JPH0520720A - Magneto-optical recording system - Google Patents

Magneto-optical recording system

Info

Publication number
JPH0520720A
JPH0520720A JP3175159A JP17515991A JPH0520720A JP H0520720 A JPH0520720 A JP H0520720A JP 3175159 A JP3175159 A JP 3175159A JP 17515991 A JP17515991 A JP 17515991A JP H0520720 A JPH0520720 A JP H0520720A
Authority
JP
Japan
Prior art keywords
magnetic layer
recording
recording medium
magneto
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3175159A
Other languages
Japanese (ja)
Inventor
Tadashi Kobayashi
正 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3175159A priority Critical patent/JPH0520720A/en
Priority to EP97202863A priority patent/EP0818783A3/en
Priority to EP19920306408 priority patent/EP0523944A3/en
Priority to AU20308/92A priority patent/AU660315B2/en
Priority to CA002073924A priority patent/CA2073924C/en
Priority to KR1019920012709A priority patent/KR960016891B1/en
Publication of JPH0520720A publication Critical patent/JPH0520720A/en
Priority to US08/257,453 priority patent/US5428586A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize an optical system and to reduce a cost by having a 1st magnetic layer which has a low coercive force at room temp. and a high Curie temp. and a 2nd magnetic layer which has the coercive force higher than the coercive force of the above-mentioned layer and has a low Curie temp. CONSTITUTION:A laser beam A with which the magnetic field impressed position of a coil 1 is irradiated is reflected from a recording medium 2 and is made incident on photodiodes 6, 7 via a half prism 4 and a polarization beam splitter 5. The outputs of photodiodes 6, 7 are inputted to a differential amplifier 8 and are differentially amplified, by which reproduced signals are taken out. The reproduced signals are compared with recording information in a comparator 10. A series of the recording information are rerecorded on the same position or different positions on the recording medium if these signals do not coincide with the recording information The rerecording is not executed if the reproduced signals coincide with the recording information. The reproduced signals become abnormal if the execution of the correct recording is failed by the defect, deterioration, corrosion, etc., of the recording medium and, therefore, the checking of the recording is possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,レーザービームと外部
磁界とを用いて,反転磁区のビットを形成することによ
り情報の記録を行ない,偏光されたレーザービームを照
射することによって磁気光学効果を利用して情報の読み
出しを行なう光磁気記録方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a laser beam and an external magnetic field to form bits in a reversed magnetic domain for recording information, and irradiates a polarized laser beam to produce a magneto-optical effect. The present invention relates to a magneto-optical recording method for reading information by utilizing it.

【0002】[0002]

【従来の技術】光磁気記録方式は,記録媒体にディスク
状の磁性体を用いているので,情報のアクセスが早く,
情報の書き換えが可能であり,さらに記録媒体が交換可
能であるという特徴を有している。
2. Description of the Related Art The magneto-optical recording method uses a disk-shaped magnetic material as a recording medium, so that information can be accessed quickly.
The feature is that the information can be rewritten and the recording medium can be exchanged.

【0003】光磁気記録において情報を書き換える最も
基本的な方法は,回転しているディスク状の記録媒体
に, (i)消去方向に直流外部磁界を印加し,記録したい場所
に連続光のレーザービームを照射して前の情報を消去す
る。
The most basic method of rewriting information in magneto-optical recording is: (i) applying a DC external magnetic field in the erasing direction to a rotating disk-shaped recording medium to produce a continuous laser beam at the desired recording position. To erase the previous information.

【0004】(ii)次に,記録方向に直流外部磁界を印加
し,記録したい場所に記録情報に応じて変調されたレー
ザービームを照射して情報を記録する。
(Ii) Next, a direct current external magnetic field is applied in the recording direction, and a laser beam modulated according to the recorded information is applied to the desired recording location to record the information.

【0005】(iii)最後に,記録した場所に弱い連続光
のレーザービームを照射して記録情報を読み出し,正し
く記録できたか確認する(ベリファイ動作)。
(Iii) Finally, a weak continuous light laser beam is applied to the recording location to read the recording information and confirm whether the recording was successful (verify operation).

【0006】光磁気記録においては,記録媒体の欠陥,
劣化,腐食,あるいは,ゴミ,光磁気記録装置の故障等
により正しく記録が行なえない場合が考えられるので,
(iii)の記録の確認は,必ず行なう必要がある。
In magneto-optical recording, defects in the recording medium,
Recording may not be performed properly due to deterioration, corrosion, dust, or failure of the magneto-optical recording device.
The records in (iii) must be confirmed.

【0007】以上の説明から明らかなように,情報を書
き換えるためには,ディスク3回転分の時間が必要であ
り,これをディスク2回転,さらにはディスク1 回転で
行なえれば,情報の書き換えのための処理速度が非常に
早くなる。
As is clear from the above description, in order to rewrite information, it takes time for three rotations of the disk, and if this can be done by two rotations of the disk and even one rotation of the disk, the information can be rewritten. The processing speed for is very fast.

【0008】そのために,種々の方法が提案されてい
る。
Therefore, various methods have been proposed.

【0009】(i)と(ii)を同時に行なう(即ち,オ−バ
−ライト記録)ために,記録情報に応じて変調された外
部磁界のもとで,連続光のレーザービームを照射する方
法,あるいは,特殊な媒体を用いて,直流外部磁界のも
とで,記録情報に応じて強弱に変調されたレーザービー
ムを照射する方法などが提案されている。これらの方法
を用いることにより,(i),(ii),(iii)のプロセスをディ
スク2回転で行なうことができる。
A method of irradiating a continuous laser beam under an external magnetic field modulated according to recorded information in order to simultaneously perform (i) and (ii) (that is, overwrite recording). Alternatively, a method has been proposed in which a special medium is used to irradiate a laser beam that is modulated in a strong and weak manner according to recorded information under a DC external magnetic field. By using these methods, the processes (i), (ii), and (iii) can be performed by rotating the disk twice.

【0010】さらに,上記の方法に加えて,1 つの光学
系の中に2 つのレーザービームを組み込み,先行ビーム
によって記録を行ない,後方ビームによって記録の確認
をする方法が提案されている。以上の方法をすべて用い
ることにより,(i),(ii),(iii)のプロセスをディスク1
回転分の時間で行なうことができる。
In addition to the above method, a method has been proposed in which two laser beams are incorporated in one optical system, recording is performed by the preceding beam and recording is confirmed by the backward beam. By using all of the above methods, the processes (i), (ii), and (iii) can be performed on the disk 1.
It can be performed in the time corresponding to the rotation.

【0011】[0011]

【発明が解決しようとしている問題点】しかしながら、
記録の確認を行なう方法として,1 つの光学系の中に2
つのレーザービームを組み込むことは,光学系が非常に
複雑になり,また,光学系の機械精度も高いものが要求
されるので,光学系が大きくかつコストも高いものとな
る欠点があった。
[Problems to be solved by the invention] However,
As a method of confirming the recording, 2 in 1 optical system are used.
Incorporation of two laser beams makes the optical system very complicated and requires high mechanical precision of the optical system, so there is a drawback that the optical system becomes large and costly.

【0012】[0012]

【問題点を解決するための手段】本発明は上記問題に鑑
みなされたものであり、高価で複雑な光学系を必要とす
ることなしに,記録を行ないながら記録の確認を行なう
方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a method for confirming recording while performing recording without requiring an expensive and complicated optical system. Especially.

【0013】本発明の上記目的は,光磁気記録方式にお
いて、室温において保磁力が低く,キュリー温度が高い
第1 の磁性層と,前記第1磁性層と交換結合すると共に
前記第1磁性層に比して保磁力が高く,キュリー温度が
低い第2の磁性層を有する光磁気記録媒体に一定強度の
光ビ−ムを照射しながら記録情報に応じて変調された磁
界を印加することにより情報の記録を行うと共に、前記
光ビームの反射光を用いて記録情報の確認を行なうこと
によって達成される。
The above-mentioned object of the present invention is, in a magneto-optical recording system, a first magnetic layer having a low coercive force at room temperature and a high Curie temperature, which is exchange-coupled with the first magnetic layer and is formed on the first magnetic layer. By applying a magnetic field modulated according to the recorded information while irradiating a magneto-optical recording medium having a second magnetic layer having a high coercive force and a low Curie temperature with a constant intensity, information is recorded. And recording information is confirmed by using the reflected light of the light beam.

【0014】[0014]

【実施例】図1は,本発明に基づく光磁気記録方式の一
例を示す略図である。図1において,1 は記録媒体に外
部磁界を印加するためのコイルで不図示の変調回路によ
り記録情報に従って磁界を変調される。2 は記録媒体,
21は室温において保磁力が低く,キュリー温度が高い第
1 の磁性層,22は前記第1磁性層と交換結合すると共に
前記第1磁性層に比して保磁力が高く,キュリー温度が
低い第2 の磁性層,3 は半導体レーザー,4 はハーフプ
リズム,5 は偏光ビームスプリッター,6, 7はフォトダ
イオード(PINフォト),8 は差動増幅器、10は記
録媒体からの再生情報と記録媒体に記録されるはずであ
る記録情報との確認を行うコンパレ−タである。
1 is a schematic diagram showing an example of a magneto-optical recording system according to the present invention. In FIG. 1, reference numeral 1 denotes a coil for applying an external magnetic field to a recording medium, the magnetic field of which is modulated according to recording information by a modulation circuit (not shown). 2 is a recording medium,
21 has a low coercive force at room temperature and a high Curie temperature.
1 magnetic layer, 22 is a second magnetic layer which exchange-couples with the first magnetic layer and has a higher coercive force and a lower Curie temperature than the first magnetic layer, 3 is a semiconductor laser, and 4 is a half prism , 5 is a polarization beam splitter, 6 and 7 are photodiodes (PIN photo), 8 is a differential amplifier, and 10 is a comparator for confirming the reproduction information from the recording medium and the recording information to be recorded on the recording medium. -It is.

【0015】次に本発明の動作原理を説明する。Next, the operating principle of the present invention will be described.

【0016】不図示のスピンドルモ−タによって回転し
ている記録媒体2 に一定強度のレーザービームA(強度
は記録媒体2の回転速度を考慮して、記録媒体2に照射
した際に、第2磁性層をキュリ−温度近傍に昇温せしめ
る程度に予め設定されている。)を照射すると,レ−ザ
ビ−ムAの照射されている記録媒体の部分の温度が上昇
し,キュリー温度が低い第2 の磁性層22の磁化が消失す
る。しかし,第1 の磁性層21は第1磁性層22よりキュ
リー温度が高いので,磁化は残ったままである。第2 の
磁性層の磁化が消失すると,第1 の磁性層と第2 の磁性
層の間の交換結合が働かなくなり,第1 の磁性層は本来
の小さな保磁力になる(交換結合が働いていると第1磁
性層の保持力は見掛け上大きくなる。)。そして,その
状態で記録情報に応じて磁界の方向を変調されたコイル
1 による外部磁界を記録媒体に印加すると第1 の磁性層
の磁化がその磁界の方向にならわされて情報の記録が行
われる。
A laser beam A having a constant intensity is applied to the recording medium 2 which is being rotated by a spindle motor (not shown). Is set so that the magnetic layer is heated to near the Curie temperature. The magnetization of the second magnetic layer 22 disappears. However, since the Curie temperature of the first magnetic layer 21 is higher than that of the first magnetic layer 22, the magnetization remains. When the magnetization of the second magnetic layer disappears, the exchange coupling between the first magnetic layer and the second magnetic layer does not work, and the first magnetic layer becomes the original small coercive force (the exchange coupling works. If so, the coercive force of the first magnetic layer is apparently increased.). Then, in that state, a coil whose magnetic field direction is modulated according to the recorded information
When an external magnetic field of 1 is applied to the recording medium, the magnetization of the first magnetic layer is aligned with the direction of the magnetic field to record information.

【0017】この第1の磁性層の磁化方向は,記録媒体
2に照射したレ−ザビ−ムAの反射光Bの磁気光学効果
(カ−効果若しくはファラデ−効果)の変化としてフォ
トダイオ−ド6、7によってリアルタイムで検出され
る。具体的には、コイル1の磁界印加位置に照射された
レ−ザビ−ムAは記録媒体2から反射しハ−フプリズム
4、偏向ビ−ムスプリッタ5を介してフォトダイオード
6, 7に入射される。そして、フォトダイオード6, 7の出
力が,差動増幅器8 に入力され差動増幅されることによ
って再生信号が取り出される。そして、再生信号はコン
パレ−タ10で記録情報と比較され、再生信号が記録情
報と一致しなければ一連の記録情報を記録媒体上の同じ
場所若しくは違う場所に再記録する。もし、再生信号が
記録情報と一致すれば再記録は行わない。尚、上記再記
録は一連の情報の記録が終わってからでも再生信号が記
録情報と一致しないことを検知してから直ちにでも構わ
ない。このように、記録媒体の欠陥,劣化,腐食,ある
いは,ゴミ,光磁気記録装置の故障等により正しく記録
が行なえない場合には,再生信号が異常になるので,記
録の確認をすることができる。
The magnetization direction of the first magnetic layer is a photo diode as a change in the magneto-optical effect (Carr effect or Faraday effect) of the reflected light B of the laser beam A irradiated on the recording medium 2. 6, 7, detected in real time. Specifically, the laser beam A irradiated on the magnetic field application position of the coil 1 is reflected from the recording medium 2 and passes through the half prism 4 and the deflecting beam splitter 5 to the photodiode.
It is incident on 6, 7. Then, the outputs of the photodiodes 6 and 7 are input to the differential amplifier 8 and differentially amplified, so that the reproduction signal is extracted. Then, the reproduced signal is compared with the recorded information by the comparator 10, and if the reproduced signal does not match the recorded information, a series of recorded information is re-recorded at the same location or a different location on the recording medium. If the reproduced signal matches the recorded information, re-recording is not performed. The re-recording may be performed immediately after detecting that the reproduced signal does not match the recorded information even after the recording of the series of information is completed. As described above, if the recording cannot be performed correctly due to the defect, deterioration, corrosion of the recording medium, the dust, the failure of the magneto-optical recording device, etc., the reproduction signal becomes abnormal, so that the recording can be confirmed. .

【0018】次に、本発明において,保磁力が低く,キ
ュリー温度が高い第1の磁性層と,保磁力が高く,キュ
リー温度が低い第2 の磁性層からなる交換結合した磁性
層を有する記録媒体を用いる理由を次に説明する。図2
は,室温において保磁力が高く,キュリー温度が低い通
常の磁性体を単層で記録媒体として用いた場合について
示している。記録媒体2'にレーザービームAを照射する
と,媒体の温度が上昇し,磁性層の磁化が消失する。こ
の場合レ−ザビ−ムAの記録媒体2’からの反射光Bは
レ−ザビ−ム照射位置の磁化が消失しているために磁気
光学効果を受けていない。即ち、再生信号はほとんど変
化しない(レーザービームの裾からの反射光によってご
く僅かに変化する)。従って,通常の磁性体を単層で記
録媒体として用いた場合には,記録のために記録媒体の
記録位置に照射したレ−ザビ−ムAの反射光Bによって
記録の確認をすることができない。
Next, in the present invention, a recording having an exchange-coupled magnetic layer consisting of a first magnetic layer having a low coercive force and a high Curie temperature and a second magnetic layer having a high coercive force and a low Curie temperature. The reason for using the medium will be described below. Figure 2
Shows the case where a single layer of a normal magnetic material having a high coercive force and a low Curie temperature at room temperature is used as a recording medium. When the recording medium 2'is irradiated with the laser beam A, the temperature of the medium rises and the magnetization of the magnetic layer disappears. In this case, the reflected light B from the recording medium 2'of the laser beam A is not subjected to the magneto-optical effect because the magnetization at the irradiation position of the laser beam has disappeared. That is, the reproduction signal hardly changes (it slightly changes due to the reflected light from the skirt of the laser beam). Therefore, when an ordinary magnetic material is used as a recording medium in a single layer, the recording cannot be confirmed by the reflected light B of the laser beam A irradiated on the recording position of the recording medium for recording. ..

【0019】このため本発明を実施可能な記録媒体とし
ては,少なくとも,室温において保磁力が低く,キュリ
ー温度が高い第1 の磁性層と,該磁性層に比して保磁力
が高く,キュリー温度が低い第2 の磁性層を有し,前記
第1 の磁性層と第2 の磁性層とが交換結合していること
が必要である。又、本発明の記録媒体としては,以下の
様な種々の構成が考えられる。
Therefore, at least a first magnetic layer having a low coercive force at room temperature and a high Curie temperature at room temperature, and a coercive force higher than that of the magnetic layer and a Curie temperature can be used as a recording medium in which the present invention can be implemented. It is necessary that the first magnetic layer and the second magnetic layer are exchange-coupled with each other. The recording medium of the present invention may have the following various configurations.

【0020】(a) レーザービームが入射される透明基板
/第1 の誘電体層/第1 の磁性層/第2 の磁性層/第2
の誘電体層から構成される記録媒体 第1 の誘電体層は磁性層の保護,および/または干渉効
果により光の反射率を低くして記録感度を高めるととも
に磁気光学効果を高めて再生信号を大きくする働きをす
る。材料としては、窒化シリコン(SiN) などの誘電体が
望ましく,その屈折率と膜厚は使用するレーザーの波長
によって決められる。
(A) Transparent substrate on which a laser beam is incident / first dielectric layer / first magnetic layer / second magnetic layer / second
The first dielectric layer protects the magnetic layer and / or lowers the reflectance of light by the interference effect to increase the recording sensitivity and enhances the magneto-optical effect to reproduce the reproduced signal. It works to make it bigger. As a material, a dielectric such as silicon nitride (SiN) is desirable, and its refractive index and film thickness are determined by the wavelength of the laser used.

【0021】第1 の磁性層の膜厚はレーザービームが第
2 の磁性層に達しない程度に厚くするのが望ましいが,
厚すぎると第2 の磁性層からの交換結合の効果が小さく
なってしまうので,両者のバランスを考えて決められ
る。
The thickness of the first magnetic layer is determined by the laser beam
Although it is desirable to make it thick enough not to reach the second magnetic layer,
If it is too thick, the effect of exchange coupling from the second magnetic layer will be diminished, so it can be determined in consideration of the balance between the two.

【0022】第2 の磁性層の膜厚は記録感度と磁気光学
効果のバランスから決められる。
The thickness of the second magnetic layer is determined by the balance between recording sensitivity and magneto-optical effect.

【0023】第2 の誘電体層は磁性層の保護をするが,
その必要がない場合には設けなくても良い。
The second dielectric layer protects the magnetic layer,
If it is not necessary, it may not be provided.

【0024】(b) レーザービームが入射される透明基板
/第1 の誘電体層/第1 の磁性層/第2 の磁性層/第2
の誘電体層/金属層から構成される記録媒体 上述の構成(a) において,第2 の誘電体層の上に金属層
を設け,金属層による熱伝導により記録媒体の記録面の
面内方向における熱応答性を改善したものである。この
場合には,第2 の誘電体層は,磁性層と金属層の間の熱
的な絶縁層として働く。絶縁層が要らない場合には設け
なくても良いし,また,金属層を保護する目的で金属層
の上に第3 の誘電体層を設けても良い。
(B) Transparent substrate on which the laser beam is incident / first dielectric layer / first magnetic layer / second magnetic layer / second
Recording medium composed of the dielectric layer / metal layer of the above, in the above-mentioned configuration (a), a metal layer is provided on the second dielectric layer, and heat conduction by the metal layer causes an in-plane direction of the recording surface of the recording medium. The thermal responsiveness in the is improved. In this case, the second dielectric layer acts as a thermal insulating layer between the magnetic layer and the metal layer. It may be omitted if an insulating layer is not needed, or a third dielectric layer may be provided on the metal layer for the purpose of protecting the metal layer.

【0025】(c) レーザービームが入射される透明基板
/第1 の誘電体層/薄い第1 の磁性層/薄い第2 の磁性
層/第2 の誘電体層/金属層から構成される記録媒体 構成(b) において,第1 の磁性層と第2 の磁性層を薄く
し,レーザービームが第1 の磁性層,第2 の磁性層を通
過して金属層にまで達するようにしたものである。この
記録媒体の記録時における磁気光学効果は,第2 の磁性
層の磁気光学効果の消失の影響を受けて,構成(a), (b)
に比べて小さくなるが(磁性層が単層の場合に比べれば
まだかなり大きい), 記録感度が改善される効果があ
る。
(C) Recording composed of transparent substrate on which laser beam is incident / first dielectric layer / thin first magnetic layer / thin second magnetic layer / second dielectric layer / metal layer In the medium structure (b), the first magnetic layer and the second magnetic layer are thinned so that the laser beam reaches the metal layer through the first magnetic layer and the second magnetic layer. is there. The magneto-optical effect at the time of recording on this recording medium is affected by the disappearance of the magneto-optical effect of the second magnetic layer, and the structure (a), (b)
Although it is smaller than (compared to the case where the magnetic layer is a single layer), it has the effect of improving recording sensitivity.

【0026】上記本発明の第1 の磁性層としては,希土
類−鉄族非晶質合金,例えば,Gd-Fe-Co, Tb-Fe-Co, Dy
- Fe-Co, Gd-Tb-Fe-Co, Gd-Dy-Fe-Co, Tb-Dy-Fe-Co, Nd
-Fe-Co, Nd-Gd-Fe-Co, Nd-Tb-Fe-Co, Nd-Dy-Fe-Co, あ
るいは,白金族−鉄族周期構造膜,例えば,Pt/Co, 第2
の磁性層としては,希土類−鉄族非晶質合金,例え
ば,Tb-Fe-Co, Dy-Fe-Co, Tb-Dy-Fe-Co などが望まし
い。
As the first magnetic layer of the present invention, a rare earth-iron group amorphous alloy such as Gd-Fe-Co, Tb-Fe-Co, Dy is used.
-Fe-Co, Gd-Tb-Fe-Co, Gd-Dy-Fe-Co, Tb-Dy-Fe-Co, Nd
-Fe-Co, Nd-Gd-Fe-Co, Nd-Tb-Fe-Co, Nd-Dy-Fe-Co, or platinum group-iron group periodic structure film, eg Pt / Co, second
The magnetic layer is preferably a rare earth-iron group amorphous alloy, such as Tb-Fe-Co, Dy-Fe-Co, Tb-Dy-Fe-Co.

【0027】第1 の磁性層の保磁力は1 kOe 程度以下が
望ましい。また,第2 の磁性層の保磁力は数kOe 以上,
望ましくは5kOe 以上,より望ましくは10 kOe以上に設
定される。
The coercive force of the first magnetic layer is preferably about 1 kOe or less. The coercive force of the second magnetic layer is more than a few kOe,
It is preferably set to 5 kOe or more, more preferably 10 kOe or more.

【0028】第1 の磁性層のキュリー温度は200 ℃以
上,より望ましくは300 ℃以上,第2の磁性層のキュリ
ー温度は200 ℃以下が望ましい。
The Curie temperature of the first magnetic layer is preferably 200 ° C. or higher, more preferably 300 ° C. or higher, and the Curie temperature of the second magnetic layer is preferably 200 ° C. or lower.

【0029】第1 の磁性層と第2 の磁性層にはCr, Al,
Ti, Pt, Nbなどの耐食性改善のための元素添加を行なっ
ても良い。添加量としては,全体に対して,1 atm.% か
ら10atm.%程度,望ましくは2 atm.% から6 atm.% 程度
が良い。このときCrなどの磁気光学効果を低下させるよ
うな元素を添加する場合には,第1 の磁性層には多量の
Coと少量のCrを添加し,第2の磁性層には少量のCoと多
量のCrを添加すると良い。
For the first magnetic layer and the second magnetic layer, Cr, Al,
Elements such as Ti, Pt, and Nb may be added to improve the corrosion resistance. The amount of addition is about 1 atm.% To 10 atm.%, Preferably about 2 atm.% To 6 atm.%. At this time, when adding an element such as Cr that deteriorates the magneto-optical effect, a large amount of the first magnetic layer is added.
It is advisable to add Co and a small amount of Cr, and add a small amount of Co and a large amount of Cr to the second magnetic layer.

【0030】次に、本発明の記録媒体の各磁性層の磁化
反転磁界の温度依存性について述べる。
Next, the temperature dependence of the magnetization reversal magnetic field of each magnetic layer of the recording medium of the present invention will be described.

【0031】以下の例では,Gd-Fe-Co-Cr は,Gdターゲ
ットとFe68Co29Cr3 ターゲットを用いた同時スパッタ法
により,Tb-Fe-Co-Cr は,TbターゲットとFe83Co12Cr5
ターゲットを用いた同時スパッタ法により作製した。
In the following example, Gd-Fe-Co-Cr was produced by the co-sputtering method using a Gd target and Fe 68 Co 29 Cr 3 target, and Tb-Fe-Co-Cr was produced by the Tb target and Fe 83 Co. 12 Cr 5
It was manufactured by the co-sputtering method using a target.

【0032】Tb-Fe-Co-Cr 層のキュリー温度は約190 ℃
程度,Gd-Fe-Co-Cr 層のキュリー温度は推定300 ℃以上
である。
The Curie temperature of the Tb-Fe-Co-Cr layer is about 190 ° C.
The Curie temperature of the Gd-Fe-Co-Cr layer is estimated to be 300 ° C or higher.

【0033】図3には,第1 の誘電体層SiN(屈折率2.2
5,膜厚516 A)/第1 の磁性層Gd-Fe-Co-Cr (Fe-Co副格
子磁化優勢,飽和磁化100 emu/cm3, 膜厚400 A)/第2
の磁性層Tb-Fe-Co-Cr (Fe-Co副格子磁化優勢,飽和磁化
100 emu/cm3, 膜厚400 A)/第2の誘電体層SiN(屈折率2.
25,膜厚700 A)からなる記録媒体 (前記構成(a))の各磁
性層の磁化反転磁界の温度依存性を示す。ここで,△は
Tb-Fe-Co-Cr 層の磁化反転磁界,●はGd-Fe-Co-Cr 層の
磁化反転磁界である。
In FIG. 3, the first dielectric layer SiN (refractive index 2.2
5, thickness 516 A) / first magnetic layer Gd-Fe-Co-Cr (Fe-Co sublattice magnetization dominant, saturation magnetization 100 emu / cm 3 , thickness 400 A) / second
Magnetic layer of Tb-Fe-Co-Cr (Fe-Co sublattice magnetization dominant, saturation magnetization
100 emu / cm 3 , film thickness 400 A) / second dielectric layer SiN (refractive index 2.
25 shows the temperature dependence of the magnetization reversal field of each magnetic layer of the recording medium (25 (thickness: 700 A)) (structure (a)). Where △ is
The magnetization reversal field of the Tb-Fe-Co-Cr layer, ● is the magnetization reversal field of the Gd-Fe-Co-Cr layer.

【0034】Fe-Co 副格子磁化優勢,飽和磁化100 emu/
cm3 のGd-Fe-Co-Cr 膜は,よく知られているように,そ
の保磁力は単独では数10 Oe 程度しかない。図3に示す
ように,Tb-Fe-Co- Cr層と交換結合することによって,
Gd-Fe-Co-Cr 層の磁化反転磁界は数kOe 程度に上昇して
いる。温度が上昇してTb-Fe-Co-Cr のキュリー温度に近
づくと,Tb-Fe-Co-Cr 層とGd- Fe-Co-Cr層の磁化反転磁
界が低下していく。Tb-Fe-Co-Cr がキュリー温度に達す
ると,Tb-Fe-Co-Cr 層の磁化が消失し、Gd-Fe-Co-Cr 層
にTb-Fe-Co-Cr 層からの交換力が働かなくなり,Gd-Fe-
Co-Cr 層の磁化反転磁界は本来の小さなものとなる。即
ち、この状態で外部磁化により容易に磁化の反転が可能
となる。
Fe-Co sublattice magnetization dominance, saturation magnetization 100 emu /
As well known, the coercive force of a cm 3 Gd-Fe-Co-Cr film is only several tens Oe by itself. As shown in Fig. 3, by exchange coupling with the Tb-Fe-Co-Cr layer,
The magnetization reversal field of the Gd-Fe-Co-Cr layer rises to several kOe. As the temperature rises and approaches the Curie temperature of Tb-Fe-Co-Cr, the magnetization reversal field of the Tb-Fe-Co-Cr and Gd-Fe-Co-Cr layers decreases. When Tb-Fe-Co-Cr reaches the Curie temperature, the magnetization of the Tb-Fe-Co-Cr layer disappears and the exchange force from the Tb-Fe-Co-Cr layer to the Gd-Fe-Co-Cr layer disappears. Stop working, Gd-Fe-
The magnetization reversal field of the Co-Cr layer becomes small originally. That is, in this state, the magnetization can be easily reversed by the external magnetization.

【0035】このような磁性材料を用いることにより,
本願発明の光磁気記録方式を実現できる。
By using such a magnetic material,
The magneto-optical recording method of the present invention can be realized.

【0036】図4には,他の例として,第1 の誘電体層
SiN(屈折率2.25,膜厚516 A)/第1の磁性層Gd-Fe-Co-Cr
(Fe-Co 副格子磁化優勢,飽和磁化100 emu/cm3, 膜厚40
0 A)/第2 の磁性層Tb-Fe-Co-Cr(飽和磁化0 emu/cm3,
膜厚400 A)/第2 の誘電体層SiN(屈折率2.25,膜厚700
A)からなる記録媒体の各磁性層の磁化反転磁界の温度依
存性を示す。
FIG. 4 shows another example of the first dielectric layer.
SiN (refractive index 2.25, film thickness 516 A) / first magnetic layer Gd-Fe-Co-Cr
(Fe-Co sublattice magnetization dominant, saturation magnetization 100 emu / cm 3 , film thickness 40
0 A) / second magnetic layer Tb-Fe-Co-Cr (saturation magnetization 0 emu / cm 3 ,
Thickness 400 A) / 2nd dielectric layer SiN (refractive index 2.25, thickness 700
The temperature dependence of the magnetization reversal magnetic field of each magnetic layer of the recording medium composed of A) is shown.

【0037】図5には,他の例として,第1 の誘電体層
SiN(屈折率2.25,膜厚516 A)/第1の磁性層Gd-Fe-Co-Cr
(Fe-Co 副格子磁化優勢,飽和磁化100 emu/cm3, 膜厚40
0 A)/第2 の磁性層Tb-Fe-Co-Cr(Tb副格子磁化優勢,飽
和磁化100 emu/cm3, 膜厚400 A)/第2 の誘電体層SiN
(屈折率2.25,膜厚700 A)からなる記録媒体の各磁性層
の磁化反転磁界の温度依存性を示す。
FIG. 5 shows another example of the first dielectric layer.
SiN (refractive index 2.25, film thickness 516 A) / first magnetic layer Gd-Fe-Co-Cr
(Fe-Co sublattice magnetization dominant, saturation magnetization 100 emu / cm 3 , film thickness 40
0 A) / second magnetic layer Tb-Fe-Co-Cr (Tb sublattice magnetization dominant, saturation magnetization 100 emu / cm 3 , film thickness 400 A) / second dielectric layer SiN
The temperature dependence of the magnetization reversal field of each magnetic layer of the recording medium (refractive index 2.25, film thickness 700 A) is shown.

【0038】図6には,他の例として,第1 の誘電体層
SiN(屈折率2.25,膜厚516 A)/第1の磁性層Gd-Fe-Co-Cr
(Fe-Co 副格子磁化優勢,飽和磁化100 emu/cm3, 膜厚40
0 A)/第2 の磁性層Tb-Fe-Co-Cr(Tb副格子磁化優勢,飽
和磁化200 emu/cm3, 膜厚400 A)/第2 の誘電体層SiN
(屈折率2.25,膜厚700 A)からなる記録媒体の各磁性層
の磁化反転磁界の温度依存性を示す。
FIG. 6 shows another example of the first dielectric layer.
SiN (refractive index 2.25, film thickness 516 A) / first magnetic layer Gd-Fe-Co-Cr
(Fe-Co sublattice magnetization dominant, saturation magnetization 100 emu / cm 3 , film thickness 40
0 A) / second magnetic layer Tb-Fe-Co-Cr (Tb sublattice magnetization dominant, saturation magnetization 200 emu / cm 3 , film thickness 400 A) / second dielectric layer SiN
The temperature dependence of the magnetization reversal field of each magnetic layer of the recording medium (refractive index 2.25, film thickness 700 A) is shown.

【0039】図7には,他の例として,第1 の誘電体層
SiN(屈折率2.25,膜厚516 A)/第1の磁性層Gd-Fe-Co-Cr
(Fe-Co 副格子磁化優勢,飽和磁化50 emu/cm3, 膜厚400
A)/第2 の磁性層Tb-Fe-Co-Cr(Tb副格子磁化優勢,飽
和磁化100 emu/cm3, 膜厚400A)/第2 の誘電体層SiN(屈
折率2.25,膜厚700 A)からなる記録媒体の各磁性層の磁
化反転磁界の温度依存性を示す。
FIG. 7 shows another example of the first dielectric layer.
SiN (refractive index 2.25, film thickness 516 A) / first magnetic layer Gd-Fe-Co-Cr
(Fe-Co sublattice magnetization dominant, saturation magnetization 50 emu / cm 3 , film thickness 400
A) / second magnetic layer Tb-Fe-Co-Cr (Tb sublattice magnetization dominant, saturation magnetization 100 emu / cm 3 , film thickness 400A) / second dielectric layer SiN (refractive index 2.25, film thickness 700 The temperature dependence of the magnetization reversal magnetic field of each magnetic layer of the recording medium composed of A) is shown.

【0040】図8には,他の例として,第1 の誘電体層
SiN(屈折率2.25,膜厚516 A)/第1の磁性層Gd-Fe-Co-Cr
(Fe-Co 副格子磁化優勢,飽和磁化150 emu/cm3, 膜厚4
00A)/第2 の磁性層Tb-Fe-Co-Cr(Tb副格子磁化優勢,飽
和磁化100 emu/cm3, 膜厚400 A)/第2 の誘電体層SiN
(屈折率2.25,膜厚700 A)からなる記録媒体の各磁性層
の磁化反転磁界の温度依存性を示す。
FIG. 8 shows another example of the first dielectric layer.
SiN (refractive index 2.25, film thickness 516 A) / first magnetic layer Gd-Fe-Co-Cr
(Fe-Co sublattice magnetization dominant, saturation magnetization 150 emu / cm 3 , film thickness 4
00A) / second magnetic layer Tb-Fe-Co-Cr (Tb sublattice magnetization dominant, saturation magnetization 100 emu / cm 3 , film thickness 400 A) / second dielectric layer SiN
The temperature dependence of the magnetization reversal field of each magnetic layer of the recording medium (refractive index 2.25, film thickness 700 A) is shown.

【0041】次に、各磁性層の磁気光学効果の温度依存
性について述べる。
Next, the temperature dependence of the magneto-optical effect of each magnetic layer will be described.

【0042】以下の例では,Gd-Fe-Co-Cr は,Gd50Co50
ターゲットとFe93Co4Cr3ターゲットを用いた同時スパッ
タ法により,Tb-Fe-Co-Cr は,TbターゲットとFe93Co4C
r3ターゲットを用いた同時スパッタ法により作製した。
In the following example, Gd-Fe-Co-Cr is used as Gd 50 Co 50
The target and Fe 93 Co 4 Cr 3 simultaneous sputtering method using a target, Tb-Fe-Co-Cr is, Tb target and Fe 93 Co 4 C
It was manufactured by the co-sputtering method using an r 3 target.

【0043】Tb-Fe-Co-Cr 層のキュリー温度は約160 ℃
程度,Gd-Fe-Co-Cr 層のキュリー温度は推定300 ℃以上
である。
The Curie temperature of the Tb-Fe-Co-Cr layer is about 160 ° C.
The Curie temperature of the Gd-Fe-Co-Cr layer is estimated to be 300 ° C or higher.

【0044】本願発明の光磁気記録方式に用いられる記
録媒体では,磁性層の磁化反転磁界の温度変化とともに
その磁気光学効果の温度変化も重要である。
In the recording medium used in the magneto-optical recording method of the present invention, not only the temperature change of the magnetization reversal magnetic field of the magnetic layer but also the temperature change of the magneto-optical effect thereof are important.

【0045】第1 の誘電体層SiN(屈折率2.3, 膜厚750
A)/第1 の磁性層Gd-Fe-Co-Cr(Fe-Co 副格子磁化優勢,
飽和磁化100 emu/cm3, 膜厚300A)/第2 の磁性層Tb-Fe-
Co-Cr(Fe-Co 副格子磁化優勢,飽和磁化200 emu/cm3,
膜厚500 A)/第2 の誘電体層SiN(屈折率2.3, 膜厚700
A)からなる記録媒体 (前記構成(a))の磁気光学効果の温
度依存性を図9に示す。ここで,R は光の強度反射
率,αはα = (θK 2+γK 2)1/2K :カー回転角,γ
K :カー楕円率)である。
The first dielectric layer SiN (refractive index 2.3, film thickness 750
A) / first magnetic layer Gd-Fe-Co-Cr (Fe-Co sublattice magnetization dominant,
Saturation magnetization 100 emu / cm 3 , film thickness 300A) / second magnetic layer Tb-Fe-
Co-Cr (Fe-Co sublattice magnetization dominant, saturation magnetization 200 emu / cm 3 ,
Thickness 500 A) / 2nd dielectric layer SiN (refractive index 2.3, thickness 700
FIG. 9 shows the temperature dependence of the magneto-optical effect of the recording medium (A) having the constitution (a). Where R is the light intensity reflectance, α is α = (θ K 2 + γ K 2 ) 1/2K : Kerr rotation angle, γ
K : Kerr ellipticity).

【0046】比較のために,第1 の誘電体層SiN(屈折率
2.3, 膜厚750 A)/磁性層Tb-Fe-Co-Cr(Fe- Co副格子磁
化優勢,飽和磁化200 emu/cm3, 膜厚800 A)/第2 の誘
電体層SiN(屈折率2.3,膜厚700 A)からなる記録媒体の磁
気光学効果の温度依存性を図9に示す。ではTb- Fe
-Co-Crのキュリー温度約160 ℃に向かってRαが単調に
減少していき,キュリー温度(すなわち記録温度)で R
αが0 となっている。このような媒体では,図2に示す
ように記録時に,記録用の光ビームの反射光を用いて記
録の確認を行なうことができない。
For comparison, the first dielectric layer SiN (refractive index
2.3, thickness 750 A) / magnetic layer Tb-Fe-Co-Cr (Fe-Co sublattice magnetization dominant, saturation magnetization 200 emu / cm 3 , thickness 800 A) / second dielectric layer SiN (refractive index Fig. 9 shows the temperature dependence of the magneto-optical effect of a recording medium having a thickness of 2.3 and a film thickness of 700 A). Then Tb-Fe
-The Rα decreases monotonically toward the Curie temperature of Co-Cr of about 160 ℃, and the R
α is 0. In such a medium, it is impossible to confirm the recording by using the reflected light of the recording light beam as shown in FIG.

【0047】他の例として,第1 の誘電体層SiN(屈折率
2.0, 膜厚1020 A) /第1 の磁性層Gd-Fe-Co-Cr(Fe-Co
副格子磁化優勢,飽和磁化100 emu/cm3, 膜厚100 A)/
第2の磁性層Tb-Fe-Co-Cr(Fe-Co 副格子磁化優勢,飽和
磁化200 emu/cm3, 膜厚100A)/第2 の誘電体層SiN(屈
折率2.0, 膜厚300 A)/金属層Al-Cr(膜厚450 A)からな
る記録媒体 (前記構成(c))の磁気光学効果の温度依存性
を図9に示す。
As another example, the first dielectric layer SiN (refractive index
2.0, thickness 1020 A) / first magnetic layer Gd-Fe-Co-Cr (Fe-Co
Sublattice magnetization dominant, saturation magnetization 100 emu / cm 3 , film thickness 100 A) /
2nd magnetic layer Tb-Fe-Co-Cr (Fe-Co sublattice magnetization dominant, saturation magnetization 200 emu / cm 3 , film thickness 100A) / 2nd dielectric layer SiN (refractive index 2.0, film thickness 300 A ) / Metal layer Al—Cr (film thickness 450 A), the temperature dependence of the magneto-optical effect of the recording medium (the above-mentioned structure (c)) is shown in FIG.

【0048】図9の比較のために,第1 の誘電体層Si
N(屈折率2.0, 膜厚1020 A) /磁性層Tb- Fe-Co-Cr(Fe-
Co副格子磁化優勢,飽和磁化200 emu/cm3,膜厚200 A)/
第2 の誘電体層SiN(屈折率2.0, 膜厚300 A)/金属層Al
-Cr(膜厚450 A)からなる記録媒体の磁気光学効果の温度
依存性を図9に示す。やはり,キュリー温度(すなわ
ち記録温度)で Rαが0 となり,本願発明を達成できな
い。
For comparison of FIG. 9, the first dielectric layer Si
N (refractive index 2.0, film thickness 1020 A) / magnetic layer Tb- Fe-Co-Cr (Fe-
Co sublattice magnetization dominant, saturation magnetization 200 emu / cm 3 , film thickness 200 A) /
Second dielectric layer SiN (refractive index 2.0, film thickness 300 A) / metal layer Al
FIG. 9 shows the temperature dependence of the magneto-optical effect of the recording medium made of -Cr (film thickness 450 A). After all, Rα becomes 0 at the Curie temperature (that is, the recording temperature), and the present invention cannot be achieved.

【0049】他の例として,第1 の誘電体層SiN(屈折率
2.3, 膜厚940 A)/第1 の磁性層Gd-Fe-Co- Cr(Fe-Co副
格子磁化優勢,飽和磁化150 emu/cm3,膜厚100 A)/第2
の磁性層Tb-Fe-Co- Cr(Fe-Co副格子磁化優勢,飽和磁化
200 emu/cm3, 膜厚200 A)/第2 の誘電体層SiN(屈折率
2.3, 膜厚300 A)/金属層Al-Cr(膜厚450 A)からなる記
録媒体 (前記構成(c))の磁気光学効果の温度依存性を図
9に示す。
As another example, the first dielectric layer SiN (refractive index
2.3, thickness 940 A) / first magnetic layer Gd-Fe-Co-Cr (Fe-Co sublattice magnetization dominant, saturation magnetization 150 emu / cm 3 , thickness 100 A) / second
Magnetic layer Tb-Fe-Co-Cr (Fe-Co sublattice magnetization dominant, saturation magnetization
200 emu / cm 3 , film thickness 200 A) / second dielectric layer SiN (refractive index
FIG. 9 shows the temperature dependence of the magneto-optical effect of a recording medium (2.3 (thickness: 300 A) / metal layer: Al—Cr (thickness: 450 A) (structure (c)).

【0050】以上の様に本発明で適用可能な光磁気記録
媒体の層構成は少なくとも,室温において保磁力が低
く,キュリー温度が高い第1 の磁性層と,該磁性層に比
して保磁力が高く,キュリー温度が低い第2 の磁性層を
有し,前記第1 の磁性層と第2の磁性層とが交換結合し
ているものであることが分かる。
As described above, at least the layer structure of the magneto-optical recording medium applicable to the present invention has the coercive force lower than that of the first magnetic layer having a low coercive force and a high Curie temperature at room temperature. It has a second magnetic layer having a high temperature and a low Curie temperature, and it can be seen that the first magnetic layer and the second magnetic layer are exchange-coupled.

【0051】[実験例]図9の記録媒体を用いて,図
1に示す方法により実験を行なった。
[Experimental Example] An experiment was conducted by the method shown in FIG. 1 using the recording medium of FIG.

【0052】レーザー波長780 nm,レンズ開口数0.53の
評価機を用いて,基板回転数1800 rpm,ディスク半径32
mm の場所に,レーザーパワー5 mWで3 MHz の信号を記
録した。その後,1 MHz の信号を記録しながら,その反
射光を検出し観察したところ,図10に示すような信号
が得られた。3 MHz の信号が混入しているものの1 MHz
の信号がきれいに再生されているのが分かる。
Using an evaluation machine with a laser wavelength of 780 nm and a lens numerical aperture of 0.53, the substrate rotation speed was 1800 rpm and the disk radius was 32.
A 3 MHz signal was recorded at a location of mm with a laser power of 5 mW. After that, while recording the 1 MHz signal and detecting and observing the reflected light, a signal as shown in FIG. 10 was obtained. 1 MHz although 3 MHz signal is mixed
You can see that the signal of is reproduced neatly.

【0053】次に,1 MHz の信号を記録した後,3 MHz
の信号を記録しながら,その反射光を検出し観察したと
ころ,図11に示すような信号が得られた。1 MHz の信
号が混在しているものの3 MHz の信号がきれいに再生さ
れているのが分かる。
Next, after recording a 1 MHz signal, 3 MHz
When the reflected light was detected and observed while recording the signal of 1, the signal as shown in FIG. 11 was obtained. It can be seen that the signal of 3 MHz is reproduced cleanly although the signal of 1 MHz is mixed.

【0054】[0054]

【発明の効果】以上のように、本発明は少なくとも,室
温において保磁力が低く,キュリー温度が高い第1 の磁
性層と,該磁性層に比して保磁力が高く,キュリー温度
が低い第2 の磁性層を有し,前記第1 の磁性層と第2 の
磁性層とが交換結合している記録媒体を用いて,記録時
に,記録用の光ビームの反射光を用いることにより,従
来の光学系を用いて記録の確認を行なうことができる。
As described above, according to the present invention, at least the first magnetic layer having a low coercive force and a high Curie temperature at room temperature and the first magnetic layer having a high coercive force and a low Curie temperature as compared with the magnetic layer. By using a recording medium having two magnetic layers and in which the first magnetic layer and the second magnetic layer are exchange-coupled, by using the reflected light of the recording light beam, The recording can be confirmed using the optical system of.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の光磁気記録方式の一例を示している
図,
FIG. 1 is a diagram showing an example of a magneto-optical recording system of the present invention,

【図2】従来の光磁気記録方式を示している図,FIG. 2 is a diagram showing a conventional magneto-optical recording method,

【図3】本発明の光磁気記録方式に用いられる光磁気記
録媒体の磁化反転磁界の温度依存性の一例を示す図。
FIG. 3 is a diagram showing an example of temperature dependence of a magnetization reversal magnetic field of a magneto-optical recording medium used in the magneto-optical recording method of the present invention.

【図4】本発明の光磁気記録方式に用いられる光磁気記
録媒体の磁化反転磁界の温度依存性の他の例を示す図。
FIG. 4 is a diagram showing another example of the temperature dependence of the magnetization reversal field of the magneto-optical recording medium used in the magneto-optical recording method of the present invention.

【図5】本発明の光磁気記録方式に用いられる光磁気記
録媒体の磁化反転磁界の温度依存性の他の例を示す図。
FIG. 5 is a diagram showing another example of the temperature dependence of the magnetization reversal magnetic field of the magneto-optical recording medium used in the magneto-optical recording method of the present invention.

【図6】本発明の光磁気記録方式に用いられる光磁気記
録媒体の磁化反転磁界の温度依存性の他の例を示す図。
FIG. 6 is a diagram showing another example of the temperature dependence of the magnetization reversal magnetic field of the magneto-optical recording medium used in the magneto-optical recording method of the present invention.

【図7】本発明の光磁気記録方式に用いられる光磁気記
録媒体の磁化反転磁界の温度依存性の他の例を示す図。
FIG. 7 is a diagram showing another example of the temperature dependence of the magnetization reversal magnetic field of the magneto-optical recording medium used in the magneto-optical recording method of the present invention.

【図8】本発明の光磁気記録方式に用いられる光磁気記
録媒体の磁化反転磁界の温度依存性の他の例を示す図。
FIG. 8 is a diagram showing another example of the temperature dependence of the magnetization reversal field of the magneto-optical recording medium used in the magneto-optical recording method of the present invention.

【図9】本発明の光磁気記録方式に用いられる光磁気記
録媒体と他の光磁気記録媒体の磁気光学効果の温度依存
性の一例を示す図。
FIG. 9 is a diagram showing an example of temperature dependence of magneto-optical effect of a magneto-optical recording medium used in the magneto-optical recording method of the present invention and another magneto-optical recording medium.

【図10】本発明の光磁気記録方式において,記録時
に,記録用の光ビームの反射光の検出波形を示している
図である。
FIG. 10 is a diagram showing a detection waveform of reflected light of a recording light beam during recording in the magneto-optical recording method of the present invention.

【図11】本発明の光磁気記録方式において,記録時
に,記録用の光ビームの反射光の検出波形を示している
図である。
FIG. 11 is a diagram showing a detection waveform of reflected light of a recording light beam during recording in the magneto-optical recording method of the present invention.

【符号の説明】[Explanation of symbols]

1 外部磁界を印加するためのコイル 2 記録媒体 21 第1 の磁性層 22 第2 の磁性層 3 半導体レーザー 4 ハーフプリズム 5 偏光ビームスプリッター 6, 7フォトダイオード 8 差動増幅器 9 記録情報 2' 記録媒体 1 Coil for applying an external magnetic field 2 Recording medium 21 First magnetic layer 22 Second magnetic layer 3 Semiconductor laser 4 Half prism 5 Polarizing beam splitter 6, 7 Photodiode 8 Differential amplifier 9 Recording information 2'Recording medium

Claims (1)

【特許請求の範囲】 【請求項1】 室温において保磁力が低く,キュリー温
度が高い第1 の磁性層と,前記第1磁性層と交換結合す
ると共に前記第1磁性層に比して保磁力が高く,キュリ
ー温度が低い第2 の磁性層を有する光磁気記録媒体に一
定強度の光ビ−ムを照射しながら記録情報に応じて変調
された磁界を印加することにより情報の記録を行うと共
に、前記光ビームの反射光を用いて記録情報の確認を行
なうことを特徴とする光磁気記録方式。
Claim: What is claimed is: 1. A first magnetic layer having a low coercive force and a high Curie temperature at room temperature, which is exchange-coupled with the first magnetic layer and has a coercive force higher than that of the first magnetic layer. Information is recorded by applying a magnetic field modulated according to the recorded information while irradiating a magneto-optical recording medium having a second magnetic layer having a high Curie temperature and a high magnetic field with a constant intensity. A magneto-optical recording method characterized in that the recorded information is confirmed by using the reflected light of the light beam.
JP3175159A 1991-07-16 1991-07-16 Magneto-optical recording system Pending JPH0520720A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP3175159A JPH0520720A (en) 1991-07-16 1991-07-16 Magneto-optical recording system
EP97202863A EP0818783A3 (en) 1991-07-16 1992-07-14 Magneto optical recording medium and method
EP19920306408 EP0523944A3 (en) 1991-07-16 1992-07-14 Magneto optical recording medium and method
AU20308/92A AU660315B2 (en) 1991-07-16 1992-07-15 Magneto-optical recording method using a magneto-optical recording medium having two or more magnetic layers to allow recording and reproduction to be effected simultaneously and magneto-optical recording medium used in the method
CA002073924A CA2073924C (en) 1991-07-16 1992-07-15 Magneto-optical recording method using a magneto-optical recording medium having two or more magnetic layers to allow recording and reproduction to be effected simultaneously and magneto-optical recording medium used in the method
KR1019920012709A KR960016891B1 (en) 1991-07-16 1992-07-16 Magneto optical recording method
US08/257,453 US5428586A (en) 1991-07-16 1994-06-08 Magneto-optical recording method using a magneto-optical recording medium having two or more magnetic layers to allow recording and reproduction to be effected simultaneously and magneto-optical recording medium used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3175159A JPH0520720A (en) 1991-07-16 1991-07-16 Magneto-optical recording system

Publications (1)

Publication Number Publication Date
JPH0520720A true JPH0520720A (en) 1993-01-29

Family

ID=15991296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3175159A Pending JPH0520720A (en) 1991-07-16 1991-07-16 Magneto-optical recording system

Country Status (1)

Country Link
JP (1) JPH0520720A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406533A (en) * 1992-08-26 1995-04-11 Pioneer Electronic Corporation Information signal recording apparatus
US5563851A (en) * 1991-11-19 1996-10-08 Canon Kabushiki Kaisha Magneto-optical recording apparatus capable of reproducing recording information while recording
US5793713A (en) * 1995-10-19 1998-08-11 Nec Corporation Magneto-optical recording device and method for judging the recorded signals by detecting magnetization states
US5862105A (en) * 1994-03-16 1999-01-19 Canon Kabushiki Kaisha Information recording method capable of verifying recorded information simultaneously with recording, and magneto-optical recording medium used in the method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563851A (en) * 1991-11-19 1996-10-08 Canon Kabushiki Kaisha Magneto-optical recording apparatus capable of reproducing recording information while recording
US5406533A (en) * 1992-08-26 1995-04-11 Pioneer Electronic Corporation Information signal recording apparatus
US5862105A (en) * 1994-03-16 1999-01-19 Canon Kabushiki Kaisha Information recording method capable of verifying recorded information simultaneously with recording, and magneto-optical recording medium used in the method
US5793713A (en) * 1995-10-19 1998-08-11 Nec Corporation Magneto-optical recording device and method for judging the recorded signals by detecting magnetization states

Similar Documents

Publication Publication Date Title
KR960016891B1 (en) Magneto optical recording method
US4842956A (en) Opto-magnetic recording medium having three exchange-coupled magnetic layers
EP0522500B1 (en) Optical head device
US5353266A (en) Magnetooptical recording method
JP2546477B2 (en) Magneto-optical recording medium, recording / reproducing method and recording / reproducing apparatus thereof
JPH0520720A (en) Magneto-optical recording system
JP3554083B2 (en) Magneto-optical recording medium and method of recording information on the medium
US5272684A (en) Information recording method and information recording apparatus for magneto-optic recording information medium
JP3227281B2 (en) Magneto-optical disk and magneto-optical disk reproducing device
JPS5877047A (en) Magnetooptic head
JP3077848B2 (en) Magneto-optical recording medium, magneto-optical recording method, and magneto-optical reproducing method
JPS63179436A (en) Magneto-optical recording medium
JPH1139803A (en) Optical recording medium, optical recording method and optical recorder
JP3359102B2 (en) Magneto-optical recording method
JP3454955B2 (en) Magneto-optical recording medium and magneto-optical recording medium reproducing apparatus
JP3320089B2 (en) Direct verification method for magneto-optical media
JPS5819753A (en) Vertical magnetic recording medium and reproducing method of vertical magnetizing signal using said recording medium
JPS6113461A (en) Photomagnetic disk device
JPS62219203A (en) Optical modulation overwriting system for photomagnetic recording device
JP2604702B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
JPH0729229A (en) Magneto-optical disk, magneto-optical disk recording device and magneto-optical disk reproducing device
JPS6190347A (en) Photo-electromagnetic information recording/ reproducing device
JPS6196541A (en) Photo-electro-magnetic recording medium
JPH04310646A (en) Perpendicular magnetic recording medium
JPH0417140A (en) Method of magneto-optical recording/reproducing, magneto-optical recording/reproducing device and recording medium to be used therefor