JPH0520722B2 - - Google Patents

Info

Publication number
JPH0520722B2
JPH0520722B2 JP25928087A JP25928087A JPH0520722B2 JP H0520722 B2 JPH0520722 B2 JP H0520722B2 JP 25928087 A JP25928087 A JP 25928087A JP 25928087 A JP25928087 A JP 25928087A JP H0520722 B2 JPH0520722 B2 JP H0520722B2
Authority
JP
Japan
Prior art keywords
flat plate
refractive index
lens
spherical
homogeneous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25928087A
Other languages
Japanese (ja)
Other versions
JPH01101502A (en
Inventor
Keisuke Kikuchi
Masahiro Hirano
Hiroyoshi Yajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP25928087A priority Critical patent/JPH01101502A/en
Publication of JPH01101502A publication Critical patent/JPH01101502A/en
Publication of JPH0520722B2 publication Critical patent/JPH0520722B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Optical Head (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、光通信、光計算機、複写機器、医
療などの分野で用いられるマイクロオプテイクス
用レンズに関するものである。 〔従来の技術〕 従来、光通信や複写機器のマイクロオプテイク
ス用レンズとして屈折率分布ロツドレンズ(商標
名:セルホツクレンズ)や、先球レンズ、球レン
ズが実用されている(例えばA.Nicaia App.
Opt.20.P3136.1981)。 また、均質球を周囲媒質に埋め込んだレンズ
(例えば特開昭55−60912号公報)、2層先球レ
ンズ(例えば特開昭61−269107号公報)が提案
され、平板に半球状屈折率分布を形成した平板マ
イクロレンズ(例えばIga et.al.Fundamental
of Microoptics.Academic press.p127)が試作
され、球対称屈折率分布球を均質周囲媒質に埋め
込んだレンズ(例えば特開昭58−168026号公
報、Y.Koike et.al.App.Opt.25.19.p3356.1986)
が提案、また、試作されている。 軸方向屈折率分布媒質(本平板と同じ)から通
常の凸レンズを切り出したものがある(例えば
E.W.Marchand.Gradient Index Optics.
Academic press.p106)。 〔発明が解決しようとする問題点〕 例えば、光通信用波長分波器への使用を考える
と (イ) 球面収差が小さいこと。 (ロ) 斜軸入射での収差が小さいこと、すなわち正
弦条件を満足していること。 (ハ) 干渉フイルタ、反射膜、光フアイバなどの光
学素子を密着一体化でき、空気層をできるだけ
入れないこと。 (ニ) 悪環境下(高温高湿度、ほこりなど)で使用
できること。 (ホ) 製作が容易であること。 などが要求される。 (イ)は単一モード光フアイバのコア径(〜10μ
m)からの光束をコリーメートし、ある距離走ら
せた後、再び集光し、光フアイバに結合するの
で、その効率を上げ、(ロ)は軸外に置かれた光フア
イバからの光束をコリーメートし、干渉フイル
タ、反射膜を付けた平行平板の間をジクザクと斜
めに反射させ、再び軸外の光フアイバ端に集光す
る、いわゆる斜軸光学系として使用するために必
要であり、また、レンズ製作と組立てのトランス
を緩めるためにも必要である。(ハ)は損失を少なく
すると同時に装置を強固にし信頼性を上げる。 従来型レンズについて、(イ)〜(ホ)の満足の度合い
を第1表に示し、この発明のレンズとの比較とす
る。 なお、第1表の比較で補足すると、用途によつ
て要求が異なるので、例えば複写機器用レンズで
は(ハ)とは逆に空気層を入れて軽くし、また、動き
をとれるようにしなければならない。この発明レ
ンズでは、平板の厚さを変えてどちらにでも対応
できる。共通の要求は(イ)、(ロ)の収差を小さくする
こと、(ホ)製作が容易であることであるが、従来は
これを十分に満足するものはなかつた。
[Industrial Application Field] The present invention relates to a lens for micro-optics used in fields such as optical communications, optical computers, copying equipment, and medicine. [Prior art] In the past, graded index rod lenses (trade name: Cellhod lenses), conical lenses, and spherical lenses have been used as lenses for micro-optics in optical communication and copying equipment (for example, A.Nicaia App). .
Opt.20.P3136.1981). In addition, a lens in which a homogeneous sphere is embedded in the surrounding medium (for example, Japanese Patent Application Laid-Open No. 55-60912) and a two-layer tip spherical lens (for example, Japanese Patent Application Laid-Open No. 61-269107) have been proposed. (e.g. Iga et.al.Fundamental)
of Microoptics.Academic press.p127) was prototyped, and a lens with a spherically symmetric gradient index sphere embedded in a homogeneous surrounding medium (for example, Japanese Patent Application Laid-open No. 168026/1983, Y.Koike et.al.App.Opt.25.19). p3356.1986)
has been proposed and prototyped. There are ordinary convex lenses cut out from axially graded refractive index medium (same as this flat plate) (for example,
EWMarchand.Gradient Index Optics.
Academic press.p106). [Problems to be solved by the invention] For example, considering the use in a wavelength demultiplexer for optical communication, (a) spherical aberration is small. (b) The aberration at oblique axis incidence is small, that is, the sine condition is satisfied. (c) Optical elements such as interference filters, reflective films, and optical fibers can be closely integrated, and air spaces should be avoided as much as possible. (d) Can be used in adverse environments (high temperature, high humidity, dust, etc.). (e) It must be easy to manufacture. etc. are required. (a) is the core diameter of the single mode optical fiber (~10μ
(m) collimates the light flux from the optical fiber placed off-axis, and after traveling a certain distance, condenses it again and couples it to the optical fiber, increasing its efficiency; (b) collimates the light flux from the optical fiber placed off-axis. This is necessary for use as a so-called oblique-axis optical system, in which the light is reflected obliquely between parallel flat plates with reflective films and an interference filter, and then focused again on the end of an off-axis optical fiber. It is also necessary to loosen the transformer of fabrication and assembly. (C) reduces loss and at the same time strengthens the device and increases reliability. Table 1 shows the degree of satisfaction with items (a) to (e) for conventional lenses and compares them with the lens of the present invention. As a supplement to the comparison in Table 1, the requirements differ depending on the application, so for example, in the case of a lens for copying equipment, contrary to (c), an air layer must be added to make it lighter, and it must also be made to allow for movement. It won't happen. The lens of this invention can be used in either case by changing the thickness of the flat plate. Common requirements are (a) and (b) small aberrations, and (e) ease of manufacture, but there has been no conventional device that fully satisfies these requirements.

【表】【table】

〔問題点を解決するための手段〕[Means for solving problems]

この発明にかかる屈折率分布平板サンドイツチ
型球レンズの第1の発明は、厚さ方向に少なくと
も表面近くで屈折率が変化している平板の表面に
凹球面状の穴をあけ、2枚の平板の間にこの凹球
面に密接して均質球を挾み込む構成とし、かつ平
板の屈折率の変化を光学系の球面収差およびコマ
収差を補正する値としたものである。 また、この発明にかかる屈折率分布平板サンド
イツチ型球レンズの第2の発明は、第1の発明に
おいて均質球および平板を色収差を補正する材質
で構成したものである。 〔作用〕 この発明にかかる第1の発明においては、均質
球による球面収差がこの均質球を挾む平板に与え
た屈折率の変化により補正される。 また、両側平板への屈折率変化係数の配分によ
つてコマ収差を発生させないようにしている。 また、この発明にかかる第2の発明において
は、均質球および平板の材質によつて色収差が補
正される。 〔実施例〕 はじめに、この発明の原理について第3図a〜
cにより説明する。 第3図a〜cで、1は均質球(屈折率ns)で、
レンズの作用をする。2A,2Bは平板、3A,
3Bは不均質部、4A,4Bは穴である。なお、
A,Bの区別が必要でないときは単に2,3,4
という。後述する他の符号についても同様とす
る。 まず、均質周囲媒質中(屈折率nb)に置かれた
均質球(屈折率ns)1によるレンズの結像を考え
ると、第3図aに示すように、凸レンズ(ns
nb)のとき、物点Oから出た光束の周縁光は近軸
光の像点Iに比べて手前に結ぶ、いわゆる負の球
面収差が生じる。そこで、この発明では、同じく
凸レンズ(ns>nb)の場合、第3図bに示すよう
に、表面から内部に向つて屈折率が低下する不均
質部3A,3Bを有する平板2A,2Bのその表
面、すなわち高屈折率側に凹球面状の穴4A,4
Bをあけ、そこに接する均質球1との屈折率差が
中心軸を離れるほど小さくなることを利用して周
縁光をより遠くの近軸光の像点I近くに結ばせ、
球面収差を補正している。 さらに、軸外物点の結像に際して発生するコマ
収差を除去するため均質球1の入出力面に光学系
の倍率に応じて屈折率勾配を違えた2枚の平板不
均質部3A,3Bを用い、入力側で生じたコマ収
差を出力側で相殺している。簡単のため、1:1
光学系(倍率=−1)の場合について、その作用
の定性的説明をする。 均質球1の両側の平板2A,2Bに屈折率勾配
を同じく選んだ不均質部3A,3Bを形成し、第
3図cで光軸の上側に位置する物点Oからの3光
線C1、C2、C3を考える。先に述べたように、光
軸を離れるほど境界の屈折率差は小さくなるの
で、上光線C1は第1球面S1より第2球面S2で余
計屈折を受け、下光線C3はその逆になる。した
がつて、上光線C1、下光線C3は球中心対称にで
きる。一方、光線C2は球中心を通り、球中心対
称であるから、3光線C1、C2、C3は像側でも1
点で交わり、コマ収差はでない。 任意倍率の光学系では、後述する第(31)式が
相当する条件式である。 以下、第2図を参照して数量的にこの発明の作
用を述べる。第2図で1は均質球、Cは球心であ
る。 球面光学系の結像式は球心Cを座標原点として
第ν面の基本式 1/(Ni′Li′)=(Ni′−Ni) /(NiNi′ri)+1/(NiLi) +Δi(i=1、2) ……(1) Δi=N(i′−Ni)/(2Ni2ri)(1−ri 2 /LiLi′)×sin2ii ……(2) ii′=ii+1、Nisinii =Ni′sinii′ ……(3) ここで、 Ni、Ni′:第i面球面境界の左右屈折率 ri:第i面球面の曲率半径(r1=R、r2=−R) Li、Li′:球中心から各々入射光線、屈折光線と光
軸との交点までの距離 ii、ii′:第i面球面境界の入射角、屈折角 均質球1の屈折率を N1′=N2=ns ……(4) とおき、平板の屈折率分布n(z)を 均質部 n(z)=nb 分布部 n(z)=nb+γz/R ……(5) とする。 平板不均質部3A,3B(第3図)にあけられ
る穴4A,4Bの凹球面は近似的にz=y2
(2R)で表されるので、簡単のため分布部の深さ
いつぱいまであけたとすると、切り口の屈折率分
布は、入出力側の平板不均質部3A,3Bに対し
各々 N1=nb+α1(hs1/R)2 N2′=nb+α2(hs2/R) ……(6) ここで、 hs1、hs2:入射出射光の球面境界での高さ α1、α2:入出力側の平板不均質部3A,3Bの切
り口の屈折率分布係数(α=γ/2) 均質球1への入射、出射光の延長線に球心Cか
ら下した垂線長を各々h1、h2′とすると、 hs1(1+R/L1)h1 hs2(1−R/L2′)h2′ ……(7) 第(1)式は、均質球面系に適用すべき式である
が、不均質の領域が狭いとして拡張して用いる。
したがつて、境界での屈折に不均質は含められる
が、媒質中での曲がりは別に補正しなければなら
ない。第(1)式〜第(7)式を用いて結像式(8)が得られ
る。 R/L2′=R/f+R/L1+ 〔Σi=1,2(CGRi+CGCi+CPLANi +CSPHERE〕(h1/R)2 ……(8) ここで、nsb=ns/nbとおいて、 f=(R/2)nsb/(nsb−1) ……(9) CSPHERE=〔3/nsb−1−1/nsb 2 −R2/(L1L2′)〕R/(2f) ……(10) CGR1=−α1(1+R/L13/nb CGR2=−α2(1−R/L2′)3/nb ……(11) CGCj=0、CPLANj=0(j=1、2)……(12) なお、後で補正として求める第(12)式の係数を0
として第(8)式に加えておく(CGCjは不均質部で
の光線曲がり、CPLANjは平板−空気境界屈折に
よる収差の係数である)。また、不均質部の屈折
率変化分δn≪nbとして、ここではh1=h2′と近似
している。 まず、不均質部での光線曲がりの補正をする。
第4図aに示すように、光軸をz軸とし、垂直に
y軸をとり、y−z面内の光線を考える。光線方
程式の積分により、第(13)式で示す保存量が得られ
る。 ncosθ=nbcosθb ……(13) 入射側の平板2Aの不均質部での光線曲がりの
L1への影響は光軸からの高さhs1の変化を無視で
きるとして、第(13)、(7)式を用いて δL1GC=hs1(tanθ−tanθb) =(L1+R)δn/nb ……(14) ここで、 δn=n(y=hs1)−nb=α1(hs1/R)2 ……(15) さらに、 1/(L1+δL1GC)=1/L1−δL1GC/L1 2 ……(16) を考慮して第(8)式の係数CGC1を、また、出射側の
平板2Bの不均質部についても同様にして求める
と、 CGC1=−α1(R/L1)(1+R/L13/nb CGC2=α2(R/L2′)(1−R/L2′)3/nb (17) なお、δL1GC、δL2GC′の符号は像側で正収差を
与えるものを正とし、大きさは各々物体側、像側
収差量とする。また、h2≒h1としている。 不均質部の全体の効果は、先の境界屈折と加算
し CGRIN1=CGR1+CGC1 =−α1(1+R/L14/nb CGRIN2=CGR1+CGC1 =−α2(1−R/L2′)4/nb ……(18) 次に、物点O、像点Iが平板2A,2Bの外に
位置する場合、平板平面の屈折で起こる収差項を
求める(第4図b)。なお、空気中での長さは平
板均質部(nb)換算長で表す。入射、出射側平板
面の収差は各々、 δL1PR=0.5(L1+R+t1)(nb 2/nair 2 −1)(h1/L12 δL2PR′=−0.5(L2′−R −t2)(nb 2/nair 2−1) ×(h2′/L2′)2 ……(19) 符号等は第(17)式と同様とし、第(8)式の係数に換
算して、 CPLAN1=−0.5(R/L13(1+R/L1 +t1/L1)×(nb 2/nair 2−1) CPLAN2=0.5(R/L2′)3(1−R/L2′ −t2/L2′)×(nb 2/nair 2−1) ……(20) 収差の各要素が求められたので、次にその補正
条件を求める。 球面収差補正条件; Σ=1,2(CGRINi+CPLANi)+CSPHERE=0 ……(21) アツベの正弦条件; nbsin u1/(nbsin u2′)=β ……(22) 第5図に示すように、媒質換算した空気と平板
2A,2Bとの境界を近軸光は直線でつながるの
に対し、周縁光は平板収差のために折線になる。
第(21)式が満足され、球面収差が補正されてい
ると、物点O、像点Iで1点に結ぶ。第(22)式
は実光線、すなわち平板2A,2B内の量につい
て成り立つべきであるから、平板内光線の延長、
すなわち先の折線を伸ばしたものと光軸との交点
L1+δL1PR、L2′−δL2PR′を用いて、第(22)式の
正弦は sin u1=h1/(L1+δL1PR) sin u2′=h2′/(L2′−δL2PR′ ……(23) また、 倍率β=L2′/L1 ……(24) h1=h0+δh1、h2′=h0+δh2′ ……(25) とおき、第(22)式に代入して、正弦条件は次式
に書き換えられる。 δh2′−δh1=−h0(δL1PR/L1 +δL2PR′/L2′) ……(26) 不均質部によつて引き起こされる光線方向変化
は、入射側、出射側について各々次式に導かれ
る。 δ(i1−i1′)=CGRIN1(h0/R)3(1 +R/L1) δ(i2−i2′)=CGRIN2(h0/R)3(1 −R/L2′) ……(27) また、h1、h2′の定義式h1=Rsin i1、h2′=Rsin
i2′の微分をとり、cos i≒1として δ(h2′−h1)=Rδ(i2′−i1) ……(28) 第(8)式の収差係数と収差の関係を示す第(16)相当
の式を用いて、 δL1PR=−CPLAN1L1 2h0 2/R3 δL2PR′=−CPLAN2L22h0 2/R3 ……(29) 第(26)式〜第(29)式より CGRIN2/(1−R/2′) −CGRIN1/(1+R/L1) =CPLAN2/(R/L2′) +CPLAN1/(R/L1) ……(30) 第(21)、(30)式をα1、α2について解き、 α1=W1/(1+R/L13、 α2=W2/(1−R/L2′)3 ……(31)) ここで、 W〓=nb(CPLAN+CSPHERE+Q〓)/(2−R/f) (λ=1、2) ……(32) CPLAN=CPLAN1+CPLAN2 Q1=(1−R/L2′)P、Q2=−(1+R/L1)P P=CPLAN1/(R/L1) +CPLAN2/(R/L2′) ……(33) 次に、色収差補正の条件を導出する。 近軸光の結像の式1/L2′=1/f+1/L1
換算長 L1=nbt1air−R−t1、L2′ =nbt2air+R+t2 ……(34) を考慮して、ns、nbに関して微分をとり、空気中
長さt1air、t2airを不変に保つdns、dnbの関係を求
め、分散係数Ds=dns/dλ、Db=dnb/dλ(λは
着目する光波長帯での波長)を用いて表すと、 Ds/Db=ns/nb〔1−(R/2)(ns/nb) ×{(L2′−t2−R)/L22 −(L1+t1+R)/L1 2}) ……(35) なお、分散係数とアツベ数(μ)の関係は次式
で与えられる。 Ds/Db=(μb/μs)(ns−1)/(nb−1)
……(36) アプラナテイクレンズを与える係数α1、α2を第
6図a,bに、ns/nbをパラメータとして倍率β
に対して示した。光軸上平板厚さは、第6図aは
t1=t2=Rの場合、第6図bは物点O、像点Iが
平板内(表面を含む)、もしくは∞の場合である。 例えば、均質球1としてns=1.8、平板2A,
2Bとしてnb=1.5のガラス材を用いたレンズ
(ns/nb=1.2)で平行光を表面に集光する場合
(β=0)を考えると、第6図bより、α1=0.12、
α2=0.41となる。入射高をhs1/R=0.6まで使う
とすると、平板2Aの不均質部屈折率差はα1
(hs/R)2=0.043、平板2Bの不均質部屈折率差
は出射高がhs2/R=(1−R/f)(hs1/R)、
R/f=1/3であるから、α2(hs2/R)2=0.056
となり、共に5%程度なので現時点でも製作可能
の範囲である。 なお、この例で、開口数NA=nb(hs1/R)
(R/f)=0.3となる。 また、倍率β=−1で、平板厚さt1=t2=R、
ns、nbは上記と同じ光学系を考えると、第6図a
よりα1=α2=0.22となる。hs1/R=0.5まで使う
と、屈折率差0.055の不均質部が必要となる。 次に、色収差補正の数値例をあげる。平板材に
nb=1.5、球材にns=1.8を用いたとし、要求され
るアツベ数比μs/μbを求める。平行光の集光を考
え、第(35)、(36)式でL1⇒∞、L2′=fとし、 (μs/μb)=(1−1/ns)/(1−1/nb)/〔
1−(R/2)(ns/nb){(f−t2−R)/f2}〕
……(37) 像点Iを平板表面、すなわちf−t2=R=0と
する平板厚みt2にすると、 μs/μb=1.333 ……(38) 第(38)式を満足させるには、球材として高屈
折率で高アツベ数の、いわゆる新ガラス材が必要
になる。 上記はこの発明の原理を説明するためのもので
あるが、次にこの発明の実施例について説明す
る。 第1図a,bはこの発明の一実施例を示す要部
の断面図と屈折率の分布図である。 第1図aで1は均質球、2A,2Bは平板で、
いずれも対向する面側の表面近くは厚さ方向に少
なくとも表面近くで屈折率が変化している不均質
部3A,3Bとなつている。そして、この不均質
部3A,3Bから厚み方向に凹球面状の穴4A,
4Bが形成され、ここに均質球1が密接するよう
に両側から平板2A,2Bでサンドイツチ状に挾
む。 この場合の光線の受ける屈折率の分布を第1図
bに示す。この図は均質球1と穴面の屈折率差が
近軸光ではd1、d1′と大きく、周縁光ではd2
d2′と小さくしていることを示す(凸レンズの場
合)。 この発明のレンズの従来型レンズとの違いにつ
いて述べる。 この発明のレンズが軸方向屈折率分布部3A,
3Bを含む平板2A,2Bを用いているのに対
し、のセルホツタレンズはロツド半径方向分
布、の先球レンズと球レンズ、は均質レン
ズ、、、は球対称屈折率分布を用いてい
る。は軸方向屈折率平板から通常の凸レンズを
切り出したもので、球面収差の補正法の原点とな
るレンズであり、この発明はこの補正法を採用し
た発展型であり、構成、効果、機能の点で違つて
いる。すなわち、前述した第1表に示すように、
他光学素子との密着一体性やマイクロアレーレン
ズとしての製作のし易さ、さらに、材質選定の自
由度を増したこと(例えば屈折率2を越える均質
球を使える)に差異がある。 次に、複写用レンズへの応用例を第7図に示
す。 各層の対応する均質球1が共軸に配置されてい
るとし、物点Oからの光束が各軸に対して共通に
像点Iに集まるための条件は、次の関係を満足す
ることである。 関係式:f3=Df1、L34=DL01、L23=DL12、1/
L12=1/f1−1/L01、f2=L12D/(1+D)
……(39) ここで、第1、2、3層の焦点距離を各々f1
f2、f3、物体面と第1層、第1、2層間、第2、
3層間、第3層と像面の距離を各々L01、L12
L23、L34、倍率をDとする。なお、ここで、距離
は絶対値で表している。また、各層内の球心Cの
間隔の比は2光軸が物面、像面を切る点を結ぶ線
分が結像関係にあることを考慮して、第1、2、
3層について、 1+(1+D)/(2D)(L12/L01):1+L12/L01
:1+(1+D)(L12/L01)/2……(40) ただし、長さは平板媒質換算表で表している。 いま、物面−像面間が媒質換算表でL04と与え
られたとき、第(39)式の諸式を用いて、 L04=(1+D)(L01+L12) ……(41) 物面−像面間の実長L04Rは実空気長をAIRとす
ると、 L04R=L04−(nb−1)AIR ……(42) 数値例を示すと、D=1.5の拡大用レンズをL04
=75mmとし、ns=1.8、nb=1.5を用いて設計する
と、f1=6.67、f2=6、f3=10、L01=20、L12
10、L23=15、L34=30、球心Cの間隔の比は、第
1、2、3層について1.42:1.5:1.625、球半径
は各々2.22、2、3.33となる。単位はmmである。 第7図に示すように、透過率を上げるために、
均質球1はドラム状にして用いるのが望ましい。
なお、平板不均質部係数は第7図aより第1、
2、3層について各々β=−0.5、−0.67、−0.5で
読み取つた値のものを用いる。 次に、波長分波器−合波器への応用例を述べ
る。 第8図a,bに示すように、一列に並べられた
複数個の球レンズの焦点に位置させた平板面に密
着させて、光フアイバ6(周波数ν1<ν2<ν3<ν4
<…を含む)を斜軸結合させ、光フアイバ6から
の発散光を均質球1で平行光にして平板面(透明
部)を通し、さらに張り合わせた平板平板5の第
2面の鏡9で反射させ、低域フイルタ若しくは帯
域フイルタ8で周波数ν1波のみ通し、第2の均質
球11で光フアイバ61に集束する。残りは低域フ
イルタ若しくは帯域フイルタ8で反射した後、平
行平板5の第2面の鏡9(第8図aではさらに第
1面の鏡7)で反射し、次の低域フイルタ若しく
は帯域フイルタ81で周波数ν2波のみを通し、第
3の均質球12で光フアイバ62に集束させる。以
下同様にして分波する。逆にたどれば合波器とな
る。 なお、用いるレンズの平板不均質部の係数は、
第6図bでβ=L2′/L1=0とおいて求めたα1
α2のα1が平行光側、α2がフアイバ側となる。 数値例 1 第8図aで、ns=1.8、nb=1.5、β=0として、
α1=0.12、α2=0.41、f=3R、球心Cから測つて
フアイバ側平板面は−f、フイルタ側平板面、平
行平板反射鏡面の位置は一義的に決まらないが、
ここでは各々f、2fとおく。フアイバ端の光軸か
らの斜軸角は2f面での反射光が隣接球に向かうよ
うにすると、球心間隔をSとして、S/(4f)と
なる。S=2Rとすると、斜軸角:0.17rad、平行
光の全幅をR以下にすると、フアイバNA<R/
2/f=0.17、フイルタの紙面上一辺はR。フイ
ルタの遮断周波数は分波すべきν1<ν2<ν3<ν4
…の間に決める。 Rは平板2A,2Bの不均質部3A,3Bをイ
オン交換などで作製し、測定したにち、決めるべ
きである。それは第(5)、(6)式のように係数はRで
規格化しているからである。 数値例 2 数値例1で平行平板5の厚さを2倍にし、平行
平板5の第1面は鏡を省き、フイルタのみとした
場合である(第8図b)。第1、第2の均質球1,
1の中心間隔S12=2Rとすると、斜軸角はR/
(3f)=0.11rad、第m、m+1球(m>2)の中
心間隔Sn,n+1=(2/3)S12=1.33Rとなり、均
質球1を両側を切り取つたドラム状のものが必要
となる。すなわち、前記第1図の実施例の均質球
1は球状であつたが、これはドラム状となる。ド
ラム状のときにも第1図の穴4A,4Bは凹球面
状となる。 光線追跡例 第9図は倍率β=−1の光学系で物点の光軸か
らの高さを0〜Rまで等間隔で変えた時の像面附
近の子午面光線を重ねて書いた図である。第9図
aは第(31)式、また、第6図aから求めた係数
α1、α2の不均質部3A,3Bがある場合である。
第9図bに比較のために不均質部3A,3Bがな
い場合を示している。これからこの発明の効果が
顕著に表れていることが判る。すなわち、像高を
変えても小さいスポツトが得られている。さら
に、注目すべきことは像面湾曲が少ないこと(平
坦性がよい)である。この特徴を利用して次に述
べる応用に好適となる。 回折格子波長分波器 第10図aは単レンズ、第10図bはレンズア
レーを用いる波長分波器である。平板2Aの一方
に密着した光フアイバ6からの波長多重光をコリ
ーメートして、他方の平板面に形成した回折格子
10で波長に応じた方向に反射回折され、再びレ
ンズを通し、光フアイバ6,61,62,…に分波
する。この際、各フアイバ端の光軸からの高さが
違つても、先述のように、像面湾曲が少ないので
平板面は平面でよいことが特長である。 画像伝送処理レンズ 第11図aは平面画像を伝送する装置で、先述
の平坦性を利用し、良質の画像のまま伝送でき
る。単に伝送するだけなら光フアイババンドルが
既に実用されているが、途中で空間フイルタリン
グなどをする画像処理用レンズとして特長が発揮
できる。フーリエ変換なども含ませることができ
る。 フアイバスコープ用ヘツド 第11図bは胃カメラに代表されるフアイバス
コープ用ヘツドである。物面が平面なら像の平坦
性がよいのでフアイババンドル6′の端面は平面
でよく、また、小形ヘツドに製作し易い。 〔発明の効果〕 この発明にかかる第1、第2の発明は以上説明
したとおり、厚さ方向に少なくとも表面近くで屈
折率が変化している平板の表面に凹球面状の穴を
あけ、2枚の平板の間に穴の凹球面状面に密接し
て均質球を挾み込む構成とし、かつ平板の屈折率
の変化を光学系の球面収差と正弦条件を補正する
値としたので、斜軸使用しても収差が小さく、ま
た、空気層を挾まないで球レンズ間、並びに他光
学素子と密着一体の構成をとれるので、先に述べ
た波長分波器の例から判るように、この発明によ
る球レンズを要素とする装置は低損失、高性能、
さらには多機能性、しかも製作や組立てのトレラ
ンスが緩められることが期待される。 さらに、この発明のレンズの不均質部は像面湾
曲を補正する働きをするので、画像用レンズとし
ても適し、小形のフアイバスコープ用ヘツドに使
用されれば医療に寄与する利点がある。 また、この発明にかかる第2の発明は、色収差
を除去できる利点を併せ有する。
The first invention of the gradient index flat plate Sanderutsch type spherical lens according to the present invention is such that a concave spherical hole is formed in the surface of a flat plate whose refractive index changes at least near the surface in the thickness direction. A homogeneous sphere is sandwiched between the concave spherical surfaces in close contact with the concave spherical surface, and the change in the refractive index of the flat plate is set to a value that corrects the spherical aberration and coma aberration of the optical system. A second aspect of the gradient index flat plate Sanderuch type ball lens according to the present invention is that in the first aspect, the homogeneous sphere and the flat plate are made of a material that corrects chromatic aberration. [Operation] In the first aspect of the present invention, the spherical aberration caused by the homogeneous sphere is corrected by changing the refractive index applied to the flat plates that sandwich the homogeneous sphere. Furthermore, by distributing the refractive index change coefficients to both flat plates, coma aberration is prevented from occurring. Further, in the second aspect of the present invention, chromatic aberration is corrected by the materials of the homogeneous sphere and the flat plate. [Example] First, the principle of this invention is explained in Fig. 3 a~
This will be explained using c. In Figures 3 a to c, 1 is a homogeneous sphere (refractive index n s ),
Acts as a lens. 2A, 2B are flat plates, 3A,
3B is a heterogeneous portion, and 4A and 4B are holes. In addition,
When it is not necessary to distinguish between A and B, simply use 2, 3, 4.
That's what it means. The same applies to other symbols described later. First, considering the imaging of a lens by a homogeneous sphere (refractive index n s ) 1 placed in a homogeneous surrounding medium (refractive index n b ), as shown in Figure 3a, a convex lens (n s >
n b ), the peripheral light of the luminous flux emitted from the object point O is focused in front of the image point I of the paraxial light, resulting in so-called negative spherical aberration. Therefore, in the present invention, similarly in the case of a convex lens (n s >n b ), as shown in FIG. Concave spherical holes 4A, 4 are formed on the surface, that is, on the high refractive index side.
B is opened, and by utilizing the fact that the difference in refractive index with the homogeneous sphere 1 that is in contact with it becomes smaller as the distance from the central axis increases, the peripheral light is focused near the image point I of the farther paraxial light,
Corrects spherical aberration. Furthermore, in order to eliminate comatic aberration that occurs when imaging an off-axis object point, two flat plate inhomogeneous parts 3A and 3B with different refractive index gradients according to the magnification of the optical system are provided on the input and output surfaces of the homogeneous sphere 1. The coma aberration generated on the input side is canceled out on the output side. For simplicity, 1:1
In the case of an optical system (magnification=-1), a qualitative explanation of its effect will be given. Inhomogeneous parts 3A and 3B with the same refractive index gradient are formed on the flat plates 2A and 2B on both sides of the homogeneous sphere 1, and three rays C 1 from the object point O located above the optical axis in FIG. Consider C 2 and C 3 . As mentioned earlier, the difference in refractive index at the boundary becomes smaller as it moves away from the optical axis, so the upper ray C 1 is refracted more by the second spherical surface S 2 than by the first spherical surface S 1 , and the lower ray C 3 is It will be the opposite. Therefore, the upper ray C 1 and the lower ray C 3 can be made symmetrical about the center of the sphere. On the other hand, since the ray C 2 passes through the center of the sphere and is symmetrical about the center of the sphere, the three rays C 1 , C 2 , and C 3 are 1 on the image side.
They intersect at a point, and there is no coma aberration. In an optical system with an arbitrary magnification, Equation (31), which will be described later, is a corresponding conditional expression. Hereinafter, the operation of the present invention will be described quantitatively with reference to FIG. In Figure 2, 1 is a homogeneous sphere and C is the center of the sphere. The image formation formula of a spherical optical system is the basic formula for the νth surface with the spherical center C as the coordinate origin: 1/(N i ′L i ′) = (N i ′−N i ) /(N i N i ′r i ) +1/(NiL i ) +Δ i (i=1, 2) ...(1) Δi= N(i ′−N i )/(2N i2 r i )(1−r i 2 /L i Li ′)×sin 2 i i ……(2) i i ′=i i+1 , N i sini i =N i ′sini i ′ ……(3) Here, N i , N i ′: i-th surface Left and right refractive index of the spherical boundary r i : radius of curvature of the i-th spherical surface (r 1 = R, r 2 = -R) L i , L i ′: intersection point of the incident ray and refracted ray from the center of the sphere, respectively, and the optical axis Distance to i i , i i ′: Incident angle, refraction angle of i-th surface spherical boundary Let the refractive index of homogeneous sphere 1 be N 1 ′ = N 2 = n s ……(4), and the refractive index distribution of the flat plate Let n(z) be a homogeneous part n(z)=n b distribution part n(z)=n b +γz/R ...(5). The concave spherical surfaces of the holes 4A and 4B drilled in the flat plate heterogeneous parts 3A and 3B (Fig. 3) are approximately z=y 2 /
(2R), so for the sake of simplicity, if we assume that the depth of the distribution section is as deep as possible, the refractive index distribution at the cut end will be N 1 = n b for each of the input and output side flat plate heterogeneous sections 3A and 3B +α 1 (h s1 /R) 2 N 2 ′=n b2 (h s2 /R) ...(6) Here, h s1 , h s2 : Height of the input and output light at the spherical boundary α 1 , α 2 : Refractive index distribution coefficient at the cut end of the flat plate heterogeneous parts 3A and 3B on the input and output side (α = γ/2) The length of the perpendicular line drawn from the sphere center C to the extension line of the incident and output light to the homogeneous sphere 1 Assuming h 1 and h 2 ′, respectively, h s1 (1+R/L 1 ) h 1 h s2 (1−R/L 2 ′) h 2 ′ ……(7) Equation (1) is expressed in the homogeneous spherical system. Although this is the formula to be applied, it is expanded and used because the heterogeneous region is narrow.
Therefore, although the inhomogeneity is included in the refraction at the boundary, the bending in the medium must be compensated for separately. Imaging equation (8) is obtained using equations (1) to (7). R/L 2 ′=R/f+R/L 1 + [Σ i=1,2 (C GRi +C GCi +C PLANi +C SPHERE ] (h 1 /R) 2 ...(8) Here, n sb = n s /n b , f=(R/2)n sb /(n sb -1) ...(9) C SPHERE = [3/n sb -1-1/n sb 2 -R 2 /(L 1 L 2 ′)] R/(2f) ...(10) C GR1 =-α 1 (1+R/L 1 ) 3 /n b C GR2 =-α 2 (1-R/L 2 ′) 3 /n b ...(11) C GC j=0, C PLAN j=0 (j=1, 2)...(12) Note that the coefficient of equation (12), which will be calculated later as a correction, is set to 0.
(C GC j is the ray bending at the inhomogeneous portion, and C PLAN j is the coefficient of aberration due to flat plate-air boundary refraction). Furthermore, assuming that the refractive index change in the inhomogeneous portion is δn<<n b , h 1 =h 2 ' is approximated here. First, the light ray bending at the non-uniform part is corrected.
As shown in FIG. 4a, the optical axis is the z-axis and the y-axis is perpendicular to it, and a light ray in the y-z plane is considered. By integrating the ray equation, the conserved quantity shown in equation (13) is obtained. ncosθ=n b cosθ b ……(13) Light ray bending at the inhomogeneous part of the flat plate 2A on the incident side
Assuming that the change in height h s1 from the optical axis can be ignored as an influence on L 1 , using equations (13) and (7), δL 1GC = h s1 (tanθ−tanθ b ) = (L 1 +R) δn/n b ……(14) Here, δn=n(y=h s1 )−n b = α 1 (h s1 /R) 2 ……(15) Furthermore, 1/(L 1 + δL 1GC )= 1/L 1 −δL 1GC /L 1 2 ...(16) If we calculate the coefficient C GC1 of equation (8) in the same way for the inhomogeneous part of the flat plate 2B on the output side, we get: C GC1 = −α 1 (R/L 1 ) (1+R/L 1 ) 3 /n b C GC2 = α 2 (R/L 2 ′) (1−R/L 2 ′) 3 /n b (17) Note that the signs of δL 1GC and δL 2GC ′ are positive if they give a positive aberration on the image side, and the magnitudes are the amount of aberration on the object side and image side, respectively. Furthermore, h 2 ≒ h 1 is assumed. The overall effect of the inhomogeneous part is added to the previous boundary refraction and becomes C GRIN1 = C GR1 + C GC1 = -α 1 (1 + R/L 1 ) 4 /n b CGRIN2 = C GR1 + C GC1 = -α 2 (1- R/L 2 ′) 4 /n b ...(18) Next, when the object point O and the image point I are located outside the flat plates 2A and 2B, find the aberration term caused by the refraction of the flat plate plane (4th Figure b). Note that the length in air is expressed as a flat plate homogeneous part (n b ) converted length. The aberrations of the incident and exit planes are δL 1PR = 0.5 (L 1 + R + t 1 ) (n b 2 /n air 2 −1) (h 1 /L 1 ) 2 δL 2PR ′=−0.5 (L 2 ′) −R −t 2 ) (n b 2 /n air 2 −1) × (h 2 ′/L 2 ′) 2 ...(19) The signs etc. are the same as in equation (17), and equation (8) Converting to the coefficient of _ _ _ _ _ _ 2 ′) 3 (1−R/L 2 ′ −t 2 /L 2 ′)×(n b 2 /n air 2 −1) ……(20) Now that each element of aberration has been determined, Find the correction conditions. Spherical aberration correction condition; Σ =1,2 (C GRINi + C PLANi ) + C SPHERE = 0 ... (21) Atsube's sine condition; n b sin u 1 / (n b sin u 2 ') = β ... (22 ) As shown in FIG. 5, the paraxial light connects the boundary between the medium-equivalent air and the flat plates 2A and 2B with a straight line, whereas the peripheral light forms a broken line due to flat plate aberration.
If Equation (21) is satisfied and the spherical aberration is corrected, the object point O and the image point I are combined into one point. Since Equation (22) should hold true for real rays, that is, the quantities inside the flat plates 2A and 2B, the extension of the ray inside the flat plate,
In other words, the intersection of the extended broken line and the optical axis
Using L 1 + δL 1PR and L 2 ′−δL 2PR ′, the sine of equation (22) is sin u 1 = h 1 / (L 1 + δL 1PR ) sin u 2 ′ = h 2 ′ / (L 2 ′ −δL 2PR ′ ...(23) Also, the magnification β=L 2 ′/L 1 ...(24) h 1 = h 0 + δh 1 , h 2 ′=h 0 +δh 2 ′ ...(25) Substituting into equation (22), the sine condition is rewritten as the following equation: δh 2 ′−δh 1 = −h 0 (δL 1PR /L 1 +δL 2PR ′/L 2 ′) ……(26) Heterogeneity The change in the direction of the light beam caused by the part is derived from the following equations for the incident side and the output side, respectively: δ (i 1 - i 1 ') = C GRIN1 (h 0 /R) 3 (1 + R/L 1 ) δ(i 2 −i 2 ′)=C GRIN2 (h 0 /R) 3 (1 −R/L 2 ′) ...(27) Also, the defining formula of h 1 and h 2 ′ is h 1 = Rsin i 1 , h 2 ′=Rsin
Taking the differential of i 2 ′ and assuming cos i≒1, δ(h 2 ′−h 1 )=Rδ(i 2 ′−i 1 ) ……(28) The relationship between the aberration coefficient and aberration in equation (8) is Using the equation equivalent to No. (16) shown, δL 1PR = −C PLAN1 L 1 2 h 0 2 /R 3 δL 2PR ′=−C PLAN2 L 22 h 0 2 /R 3 ...(29) From equations (26) to (29), C GRIN2 / (1-R/ 2 ′) −C GRIN1 / (1+R/L 1 ) = C PLAN2 / (R/L 2 ′) + C PLAN1 / (R/L 1 ) ...(30) Solving equations (21) and (30) for α 1 and α 2 , α 1 = W 1 / (1 + R / L 1 ) 3 , α 2 = W 2 / (1 - R / L 2 ′) 3 ... (31)) Here, W = n b (C PLAN + C SPHERE + Q =) / (2 - R / f) (λ = 1, 2) ... (32) C PLAN = C PLAN1 +C PLAN2 Q 1 = (1-R/L 2 ′)P, Q 2 =-(1+R/L 1 )P P=C PLAN1 / (R/L 1 ) +C PLAN2 / (R/L 2 ′) ...(33) Next, conditions for chromatic aberration correction are derived. Paraxial light imaging formula 1/L 2 ′=1/f+1/L 1 is converted to length L 1 =n b t 1air −R−t 1 , L 2 ′=n b t 2air +R+t 2 ……(34 ), take the differentiation with respect to n s and n b , find the relationship between dn s and dn b that keeps the lengths in air t 1air and t 2air unchanged, and find the dispersion coefficient D s = dn s /dλ, D When expressed using b = dn b / dλ (λ is the wavelength in the optical wavelength band of interest), D s /D b = n s /n b [1-(R/2) (n s /n b ) × {(L 2 ′−t 2 −R)/L 22 −(L 1 +t 1 +R)/L 1 2 }) ……(35) The relationship between the dispersion coefficient and Atsube number (μ) is as follows. It is given by Eq. D s /D b = (μ bs ) (n s −1) / (n b −1)
...(36) The coefficients α 1 and α 2 that give the aplana take lens are shown in Figure 6 a and b, and the magnification β is set using n s /n b as a parameter.
shown against. The thickness of the flat plate on the optical axis is as shown in Figure 6a.
When t 1 =t 2 =R, FIG. 6b shows the case where the object point O and the image point I are inside the flat plate (including the surface) or at ∞. For example, assuming homogeneous sphere 1, n s = 1.8, flat plate 2A,
Considering the case where parallel light is focused on the surface (β = 0) with a lens (n s /n b = 1.2) using a glass material with n b = 1.5 as 2B, from Fig. 6b, α 1 = 0.12,
α 2 =0.41. If the incident height is used up to h s1 /R=0.6, the refractive index difference of the inhomogeneous part of the flat plate 2A is α 1
(h s /R) 2 = 0.043, the difference in refractive index of the inhomogeneous part of the flat plate 2B is that the output height is h s2 /R = (1-R/f) (h s1 /R),
Since R/f=1/3, α 2 (h s2 /R) 2 =0.056
Both are about 5%, which is within the range that can be manufactured at present. In addition, in this example, numerical aperture NA=n b (h s1 /R)
(R/f)=0.3. Also, when the magnification β=-1, the flat plate thickness t 1 = t 2 = R,
Considering the same optical system as above, n s and n b are as shown in Figure 6a.
Therefore, α 12 =0.22. When h s1 /R=0.5 is used, a non-uniform portion with a refractive index difference of 0.055 is required. Next, a numerical example of chromatic aberration correction will be given. For flat plate material
Assuming n b = 1.5 and n s = 1.8 for the ball material, find the required Atsube number ratio μ s / μ b . Considering the convergence of parallel light, we set L 1 ⇒∞, L 2 ′=f in equations (35) and (36), and (μ sb )=(1−1/n s )/(1− 1/n b )/[
1-(R/2)( ns / nb ) {(f- t2 -R)/ f2 }]
...(37) When the image point I is set to the surface of the flat plate, that is, the thickness of the flat plate is t 2 with f-t 2 = R = 0, μ s / μ b = 1.333 …(38) Equation (38) is satisfied. For this purpose, a new glass material with a high refractive index and a high Atsbe number is required as the ball material. The above is for explaining the principle of this invention. Next, embodiments of this invention will be described. FIGS. 1a and 1b are a sectional view of a main part and a refractive index distribution diagram showing an embodiment of the present invention. In Figure 1a, 1 is a homogeneous sphere, 2A and 2B are flat plates,
In either case, near the surface on the opposing surface side, there are inhomogeneous parts 3A and 3B in which the refractive index changes in the thickness direction at least near the surface. Then, concave spherical holes 4A,
4B is formed, and the homogeneous sphere 1 is sandwiched between flat plates 2A and 2B from both sides in a sandwich-like manner so as to be in close contact therewith. The distribution of refractive index experienced by the light beam in this case is shown in FIG. 1b. This figure shows that the refractive index difference between the homogeneous sphere 1 and the hole surface is large, d 1 and d 1 ' for paraxial light, and d 2 and d 1 ' for peripheral light.
This shows that d 2 ′ is small (in the case of a convex lens). The differences between the lens of this invention and conventional lenses will be described. The lens of this invention has an axial refractive index distribution section 3A,
The cell hotter lens uses a rod radial distribution, the tip spherical lens and the spherical lens use homogeneous lenses, and the cells 2A and 2B use a spherically symmetrical refractive index distribution. is a normal convex lens cut out from an axial refractive index flat plate, and is the origin of the spherical aberration correction method.This invention is an advanced version of this correction method, and has improved its structure, effect, and function. That's different. That is, as shown in Table 1 above,
The differences are in the close integration with other optical elements, the ease of manufacturing as a microarray lens, and the increased freedom in material selection (for example, homogeneous spheres with a refractive index exceeding 2 can be used). Next, an example of application to a copying lens is shown in FIG. Assuming that the homogeneous spheres 1 corresponding to each layer are arranged coaxially, the condition for the luminous flux from the object point O to converge at the image point I in common for each axis is to satisfy the following relationship. . Relational expressions: f 3 = Df 1 , L 34 = DL 01 , L 23 = DL 12 , 1/
L 12 = 1/f 1 -1/L 01 , f 2 = L 12 D/(1+D)
...(39) Here, the focal lengths of the first, second, and third layers are f 1 ,
f 2 , f 3 , object plane and first layer, between the first and second layers, second,
The distances between the three layers and between the third layer and the image plane are respectively L 01 , L 12 ,
Let L 23 , L 34 and magnification be D. Note that here, the distance is expressed as an absolute value. In addition, the ratio of the spacing between the spherical centers C in each layer is determined by considering that the line segment connecting the points where the two optical axes cut the object plane and the image plane has an imaging relationship.
Regarding the 3 layers, 1+(1+D)/(2D)(L 12 /L 01 ): 1+L 12 /L 01
:1+(1+D)(L 12 /L 01 )/2...(40) However, the length is expressed in the flat plate medium conversion table. Now, when the distance between the object surface and the image surface is given as L 04 in the medium conversion table, using the equation (39), L 04 = (1 + D) (L 01 + L 12 ) ... (41) The actual length L 04R between the object surface and the image plane is given by A IR as the actual air length, L 04R = L 04 − (n b −1) A IR ……(42) To give a numerical example, D = 1.5. Magnifying lens L 04
= 75mm and design using n s = 1.8 and n b = 1.5, f 1 = 6.67, f 2 = 6, f 3 = 10, L 01 = 20, L 12 =
10, L 23 = 15, L 34 = 30, the ratio of the spacing between the spherical centers C is 1.42:1.5:1.625 for the first, second, and third layers, and the spherical radii are 2.22, 2, and 3.33, respectively. The unit is mm. As shown in Figure 7, in order to increase the transmittance,
It is desirable to use the homogeneous sphere 1 in the form of a drum.
Furthermore, from Fig. 7a, the coefficient of the flat plate inhomogeneity is 1st,
The values read at β=-0.5, -0.67, and -0.5 for the second and third layers, respectively, are used. Next, an example of application to a wavelength demultiplexer-multiplexer will be described. As shown in FIGS. 8a and 8b, the optical fiber 6 (frequency ν 1234
<...) are obliquely coupled, and the diverging light from the optical fiber 6 is made into parallel light by the homogeneous sphere 1, passing through the flat plate surface (transparent part), and then by the mirror 9 on the second surface of the flat plate 5 pasted together. It is reflected, passes only the frequency ν 1 wave by a low-pass filter or bandpass filter 8, and is focused into an optical fiber 6 1 by a second homogeneous sphere 1 1 . The remainder is reflected by a low-pass filter or band filter 8, and then reflected by a mirror 9 on the second surface of the parallel plate 5 (in addition, a mirror 7 on the first surface in FIG. 8a), and then transmitted to the next low-pass filter or band filter. 8 1 passes only the frequency ν 2 wave and focuses it on the optical fiber 6 2 at the third homogeneous sphere 1 2 . The waves are separated in the same manner. If you trace it in the opposite direction, it becomes a multiplexer. The coefficient of the flat plate inhomogeneity of the lens used is
α 1 was obtained by setting β=L 2 ′/L 1 =0 in Figure 6b,
α 1 of α 2 is the parallel light side, and α 2 is the fiber side. Numerical example 1 In Figure 8a, n s = 1.8, n b = 1.5, β = 0,
α 1 = 0.12, α 2 = 0.41, f = 3R, the fiber side flat plate surface is -f when measured from the spherical center C, the positions of the filter side flat plate surface and the parallel flat reflecting mirror surface are not uniquely determined, but
Here, let them be f and 2f, respectively. The oblique axis angle from the optical axis of the fiber end is S/(4f), where the distance between the centers of the spheres is S, when the reflected light from the 2f plane is directed toward the adjacent sphere. If S = 2R, oblique axis angle: 0.17 rad, and the total width of parallel light is less than R, the fiber NA < R/
2/f=0.17, one side of the filter on the paper is R. The cutoff frequency of the filter should be ν 1 < ν 2 < ν 3 < ν 4 <
Decide between... R should be determined after the heterogeneous portions 3A and 3B of the flat plates 2A and 2B are prepared by ion exchange or the like and measured. This is because the coefficients are normalized by R as in equations (5) and (6). Numerical Example 2 This is a case where the thickness of the parallel plate 5 is doubled in Numerical Example 1, and the first surface of the parallel plate 5 is provided with only a filter without the mirror (FIG. 8b). first and second homogeneous spheres 1,
If the center spacing S 12 of 1 1 is 2R, the oblique axis angle is R/
(3f) = 0.11 rad, the center spacing of the m-th, m+1 sphere (m>2) S n,n+1 = (2/3) S 12 = 1.33R, and the drum-shaped homogeneous sphere 1 with both sides cut off. Something is needed. That is, the homogeneous sphere 1 of the embodiment shown in FIG. 1 was spherical, but this is drum-shaped. Even in the case of a drum shape, the holes 4A and 4B in FIG. 1 have a concave spherical shape. Ray tracing example Figure 9 is a diagram of meridional rays near the image plane superimposed when the height of the object point from the optical axis is changed at equal intervals from 0 to R in an optical system with magnification β = -1. It is. FIG. 9a shows a case where there are heterogeneous parts 3A and 3B with coefficients α 1 and α 2 obtained from equation (31) and FIG. 6a.
For comparison, FIG. 9b shows a case where the non-uniform parts 3A and 3B are not present. It can be seen from this that the effects of this invention are clearly evident. In other words, a small spot can be obtained even if the image height is changed. Furthermore, what should be noted is that there is little curvature of field (good flatness). Utilizing this feature, it is suitable for the following applications. Diffraction grating wavelength demultiplexer Fig. 10a shows a wavelength demultiplexer using a single lens, and Fig. 10b shows a wavelength demultiplexer using a lens array. The wavelength-multiplexed light from the optical fiber 6 closely attached to one side of the flat plate 2A is collimated, reflected and diffracted by the diffraction grating 10 formed on the other flat plate surface in a direction corresponding to the wavelength, and passed through the lens again to the optical fiber 6, The signal is split into 6 1 , 6 2 , etc. In this case, even if the height of each fiber end from the optical axis is different, as mentioned above, the curvature of field is small, so the flat plate surface can be flat. Image Transmission Processing Lens Figure 11a shows a device for transmitting a flat image, which utilizes the flatness described above and can transmit high-quality images as they are. Optical fiber bundles are already in practical use for simple transmission, but they can also be used as image processing lenses that perform spatial filtering along the way. It can also include Fourier transform. Fiberscope head Figure 11b shows a fiberscope head typified by a gastrocamera. If the object surface is flat, the flatness of the image is good, so the end face of the fiber bundle 6' can be flat, and it is easy to manufacture a small head. [Effects of the Invention] As explained above, the first and second inventions according to the present invention include forming a concave spherical hole in the surface of a flat plate whose refractive index changes in the thickness direction at least near the surface; A homogeneous sphere is sandwiched between two flat plates in close contact with the concave spherical surface of the hole, and the change in the refractive index of the flat plate is set to a value that corrects the spherical aberration and sine condition of the optical system. The aberration is small even when the axis is used, and it can be integrated between ball lenses and other optical elements without intervening an air layer, so as can be seen from the example of the wavelength demultiplexer mentioned earlier, The device based on the ball lens according to this invention has low loss, high performance,
Furthermore, it is expected that it will be multifunctional and that tolerances for manufacturing and assembly will be relaxed. Further, since the inhomogeneous portion of the lens of the present invention functions to correct field curvature, it is suitable as an imaging lens, and has the advantage of contributing to medical care when used in a small fiberscope head. Further, the second aspect of the present invention also has the advantage of being able to eliminate chromatic aberration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bはこの発明の一実施例の構成図、
第2図はレンズと光線の関係を示す座標、パラメ
ータの定義図、第3図aは均質平板で挟まれた球
の球面収差を示す図、第3図bは平板に不均質部
を付け、球面収差の補正をする原理図、第3図c
は軸外物点の像点に収差が出ないための条件を簡
単な例で説明した図、第4図aは不均質部での光
線曲がりの影響を求めるための図、第4図bは平
板面での屈折による収差を求めるための図、第4
図cは平板の屈折率分布を示す図、第5図は正弦
条件を課すための光線図、第6図はa,bはアプ
ラナテイクレンズ条件を満足する入出力側平板の
屈折率分布係数で、第6図aは平板厚さt1=t2
Rの場合、第6図bは物点、像点が平板内、表面
もしくは∞にある場合、第7図は複写用レンズへ
の応用例、第8図a,bは波長分波器−合波器へ
の応用例で、第8図aは球レンズの場合、第8図
bはドラム状レンズの場合、第9図a,bは光線
追跡で像面近くの光線束を像高を変えて画いた図
で、第9図aは第(31)式の分布係数を与えた場
合、第9図bは係数=0の場合、第10図a,b
は回折格子波長分波器の図で、第10図aは単レ
ンズを用いる場合、第10図bはレンズアレーを
用いる場合の図、第11図aは画像伝送処理レン
ズへの応用例の図、第11図bはフアイバスコー
プ用ヘツドへの応用例の図である。 図中、1は均質球、2A,2Bは平板、3A,
3Bは不均質部、4A,4Bは凹球面状の穴、5
は平行平板、6は光フアイバ、7,9は反射鏡、
8は低域フイルタまたは帯域フイルタ、10は回
折格子、Oは物点、Iは像点である。
Figures 1a and 1b are block diagrams of an embodiment of the present invention;
Figure 2 is a definition of coordinates and parameters showing the relationship between lenses and light rays, Figure 3a is a diagram showing the spherical aberration of a sphere sandwiched between homogeneous flat plates, and Figure 3b is a flat plate with an inhomogeneous part. Principle diagram for correcting spherical aberration, Figure 3c
is a diagram explaining with a simple example the conditions for no aberrations to appear at the image point of an off-axis object point, Figure 4a is a diagram for determining the influence of ray bending in a non-uniform area, and Figure 4b is a diagram Diagram for determining aberrations due to refraction on a flat plate surface, 4th
Figure c shows the refractive index distribution of a flat plate, Figure 5 is a ray diagram for imposing the sine condition, and Figure 6 shows a and b the refractive index distribution coefficients of the flat plate on the input and output sides that satisfy the aplanatake lens condition. So, in Figure 6a, the flat plate thickness t 1 = t 2 =
In the case of R, Fig. 6b shows an example of application to a copying lens when the object point and image point are inside a flat plate, on the surface, or at ∞, and Fig. 8a and b show an example of a wavelength demultiplexer-combiner. Examples of application to wave instruments: Figure 8a is for a ball lens, Figure 8b is for a drum lens, and Figures 9a and b are for ray tracing to change the image height of a ray bundle near the image plane. Figure 9a is the case when the distribution coefficient of equation (31) is given, Figure 9b is the case when the coefficient = 0, Figure 10a, b
10A is a diagram of a diffraction grating wavelength demultiplexer, FIG. 10A is a diagram when a single lens is used, FIG. 10B is a diagram when a lens array is used, and FIG. 11A is a diagram of an example of application to an image transmission processing lens. , FIG. 11b is a diagram of an example of application to a fiberscope head. In the figure, 1 is a homogeneous sphere, 2A, 2B are flat plates, 3A,
3B is a heterogeneous part, 4A, 4B are concave spherical holes, 5
is a parallel plate, 6 is an optical fiber, 7 and 9 are reflecting mirrors,
8 is a low-pass filter or bandpass filter, 10 is a diffraction grating, O is an object point, and I is an image point.

Claims (1)

【特許請求の範囲】 1 厚さ方向に少なくとも表面近くで屈折率が変
化している平板の表面に凹球面状の穴をあけ、前
記2枚の平板の間に前記穴の凹球面に密接して均
質球を挾み込む構成とし、かつ前記平板の屈折率
の変化を光学系の球面収差およびコマ収差を補正
する値としてたとを特徴とする屈折率分布平板サ
ンドイツチ型球レンズ。 2 均質球は、ドラムレンズであることを特徴と
する特許請求の範囲第1項記載の屈折率分布平板
サンドイツチ型球レンズ。 3 平板の片面に複数個の凹球面状の穴を形成
し、複数個の均質球を前記穴に密接させて挾み込
んだことを特徴とする特許請求の範囲第1項記載
の屈折率分布平板サンドイツチ型球レンズ。 4 厚さ方向に少なくとも表面近くで屈折率が変
化している平板の表面に凹球面状の穴をあけ、前
記2枚の平板の間に前記穴の凹球面に密接して均
質球を挾み込む構成とし、前記平板の屈折率の変
化を光学系の球面収差およびコマ収差を補正する
値とし、かつ均質球および平板を色収差を補正す
る材質で構成したことを特徴とする屈折率分布平
板サンドイツチ型球レンズ。
[Claims] 1. A concave spherical hole is formed in the surface of a flat plate whose refractive index changes at least near the surface in the thickness direction, and a concave spherical hole is formed between the two flat plates so that the concave spherical surface of the hole is closely connected. What is claimed is: 1. A gradient index flat Sanderch-type ball lens, characterized in that it has a configuration in which homogeneous spheres are sandwiched between the flat plates, and a change in the refractive index of the flat plates is set as a value for correcting spherical aberration and comatic aberration of an optical system. 2. The gradient index flat plate sanderch-type spherical lens according to claim 1, wherein the homogeneous sphere is a drum lens. 3. The refractive index distribution according to claim 1, characterized in that a plurality of concave spherical holes are formed on one side of the flat plate, and a plurality of homogeneous spheres are closely inserted into the holes. A flat sandwich type ball lens. 4. Drilling a concave spherical hole in the surface of a flat plate whose refractive index changes at least near the surface in the thickness direction, and sandwiching a homogeneous sphere between the two flat plates in close contact with the concave spherical surface of the hole. A gradient index flat plate sander circuit characterized in that the change in the refractive index of the flat plate is set to a value that corrects spherical aberration and comatic aberration of the optical system, and the homogeneous sphere and the flat plate are made of a material that corrects chromatic aberration. shaped ball lens.
JP25928087A 1987-10-14 1987-10-14 Refractive index distributing plane sandwich type spherical lens Granted JPH01101502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25928087A JPH01101502A (en) 1987-10-14 1987-10-14 Refractive index distributing plane sandwich type spherical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25928087A JPH01101502A (en) 1987-10-14 1987-10-14 Refractive index distributing plane sandwich type spherical lens

Publications (2)

Publication Number Publication Date
JPH01101502A JPH01101502A (en) 1989-04-19
JPH0520722B2 true JPH0520722B2 (en) 1993-03-22

Family

ID=17331897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25928087A Granted JPH01101502A (en) 1987-10-14 1987-10-14 Refractive index distributing plane sandwich type spherical lens

Country Status (1)

Country Link
JP (1) JPH01101502A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109454B2 (en) * 1991-03-25 1995-11-22 工業技術院長 Gradient index flat plate sandwich sphere copy lens system
JPH0760212B2 (en) * 1991-10-08 1995-06-28 工業技術院長 Refractive index distribution flat plate / sphere / hemisphere compound lens
JP4708785B2 (en) * 2003-12-26 2011-06-22 富士フイルム株式会社 Image exposure method and apparatus
JP5261220B2 (en) * 2009-02-06 2013-08-14 株式会社沖データ Lens array, LED head, exposure apparatus, image forming apparatus, and reading apparatus

Also Published As

Publication number Publication date
JPH01101502A (en) 1989-04-19

Similar Documents

Publication Publication Date Title
WO2017219433A1 (en) Optical device for waveguide headset display
JP5059079B2 (en) Laminated diffractive optical element and optical system
US4557566A (en) Spherical lens for spherically symmetrical graded refractive index distribution provided with rod clad
US6438290B1 (en) Micro-aspheric collimator lens
US5323268A (en) Compound lens
WO2012172968A1 (en) Optical device
JP3573575B2 (en) Optical system
JPS61223712A (en) Wavelength multiplexer/demultiplexer with corrected geometrical abberation and chromatic abberation
US4735478A (en) Optical coupling device for optical waveguides
US4979808A (en) Endoscope objective lens system
US6980717B2 (en) Optical fiber collimator
JPH0520722B2 (en)
US5953162A (en) Segmented GRIN anamorphic lens
JP2003279871A (en) Optical connection module and optical system for infrared light ray
US6567586B2 (en) Dual fiber collimator
JPS5923313A (en) Large aperture condenser lens
JPS58168026A (en) Embedded type spherical lens having distributed refractive index
TW202323939A (en) Optical system
CN110320606B (en) Optical wavelength division multiplexing device
JPH09159910A (en) Objective lens
US6735362B1 (en) Dispersive optical systems utilizing transmissive diffraction gratings
WO2018042936A1 (en) Plano-convex lens, fiber array module, and light reception module
JPH0875948A (en) Optical multiplexer/demultiplexer
JP2003172813A (en) Method for separating light, method for synthesizing light, light separating and synthesizing optical element and optical separating and coupling device
CN118169801A (en) Optical device for light signal curved surface trace element acquisition and conduction

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term