向装置
70のスクリーン側のフランジ部71近傍に漏洩する磁束が
コイル72のループ面を貫くようにコイル72のループ面は
管軸方向を向いている。図15は漏洩磁場補償コイル73
を利用するものである。陰極線管装置からは、漏洩磁場
が発生しているので、この漏洩磁場を抑制するため、偏
向電流に同期した電流が流れ漏洩磁場と逆向きの磁場を
発生するコイル74をコア75に巻回してなる漏洩磁場補償
コイル73を配設しているものがある。そこで、コイル74
が巻回されているコア75と同じコア75に補償電極につな
がれるコイル76を巻回し誘導起電力を利用するものであ
る。このとき補償電極自体には電流は流れないので損失
は小さく、漏洩磁場の補償作用の低下は小さい。したが
って、漏洩電場・漏洩磁場をともに効果的に抑制するこ
とができる。
Further, modified examples of the reverse voltage supply section are shown in FIGS. FIG. 14 utilizes the induced electromotive force due to the magnetic flux from the main deflection magnetic field of the deflection device 70.
The loop surface of the coil 72 is oriented in the tube axis direction so that the magnetic flux leaking in the vicinity of the screen-side flange portion 71 of the coil 70 penetrates the loop surface of the coil 72. FIG. 15 shows a leakage magnetic field compensation coil 73.
Is used. Since a leakage magnetic field is generated from the cathode ray tube device, in order to suppress this leakage magnetic field, a coil 74 that generates a magnetic field in the direction opposite to the leakage magnetic field flows in synchronization with the deflection current and is wound around the core 75. There is one in which the leakage magnetic field compensation coil 73 is arranged. So coil 74
The coil 76 connected to the compensation electrode is wound around the same core 75 as the core 75 around which is wound, and the induced electromotive force is utilized. At this time, since no current flows through the compensation electrode itself, the loss is small and the compensating action of the leakage magnetic field is small. Therefore, both the leakage electric field and the leakage magnetic field can be effectively suppressed.

【0025】以上説明したように、偏向に同期した漏洩
電場を補償電極を配置することで簡単に抑制できるの
で、スクリーン前面に特殊な電磁波遮蔽板を設ける必要
がなく、スクリーン前面は、スクリーン前面に要求され
る特性、例えば防眩性に対する手段を電磁波遮蔽を考慮
することなく施すことができるという利点もある。
As described above, since the leakage electric field synchronized with the deflection can be easily suppressed by disposing the compensating electrode, it is not necessary to provide a special electromagnetic wave shielding plate on the front surface of the screen, and the front surface of the screen is There is also an advantage that required properties, for example, antiglare properties can be provided without considering electromagnetic wave shielding.

【0026】また、本発明は偏向電圧と逆の電圧を印加
された補償電極により漏洩電場を抑制する構造であれば
よく、補償電極の数、設置位置、大きさ等は、本発明を
適用する陰極線管装置の大きさ、漏洩電場の分布、抑制
するレベル等を考慮して適宜設定すればよい。具体的に
は、補償電極と接地電圧になっている部分との位置関係
も考慮する必要がある。さらに、補償電極に印加される
電圧の大きさは必ずしも偏向電圧の大きさと同じである
必要はなく、補償電極の位置、長さ等によって印加電圧
の大きさを適宜調整すればよい。印加電圧の調整は図2
に示すコイルの巻き数を調整することで簡単に実施でき
る。また、図1に示す上下一対の補償電極、または図8
に示す左右一対の補償電極の上下または左右で印加電圧
を変えることも可能でる。
Further, the present invention may be any structure as long as it has a structure in which the leakage electric field is suppressed by the compensation electrodes to which a voltage reverse to the deflection voltage is applied, and the number, installation position, size, etc. of the compensation electrodes are applicable to the present invention. It may be appropriately set in consideration of the size of the cathode ray tube device, the distribution of the leakage electric field, the suppression level, and the like. Specifically, it is also necessary to consider the positional relationship between the compensation electrode and the portion at the ground voltage. Further, the magnitude of the voltage applied to the compensation electrode does not necessarily have to be the same as the magnitude of the deflection voltage, and the magnitude of the applied voltage may be appropriately adjusted depending on the position, length, etc. of the compensation electrode. The adjustment of applied voltage is shown in Fig. 2.
It can be easily implemented by adjusting the number of turns of the coil shown in. In addition, a pair of upper and lower compensation electrodes shown in FIG.
It is also possible to change the applied voltage above and below or to the left and right of the pair of left and right compensation electrodes shown in FIG.

【0027】さらに、上記実施例は、水平偏向に起因す
るVLF(Very Low Frequency:2kHz〜400 kH
z)対策として、水平偏向コイルに印加される電圧波形
と逆の電圧波形を補償電極に印加しているものについて
説明したが、本発明は上記実施例に限定されず、垂直偏
向に起因するELF(Extremely Low Frequency :5H
z〜2kHz)対策として、垂直偏向コイルに印加され
る電圧波形と逆の電圧波形を補償電極に印加するもの、
さらにVLF対策とELF対策を同時に行うよう、それ
ぞれ独立の補償電極を設けるものでもよい。 (実施例2)
Further, in the above embodiment, VLF (Very Low Frequency: 2 kHz to 400 kHz) due to horizontal deflection is used.
z) As a countermeasure, the one in which the voltage waveform opposite to the voltage waveform applied to the horizontal deflection coil is applied to the compensation electrode has been described, but the present invention is not limited to the above embodiment, and the ELF caused by the vertical deflection is applied. (Extremely Low Frequency: 5H
z to 2 kHz), as a countermeasure, a voltage waveform opposite to the voltage waveform applied to the vertical deflection coil is applied to the compensation electrode,
Further, independent compensation electrodes may be provided so that the VLF countermeasure and the ELF countermeasure are simultaneously performed. (Example 2)

【0028】次に本発明の他の実施例について図16を
用いて説明する。図16は、本発明による陰極線管画像
表示装置を示す一部切欠け斜視図であり、陰極線管画像
表示装置80は、キャビネット81内部に陰極線管装置82が
設置された構造となっている。そして、キャビネット81
内で陰極線管装置のパネル側壁の上下近傍に偏向電圧波
形と逆の極性の電圧が印加される補償電極83が配置され
ている。
Next, another embodiment of the present invention will be described with reference to FIG. FIG. 16 is a partially cutaway perspective view showing a cathode ray tube image display device according to the present invention. The cathode ray tube image display device 80 has a structure in which a cathode ray tube device 82 is installed inside a cabinet 81. And cabinet 81
A compensation electrode 83 to which a voltage having a polarity opposite to that of the deflection voltage waveform is applied is arranged in the vicinity of the upper and lower sides of the panel side wall of the cathode ray tube device.

【0029】この補償電極83は、上記実施例1と同様の
図2に示す構成の逆電圧供給部84により偏向電圧と逆の
極性の電圧を印加されている。逆電圧供給部は上記実施
例1と同様に図14および図15に示すものも使用でき
る。さらに、陰極線管画像表示装置の場合、通常、キャ
ビネット81内の底部にフライバックトランスを備えこれ
により偏向電圧を発生しているので、図17に示すよう
に、フライバックコア90にコイル91を巻付けることで逆
電圧供給部とすることもできる。さらに、キャビネット
内の基盤上から直接に偏向電圧波形と同期し極性が逆の
極性の電圧波形を得ることも可能である。また、補償電
極も実施例1の図8ないし図11に示すように様々な変
形が可能である。
A voltage having a reverse polarity to the deflection voltage is applied to the compensation electrode 83 by the reverse voltage supply section 84 having the structure shown in FIG. 2 similar to the first embodiment. As the reverse voltage supply unit, the one shown in FIGS. 14 and 15 can be used as in the first embodiment. Further, in the case of a cathode ray tube image display device, a flyback transformer is usually provided at the bottom of the cabinet 81 to generate a deflection voltage. Therefore, as shown in FIG. 17, a coil 91 is wound around a flyback core 90. It can also be used as a reverse voltage supply unit. Furthermore, it is also possible to obtain a voltage waveform having a polarity opposite to that of the deflection voltage waveform directly synchronized with the board in the cabinet. Further, the compensating electrode can be variously modified as shown in FIGS. 8 to 11 of the first embodiment.

【0030】本実施例における作用は、基本的に、上記
実施例1の図4ないし図7に示すように、本発明を実施
しない場合の陰極線管装置の偏向装置から漏洩する電場
と、偏向電圧と逆の極性の電圧が印加される補償電極に
より発生する電場とを合成することで漏洩電場を抑制す
るものである。ただし、陰極線管装置はキャビネット内
に設置されているので、接地電位の状態が実施例1の状
態と若干異なるが、基本的原理は同じである。
Basically, as shown in FIGS. 4 to 7 of the first embodiment, the operation of this embodiment is basically the electric field and the deflection voltage leaking from the deflection device of the cathode ray tube device when the present invention is not implemented. The leakage electric field is suppressed by synthesizing the electric field generated by the compensating electrode to which the voltage of the opposite polarity is applied. However, since the cathode ray tube device is installed in the cabinet, the ground potential is slightly different from that of the first embodiment, but the basic principle is the same.

【0031】また、通常、陰極線管画像表示装置は、キ
ャビネット内の金属製シャーシに陰極線管装置が組み込
まれ、スクリーンを除く部分が金属で覆われた構造とな
っている。したがって、陰極線管の上下左右、及び後方
に漏洩する電場は金属製のシャーシによりある程度軽減
することができる。もちろん、シャーシによる遮蔽効果
を期待せずに補償電極自体で抑制することもできるが、
この場合、漏洩中心である偏向装置近傍に補償電極を配
置し、しかも補償電極に印加される電圧を数百〜1kV
程度にまで高める必要があるので、耐電圧特性上好まし
くない。そこで、陰極線管画像表示装置の上下、左右は
シャーシにより抑制し、スクリーン前方に漏洩する電場
を中心に対策するようにすると、補償電極に印加する電
圧を小さくすることができるので対電圧特性上も望まし
い。
Further, the cathode ray tube image display device usually has a structure in which the cathode ray tube device is incorporated in a metal chassis in a cabinet, and the portion excluding the screen is covered with metal. Therefore, the electric field leaking up, down, left and right of the cathode ray tube and backward can be reduced to some extent by the metal chassis. Of course, it is possible to suppress it by the compensation electrode itself without expecting the shielding effect by the chassis,
In this case, the compensating electrode is arranged in the vicinity of the deflecting device which is the center of leakage, and the voltage applied to the compensating electrode is several hundred to 1 kV.
Since it is necessary to raise it to a certain degree, it is not preferable in terms of withstand voltage characteristics. Therefore, if the upper and lower sides and the left and right sides of the cathode ray tube image display device are suppressed by the chassis and the electric field leaking to the front of the screen is taken as a countermeasure, the voltage applied to the compensating electrode can be reduced, so that the voltage-to-voltage characteristic is also improved. desirable.

【0032】本実施例では補償電極をキャビネット内の
陰極線管装置のパネル側壁に設けているが、本発明はこ
れに限定されない。すなわち、キャビネットの前面裏側
に補償電極を配置したり、通常の陰極線管画像表示装置
に設けられている消磁コイルに一体に配置することもで
きる。漏洩電場を補償し得る逆の電場を発生できる適当
な位置に補償電極を配置すればよい。キャビネットの前
面裏側に配置する場合、陰極線管装置に接触しない側の
キャビネット壁面に補償電極を配置すればよいので陰極
線管装置の接地電位に導かれる部分との絶縁が容易にな
る。
In this embodiment, the compensation electrode is provided on the panel side wall of the cathode ray tube device in the cabinet, but the present invention is not limited to this. That is, the compensation electrode can be arranged on the back side of the front surface of the cabinet, or can be arranged integrally with the degaussing coil provided in a normal cathode ray tube image display device. The compensating electrode may be arranged at an appropriate position where an opposite electric field capable of compensating for the leakage electric field can be generated. When it is arranged on the back side of the front surface of the cabinet, the compensation electrode may be arranged on the wall surface of the cabinet which is not in contact with the cathode ray tube device, so that it is easy to insulate the portion of the cathode ray tube device from which it is led to the ground potential.

【0033】以上説明したように、偏向に同期した漏洩
電場を補償電極を配置することで簡単に抑制できるの
で、スクリーン前面に特殊な電磁波遮蔽板を設ける必要
がなく、スクリーン前面は、スクリーン前面に要求され
る特性、例えば防眩性に対する手段を電磁波遮蔽を考慮
することなく施すことができるという利点もある。
As described above, since the leakage electric field synchronized with the deflection can be easily suppressed by disposing the compensating electrode, it is not necessary to provide a special electromagnetic wave shielding plate on the front surface of the screen, and the front surface of the screen is There is also an advantage that required properties, for example, antiglare properties can be provided without considering electromagnetic wave shielding.

【0034】なお、本発明は偏向電圧と逆の電圧を印加
された補償電極により漏洩電場を抑制する構造であれば
よく、補償電極の数、設置位置、大きさ等は、本発明を
適用する陰極線管画像表示装置の大きさ、漏洩電場の分
布、抑制するレベル等を考慮して適宜設定すればよい。
具体的には、補償電極と接地電圧になっている部分との
位置関係も考慮する必要がある。さらに、補償電極に印
加される電圧の大きさは必ずしも偏向電圧の大きさと同
じである必要はなく、補償電極の位置、長さ等によって
印加電圧の大きさを適宜調整すればよい。印加電圧の調
整は図2に示すコイルの巻き数を調整することで簡単に
実施できる。また、図1に示す上下一対の補償電極、ま
たは図8に示す左右一対の補償電極の上下または左右で
印加電圧を変えることも可能でる。
The present invention may have any structure as long as it has a structure in which a leakage electric field is suppressed by a compensation electrode to which a voltage reverse to the deflection voltage is applied, and the present invention is applied to the number, installation position, size, etc. of the compensation electrodes. It may be appropriately set in consideration of the size of the cathode ray tube image display device, the distribution of the leakage electric field, the suppression level, and the like.
Specifically, it is also necessary to consider the positional relationship between the compensation electrode and the portion at the ground voltage. Further, the magnitude of the voltage applied to the compensation electrode does not necessarily have to be the same as the magnitude of the deflection voltage, and the magnitude of the applied voltage may be appropriately adjusted depending on the position, length, etc. of the compensation electrode. The applied voltage can be easily adjusted by adjusting the number of turns of the coil shown in FIG. It is also possible to change the applied voltage above and below or to the left and right of the pair of upper and lower compensating electrodes shown in FIG. 1 or the pair of left and right compensating electrodes shown in FIG.

【0035】さらに、上記実施例は、水平偏向に起因す
るVLF(2kHz 〜400kHz)対策として、水平偏向コイ
ルに印加される電圧波形と逆の電圧波形を補償電極に印
加しているものについて説明したが、本発明は上記実施
例に限定されず、垂直偏向に起因するELF(5Hz〜2
kHz )対策として、垂直偏向コイルに印加される電圧波
形と逆の電圧波形を補償電極に印加するもの、さらにV
LF対策とELF対策を同時に行うよう、それぞれ独立
の補償電極を設けるものでもよい。
Further, in the above embodiment, as a measure against VLF (2 kHz to 400 kHz) caused by horizontal deflection, a voltage waveform opposite to the voltage waveform applied to the horizontal deflection coil is applied to the compensation electrode. However, the present invention is not limited to the above embodiment, and ELF (5 Hz to 2
(kHz) As a countermeasure, a voltage waveform opposite to the voltage waveform applied to the vertical deflection coil is applied to the compensation electrode.
Independent compensation electrodes may be provided so that the LF measure and the ELF measure are performed simultaneously.

【0036】[0036]

【発明の効果】以上説明したように、本発明の陰極線管
装置および陰極線管画像表示装置は、偏向電圧波形に同
期し、これと極性が逆の電圧波形が印加される補償電極
を少なくとも一つ配置することで、漏洩電場を容易に抑
制することが可能である。
As described above, the cathode ray tube device and the cathode ray tube image display device of the present invention include at least one compensating electrode to which a voltage waveform synchronized with the deflection voltage waveform and having a polarity opposite thereto is applied. By arranging it, it is possible to easily suppress the leakage electric field.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による陰極線管装置の一実施例を示す斜
視図である。
FIG. 1 is a perspective view showing an embodiment of a cathode ray tube device according to the present invention.

【図2】図1における偏向電圧と逆の極性の電圧を供給
するための逆電圧供給部を示す模式図である。
FIG. 2 is a schematic diagram showing a reverse voltage supply unit for supplying a voltage having a polarity opposite to that of the deflection voltage in FIG.

【図3】図2の等価的回路図を示す図である。FIG. 3 is a diagram showing an equivalent circuit diagram of FIG.

【図4】本発明の作用を説明する図であり、偏向装置か
らの漏洩電場を示す模式図である。
FIG. 4 is a diagram for explaining the operation of the present invention, and is a schematic diagram showing a leakage electric field from the deflecting device.

【図5】本発明の作用を説明する図であり、本発明によ
る偏向電圧波形と同期し極性が逆の補償電極による電場
を示す模式図である。
FIG. 5 is a diagram for explaining the operation of the present invention, and is a schematic diagram showing an electric field due to a compensation electrode that is synchronized with the deflection voltage waveform according to the present invention and has a reverse polarity.

【図6】本発明の作用を説明する図であり、図4と図5
に示す電場を合成した電場を示す模式図である。
6A and 6B are diagrams for explaining the operation of the present invention, and FIGS.
It is a schematic diagram which shows the electric field which synthesize | combined the electric field shown in FIG.

【図7】本発明の作用を説明する図であり、図4ないし
図6に示す電場の所定位置での電位を示す模式図であ
る。
FIG. 7 is a diagram for explaining the operation of the present invention, and is a schematic diagram showing the electric potential at a predetermined position of the electric field shown in FIGS. 4 to 6.

【図8】本発明の補償電極の変形例を示す斜視図であ
る。
FIG. 8 is a perspective view showing a modified example of the compensation electrode of the present invention.

【図9】本発明の補償電極の他の変形例を示す斜視図で
ある。
FIG. 9 is a perspective view showing another modified example of the compensation electrode of the present invention.

【図10】本発明の補償電極の他の変形例を示す斜視図
である。
FIG. 10 is a perspective view showing another modified example of the compensation electrode of the present invention.

【図11】本発明の補償電極の他の変形例を示す斜視図
である。
FIG. 11 is a perspective view showing another modification of the compensation electrode of the present invention.

【図12】図1、図8、図9及び図11に示す陰極線管
装置による漏洩電場の補償効果の角度依存性を示す図で
ある。
12 is a diagram showing the angle dependence of the effect of compensating for a leakage electric field by the cathode ray tube device shown in FIGS. 1, 8, 9 and 11. FIG.

【図13】陰極線装置をシャーシに組み込んだ状態を、
図1に示す陰極線装置をシャーシに組み込んだ場合で代
表して示す斜視図である。
FIG. 13 shows a state in which the cathode ray device is incorporated in a chassis,
FIG. 2 is a perspective view representatively showing a case where the cathode ray device shown in FIG. 1 is incorporated in a chassis.

【図14】本発明の逆電圧供給部の変形例を示す斜視図
である。
FIG. 14 is a perspective view showing a modified example of the reverse voltage supply unit of the present invention.

【図15】本発明の逆電圧供給部の他の変形例を示す斜
視図である。
FIG. 15 is a perspective view showing another modified example of the reverse voltage supply unit of the present invention.

【図16】本発明による陰極線管画像表示装置の一実施
例を示す一部切欠け斜視図である。
FIG. 16 is a partially cutaway perspective view showing an embodiment of a cathode ray tube image display device according to the present invention.

【図17】本発明の逆電圧供給部の他の変形例を示す斜
視図である。
FIG. 17 is a perspective view showing another modified example of the reverse voltage supply unit of the present invention.

【図18】従来の陰極線管装置の構成を示す断面図であ
る。
FIG. 18 is a cross-sectional view showing the configuration of a conventional cathode ray tube device.

【符号の説明】[Explanation of symbols]

10…陰極線管 13…偏向装置 14…逆電圧供給部 15,43,61,62,63,64,83…補償電極 80…陰極線管画像表示装置 10 ... Cathode ray tube 13 ... Deflection device 14 ... Reverse voltage supply unit 15, 43, 61, 62, 63, 64, 83 ... Compensation electrode 80 ... Cathode ray tube image display device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電子銃から放出される電子ビームを偏向
走査する水平偏向コイルまたは垂直偏向コイルを有する
偏向装置を備える陰極線管装置において、前記水平偏向
コイルまたは垂直偏向コイルに印加される偏向電圧波形
に同期しこれと極性が逆の電圧波形を発生する逆電圧供
給部と、この逆電圧供給部に接続された補償電極を少な
くとも1つ具備することを特徴とする陰極線管装置。
1. A cathode ray tube device comprising a deflection device having a horizontal deflection coil or a vertical deflection coil for deflecting and scanning an electron beam emitted from an electron gun, wherein a deflection voltage waveform applied to the horizontal deflection coil or the vertical deflection coil. A cathode ray tube device, comprising: a reverse voltage supply unit that generates a voltage waveform having a polarity opposite to that of the reverse voltage supply unit and a compensation electrode connected to the reverse voltage supply unit.
【請求項2】 電子銃から放出される電子ビームを偏向
走査する水平偏向コイルまたは垂直偏向コイルを有する
偏向装置を備える陰極線管装置をキャビネット内に設置
してなる陰極線管画像表示装置において、前記水平偏向
コイルまたは垂直偏向コイルに印加される偏向電圧波形
に同期しこれと極性が逆の電圧波形を発生する逆電圧供
給部と、この逆電圧供給部に接続された補償電極を少な
くとも1つ具備することを特徴とする陰極線管画像表示
装置。
2. A cathode ray tube image display device comprising a cathode ray tube device provided in a cabinet, comprising a deflection device having a horizontal deflection coil or a vertical deflection coil for deflecting and scanning an electron beam emitted from an electron gun. A reverse voltage supply unit that generates a voltage waveform having a polarity opposite to that of the deflection voltage waveform applied to the deflection coil or the vertical deflection coil, and at least one compensation electrode connected to the reverse voltage supply unit are provided. A cathode ray tube image display device characterized by the above.
JP4189149A 1991-07-18 1992-07-16 Cathode ray tube device and cathode ray tube picture display device Pending JPH05207404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4189149A JPH05207404A (en) 1991-07-18 1992-07-16 Cathode ray tube device and cathode ray tube picture display device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17706191 1991-07-18
JP3-177061 1991-07-18
JP4189149A JPH05207404A (en) 1991-07-18 1992-07-16 Cathode ray tube device and cathode ray tube picture display device

Publications (1)

Publication Number Publication Date
JPH05207404A true JPH05207404A (en) 1993-08-13

Family

ID=26497737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4189149A Pending JPH05207404A (en) 1991-07-18 1992-07-16 Cathode ray tube device and cathode ray tube picture display device

Country Status (1)

Country Link
JP (1) JPH05207404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000093387A (en) * 1998-09-25 2000-04-04 Olympus Optical Co Ltd Magnetic field detector
US6404133B1 (en) 1999-03-31 2002-06-11 Matsushita Electric Industrial Co., Ltd. Cathode ray tube device that reduces magnetic field leakage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000093387A (en) * 1998-09-25 2000-04-04 Olympus Optical Co Ltd Magnetic field detector
US6404133B1 (en) 1999-03-31 2002-06-11 Matsushita Electric Industrial Co., Ltd. Cathode ray tube device that reduces magnetic field leakage
US6630791B2 (en) 1999-03-31 2003-10-07 Matsushita Electric Industrial Co., Ltd Cathode ray tube device that reduces magnetic field leakage

Similar Documents

Publication Publication Date Title
KR960000350B1 (en) Display apparatus in crt
US5231332A (en) AC electric field emission suppression in CRT image displays
US5485056A (en) Monitoring device
US5107179A (en) Method and apparatus for magnetic field suppression using inductive resonant and non-resonant passive loops
KR950008407B1 (en) Cathode-ray tube
JPH05207404A (en) Cathode ray tube device and cathode ray tube picture display device
EP0727806B1 (en) Leakage field decreasing device for CRT display
EP0708474B1 (en) Cathode-ray tube display unit in which unwanted radiant electric field from face plate of cathode-ray tube is decreased
US6630791B2 (en) Cathode ray tube device that reduces magnetic field leakage
US5818171A (en) Device for removing electric field of display
JP3146061B2 (en) Cathode ray tube and cathode ray tube image display
GB2313279A (en) Video display appliance including a device for limiting electric field emitted from a cathode ray tube
US5382875A (en) Stray magnetic field suppresser for CRT image displays
KR920010657B1 (en) Cathod ray tube lessening leakage magnetic field
JP2002044567A (en) Cathode ray tube system
JPH08315752A (en) Cathode-ray tube device
US5432492A (en) Deflection yoke apparatus with auxiliar coils to compensensate magnetic leakage
JPH10269966A (en) Cathode ray tube device
JP3569136B2 (en) CRT magnetic shield device
JPH09213238A (en) Cathode ray tube device
JPH06197537A (en) Line output transformer
JPH09219161A (en) Cathode ray tube device
JPH09213228A (en) Method of adjusting leakage electric field from cathode ray tube device and cathode ray tube device
JPH09325726A (en) Leakage electric field reducing device in crt display device
JPH10269965A (en) Cathode-ray tube device