JPH052070A - Azimuth/distance measuring device - Google Patents

Azimuth/distance measuring device

Info

Publication number
JPH052070A
JPH052070A JP3181973A JP18197391A JPH052070A JP H052070 A JPH052070 A JP H052070A JP 3181973 A JP3181973 A JP 3181973A JP 18197391 A JP18197391 A JP 18197391A JP H052070 A JPH052070 A JP H052070A
Authority
JP
Japan
Prior art keywords
azimuth
interrogator
pulse
signal
transponder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3181973A
Other languages
Japanese (ja)
Other versions
JP2743626B2 (en
Inventor
Masayasu Nishizaki
正康 西崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3181973A priority Critical patent/JP2743626B2/en
Publication of JPH052070A publication Critical patent/JPH052070A/en
Application granted granted Critical
Publication of JP2743626B2 publication Critical patent/JP2743626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To enable azimuth, distance, and reception state of an aircraft to be displayed at a ground station. CONSTITUTION:A transponder 11 transmits various kinds of pulses including a specific signal (a). In this case, a receiver gate (b) which is synchronized to the specific signal (a) is given to a data processor 19. In an interrogator 1, a signal processor 6 allows a specified response pulse (c) which indicates a reception state to be generated at a pulse generator 2 for response transmission. In the transponder 11, a plurality of antennas 17 (1-n) and a receiver 18 receive and process a response signal and a data processor 19 interprets and operates azimuth distance, and reception state data of the interrogator 1 according to a signal which is received during gating period of a receiver gate b, and then they are displayed at an indicator 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、航法援助装置である方
位・距離測定装置(タカン装置)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an azimuth / distance measuring device (takan device) which is a navigation assistance device.

【0002】[0002]

【従来の技術】周知のように、航法援助装置である方位
・距離測定装置(タカン装置)は、航空機に搭載される
インタロゲータと地上に設置されるトランスポンダとで
構成されるが、従来の方位・距離測定装置は、図3に示
すように、インタロゲータ31がパルス発生器32、送
信機3、受信機5、空中線4、信号処理器36及び表示
指示器7を備え、また、トランスポンダ41が空中線1
2、受信機13、送信機16、信号処理器44及びパル
ス発生器15を備え、航空機(インタロゲータ31)が
質問パルスを発して地上局(トランスポンダ41)から
方位と距離の情報を得、インタロゲータ31において距
離測定と方位測定をし(信号処理器36)、その結果を
表示指示器7に表示するよう構成される。以下、図4乃
至図9を参照して距離測定と方位測定の概要を説明す
る。
2. Description of the Related Art As is well known, an azimuth / distance measuring device (takan device) which is a navigation assistance device is composed of an interrogator mounted on an aircraft and a transponder installed on the ground. In the distance measuring device, as shown in FIG. 3, an interrogator 31 includes a pulse generator 32, a transmitter 3, a receiver 5, an antenna 4, a signal processor 36 and a display indicator 7, and a transponder 41 includes an antenna 1.
2, the receiver 13, the transmitter 16, the signal processor 44, and the pulse generator 15, and the aircraft (interrogator 31) emits an inquiry pulse to obtain information on the bearing and distance from the ground station (transponder 41), and the interrogator 31 The distance measurement and the azimuth measurement are performed at (signal processor 36), and the result is displayed on the display indicator 7. Hereinafter, the outline of the distance measurement and the direction measurement will be described with reference to FIGS. 4 to 9.

【0003】トランスポンダ41は、図4に示すような
各種のパルスを発生し送信する。まず、距離測定は次の
ようにして行う。これは、レーダの測距原理と同様であ
る。即ち、トランスポンダ41は、インタロゲータ31
からの質問パルスに対し応答パルスを送信するが、トラ
ンスポンダ41の処理時間として50μsの一定値が与
えられているので、図5に示すように、インタロゲータ
31は質問パルスを発した時間から応答パルスを受信す
るまでの時間を求め、その時間から一定値(50μs)
を差し引くことで距離を測定する。
The transponder 41 generates and transmits various pulses as shown in FIG. First, distance measurement is performed as follows. This is similar to the ranging principle of radar. That is, the transponder 41 is connected to the interrogator 31.
Although the response pulse is transmitted in response to the inquiry pulse from, the interrogator 31 transmits the response pulse from the time when the inquiry pulse is issued, as shown in FIG. 5, because the transponder 41 is given a constant value of 50 μs. Calculate the time until receiving, and from that time a constant value (50 μs)
Measure the distance by subtracting.

【0004】次いで、方位測定は、地上局から発射され
る電波のみを利用して行われる。即ち、トランスポンダ
41のパルス発生器15で作られる北方位基準パルス
(NRB)と40度方位基準パルス(ARB)とランダ
ムパルスとが信号処理器44、送信機16を通って空中
線12から放射される際に、図6及び図7に示すよう
に、15Hzと135Hzの合成波によって空間変調を
受ける。この変調パターンと北方位基準パルス(NR
B)及び40度方位基準パルス(ARB)との位置関係
は予め定められている。即ち、北方位基準パルス(NR
B)は、空間変調パターンの最大値が真東を向いた時発
射される。また、40度方位基準パルス(ARB)は、
北方位基準パルス(NRB)発射後の電気角40度毎に
空中線の1回転につき8回発射される。従って、空間変
調パターンと北方位基準パルス(NRB)及び40度方
位基準パルス(ARB)との位置関係によって方位を知
ることができる。具体的には、図8及び図9に示すよう
にして行う。なお、40度方位基準パルス(ARB)と
135Hz変調波は、北方位基準パルス(NRB)と1
5Hz変調波に対する方位精度を9倍良くするために使
用される。これは、ノギスにおけるバーニャの機能と同
じである。
Next, the azimuth measurement is performed using only the radio waves emitted from the ground station. That is, the north azimuth reference pulse (NRB), the 40-degree azimuth reference pulse (ARB), and the random pulse generated by the pulse generator 15 of the transponder 41 are radiated from the antenna 12 through the signal processor 44 and the transmitter 16. At this time, as shown in FIGS. 6 and 7, spatial modulation is performed by the combined wave of 15 Hz and 135 Hz. This modulation pattern and north direction reference pulse (NR
The positional relationship between B) and the 40-degree azimuth reference pulse (ARB) is predetermined. That is, the north direction reference pulse (NR
B) is fired when the maximum value of the spatial modulation pattern faces to the east. In addition, the 40-degree azimuth reference pulse (ARB) is
It is fired 8 times per revolution of the antenna every 40 degrees of electrical angle after the north direction reference pulse (NRB) is fired. Therefore, the azimuth can be known from the positional relationship between the spatial modulation pattern and the north azimuth reference pulse (NRB) and 40-degree azimuth reference pulse (ARB). Specifically, it is performed as shown in FIGS. 8 and 9. Note that the 40-degree azimuth reference pulse (ARB) and the 135 Hz modulated wave are equal to the north azimuth reference pulse (NRB) and 1
It is used to improve the azimuth accuracy 9 times for a 5 Hz modulated wave. This is the same as Bagna's function in the caliper.

【0005】図8と図9は、真東にいる航空機(この位
置は航空機から見ると西側、即ち、270°の位置にな
る)の受信波形と信号処理を示したものである。インタ
ロゲータ31は、図8に示す受信波形の信号から北方位
基準パルス(NRB)を選別すると共に、15Hzと1
35Hzの合成波から15Hzのみをフィルタを用いて
取りだす。そして、選別された北方位基準パルス(NR
B)信号と15Hz信号の負から正へ向かう零クロス点
までの電気角を粗方位として40°毎のセクタ指定を行
う。次に、同様にして、図8に示す受信波形の信号から
40度方位基準パルス(ARB)信号と135Hz信号
を選別し、40度方位基準パルス(ARB)信号と13
5Hz信号の負から正へ向かう零クロス点までの電気角
を求め、図9に示す要領で方位を求める。
FIGS. 8 and 9 show received waveforms and signal processing of an aircraft in the east (this position is located west of the aircraft, that is, at a position of 270 °). The interrogator 31 selects the north azimuth reference pulse (NRB) from the received waveform signal shown in FIG.
Only 15 Hz is extracted from the synthetic wave of 35 Hz by using a filter. Then, the selected north reference pulse (NR
B) Sector designation is performed every 40 ° with the electrical angle from the negative to positive zero-cross point of the signal and the 15 Hz signal as the rough azimuth. Next, in the same manner, the 40 ° azimuth reference pulse (ARB) signal and the 135 Hz signal are selected from the received waveform signal shown in FIG.
The electrical angle from the negative to the positive zero cross point of the 5 Hz signal is obtained, and the azimuth is obtained in the manner shown in FIG.

【0006】[0006]

【発明が解決しようとする課題】上述したように、従来
の方位・距離測定装置は、航空機に地上局からの方位と
距離の情報を与えることを目的として構成され、地上局
は航空機の位置及び方位を知る手段を備えていない。従
って、トランスポンダの飛行点検時に、インタロゲータ
の受信状態を確認する場合、いちいち無線で確認しなけ
ればならず面倒であり、またパイロットからのアンロッ
クの通知等の問題を迅速に処理できないという問題があ
る。
As described above, the conventional azimuth / distance measuring device is configured for the purpose of giving the aircraft information on the azimuth and distance from the ground station. It has no means of knowing the bearing. Therefore, when checking the reception status of the interrogator at the time of flight inspection of the transponder, it is troublesome to check each wirelessly, and there is a problem that it is not possible to quickly deal with problems such as unlock notification from the pilot. ..

【0007】本発明の目的は、地上局において航空機の
位置及び方位を知る手段を備えた方位・距離測定装置を
提供することにある。
An object of the present invention is to provide an azimuth / distance measuring device having means for knowing the position and azimuth of an aircraft at a ground station.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、本発明の方位・距離測定装置は次の如き構成を有す
る。即ち、本発明の方位・距離測定装置は、航空機に搭
載されるインタロゲータと地上に設置されるトランスポ
ンダとで構成される方位・距離測定装置において;前記
インタロゲータに、特定信号に対する受信状態を応答送
信する手段; を設け、前記トランスポンダに、インタ
ロゲータの前記応答送信を受信する複数の空中線及び受
信機と; 受信信号から航空機の方位と距離並びに受信
状態を解析するデータ処理器と; 解析した方位と距離
並びに受信状態を表示する指示器と; 設けたことを特
徴とするものである。
In order to achieve the above object, the azimuth / distance measuring device of the present invention has the following configuration. That is, the azimuth / distance measuring device of the present invention is an azimuth / distance measuring device including an interrogator mounted on an aircraft and a transponder installed on the ground; and transmits a reception state of a specific signal to the interrogator in response. Means; and a plurality of antennas and receivers for receiving the response transmission of the interrogator in the transponder; a data processor for analyzing the bearing and distance of the aircraft and the receiving condition from the received signal; An indicator for displaying the reception status; and the provision of the indicator.

【0009】[0009]

【作用】次に、前記の如く構成される本発明の方位・距
離測定装置の作用を説明する。本発明では、トランスポ
ンダは、インタロゲータから受信状態を示す応答信号を
得、その航空機の方位と距離、受信状態を解析作成して
表示する。従って、地上局で航空機の方位と距離を知る
ことができる。その結果、地上局の飛行点検において、
アンロック等の問題処理を迅速に決定できる。更に、航
法援助システムとしての安全性をより一層高めることが
できる。
Next, the operation of the azimuth / distance measuring device of the present invention constructed as described above will be described. In the present invention, the transponder obtains a response signal indicating the reception state from the interrogator, analyzes and creates the azimuth and distance of the aircraft, and the reception state and displays them. Therefore, the ground station can know the direction and distance of the aircraft. As a result, in the flight inspection of the ground station,
Problem handling such as unlocking can be quickly determined. Furthermore, the safety of the navigation assistance system can be further enhanced.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、本発明の一実施例に係る方位・距離測定
装置を示す。なお、従来と同一構成部分には同一符号を
付してある。本発明では、インタロゲータ1は、構成要
素的には従来と同様であるが、パルス発生器2と信号処
理器6とに若干の機能追加をし、また、トランスポンダ
11は、複数の空中線(1〜n)17と、受信機18
と、データ処理器19と、指示器20とを追加して設
け、信号処理器14からデータ処理器19に制御信号
(受信機ゲート)bを出力するようにしてある。以下、
図2を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an azimuth / distance measuring device according to an embodiment of the present invention. It should be noted that the same components as those of the related art are denoted by the same reference numerals. In the present invention, the interrogator 1 is similar in structure to the conventional one, but the pulse generator 2 and the signal processor 6 are slightly added, and the transponder 11 includes a plurality of antennas (1 to 1). n) 17 and receiver 18
The data processor 19 and the indicator 20 are additionally provided so that the signal processor 14 outputs a control signal (receiver gate) b to the data processor 19. Less than,
This will be described with reference to FIG.

【0011】トランスポンダ11では、従来と同様に、
パルス発生器15が各種のパルスaを発生し(図2
(a))、信号処理器14、送信機16を介した空中線
12から送信される。その際に、信号処理器14は、北
方位基準(NRB)パルスに同期して受信機ゲートb
(図2(b))を形成し、それをデータ処理器19に出
力する。
In the transponder 11, as in the conventional case,
The pulse generator 15 generates various pulses a (see FIG. 2).
(A)), transmitted from the antenna 12 via the signal processor 14 and the transmitter 16. At that time, the signal processor 14 synchronizes with the north reference pulse (NRB) pulse and the receiver gate b.
(FIG. 2B) is formed and is output to the data processor 19.

【0012】インタロゲータ1では、空中線4、受信機
5を介した信号処理器6で受信入力された信号中の北方
位基準(NRB)パルスを解読処理をし受信状態を判定
し、それに応じた応答パルス(図2(c))を発生させ
る指令cをパルス発生器2に送り、応答パルス(図2
(c))を発生させ、応答送信させる。ここで、応答パ
ルスとしては、図2(c)に示すように、3パルス連を
使用し、第2パルスを距離ビットに、第3パルスを方位
ビットにそれぞれ割り当てる。
The interrogator 1 decodes the north azimuth reference (NRB) pulse in the signal received and input by the signal processor 6 via the antenna 4 and the receiver 5, determines the reception state, and responds accordingly. A command c for generating a pulse (Fig. 2 (c)) is sent to the pulse generator 2, and a response pulse (Fig.
(C)) is generated and a response is transmitted. Here, as the response pulse, as shown in FIG. 2C, a series of three pulses is used, and the second pulse is assigned to the distance bit and the third pulse is assigned to the azimuth bit.

【0013】トランスポンダ11では、インタロゲータ
1からの3パルス連を複数の空中線17で受信し、受信
機18を介したデータ処理器19で受信機ゲートbを用
いて3パルス連の受信処理をしそれぞれのレベル比較を
して方位を解析する。また、データ処理器19では、北
方位基準(NRB)パルス送信後3パルス連を受信する
までの時間を求め、その時間から予め定めた処理時間を
差し引いて距離を求める。更にデータ処理器19は、受
信状態を解読し、3パルス連が受信できれば、方位及び
距離の情報は正常である旨のデータを作成し、また、2
パルス連の受信であれば距離のみ正常である旨データを
作成する。データ処理器19は、以上の方法で求めた航
空機の方位及び距離並びに受信状態データの情報dを指
示器20に出力し、表示させる。
In the transponder 11, the 3-pulse train from the interrogator 1 is received by the plurality of antennas 17, and the data processor 19 via the receiver 18 performs the reception process of the 3-pulse train using the receiver gate b. The azimuth is analyzed by comparing the levels of. Further, the data processor 19 obtains the time until the 3-pulse train is received after the north azimuth reference (NRB) pulse is transmitted, and the distance is obtained by subtracting a predetermined processing time from the time. Further, the data processor 19 decodes the reception state and, if 3 pulse trains can be received, creates data indicating that the azimuth and distance information is normal.
If pulse trains are received, data is created that only the distance is normal. The data processor 19 outputs the direction and distance of the aircraft obtained by the above method and the information d of the reception state data to the indicator 20 for display.

【0014】なお、本装置は、2次レーダと同じ原理で
あるので、その覆域は、200〜300NMであり、広
範囲の航空機の方位と距離を知ることができる。
Since this device has the same principle as that of the secondary radar, its coverage area is 200 to 300 NM, and the azimuth and distance of a wide range of aircraft can be known.

【0015】[0015]

【発明の効果】以上説明したように、本発明の方位・距
離測定装置によれば、トランスポンダは、インタロゲー
タから受信状態を示す応答信号を得、その航空機の方位
と距離、受信状態を解析作成して表示するようにしたの
で、地上局で航空機の方位と距離を知ることができる。
その結果、地上局の飛行点検において、アンロック等の
問題処理を迅速に決定できる効果がある。更に、航法援
助システムとしての安全性をより一層高めることができ
るという効果もある。
As described above, according to the azimuth / distance measuring apparatus of the present invention, the transponder obtains the response signal indicating the reception state from the interrogator, and analyzes and creates the azimuth, distance and reception state of the aircraft. Since it is displayed as, it is possible to know the direction and distance of the aircraft at the ground station.
As a result, in the flight inspection of the ground station, there is an effect that the problem handling such as unlocking can be promptly determined. Furthermore, there is an effect that the safety of the navigation assistance system can be further enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る方位・距離測定装置の
構成ブロック図である。
FIG. 1 is a configuration block diagram of an azimuth / distance measuring apparatus according to an embodiment of the present invention.

【図2】本発明の一実施例に係る方位・距離測定装置の
動作タイムチャートである。
FIG. 2 is an operation time chart of the azimuth / distance measuring device according to the embodiment of the present invention.

【図3】従来の方位・距離測定装置の構成ブロック図で
ある。
FIG. 3 is a configuration block diagram of a conventional azimuth / distance measuring device.

【図4】トランスポンダが送信する各種パルスのタイム
チャートである。
FIG. 4 is a time chart of various pulses transmitted by the transponder.

【図5】インタロゲータにおける距離測定の説明図であ
る。
FIG. 5 is an explanatory diagram of distance measurement in an interrogator.

【図6】トランスポンダ(地上局)のアンテナの放射パ
ターン図である。
FIG. 6 is a radiation pattern diagram of an antenna of a transponder (ground station).

【図7】放射パターンと基準パルス(NRB、ARB)
との関係図である。
FIG. 7 Radiation pattern and reference pulse (NRB, ARB)
FIG.

【図8】インタロゲータにおける方位測定の説明図であ
る。
FIG. 8 is an explanatory diagram of direction measurement in the interrogator.

【図9】インタロゲータにおける方位測定の説明図であ
る。
FIG. 9 is an explanatory diagram of direction measurement in the interrogator.

【符号の説明】[Explanation of symbols]

1 インタロゲータ6 信号処理器 11 トランスポンダ 17 空中線(1〜n) 18 受信機 19 データ処理器 20 指示器 1 Interrogator 6 Signal Processor 11 Transponder 17 Antenna (1 to n) 18 Receiver 19 Data Processor 20 Indicator

Claims (1)

【特許請求の範囲】 【請求項1】 航空機に搭載されるインタロゲータと地
上に設置されるトランスポンダとで構成される方位・距
離測定装置において; 前記インタロゲータに、特定信
号に対する受信状態を応答送信する手段; を設け、前
記トランスポンダに、インタロゲータの前記応答送信を
受信する複数の空中線及び受信機と;受信信号から航空
機の方位と距離並びに受信状態を解析するデータ処理器
と;解析した方位と距離並びに受信状態を表示する指示
器と; 設けたことを特徴とする方位・距離測定装置。
Claim: What is claimed is: 1. An azimuth / distance measuring device comprising an interrogator mounted on an aircraft and a transponder installed on the ground; a means for transmitting a response state of a reception of a specific signal to the interrogator. A plurality of antennas and receivers for receiving the response transmission of the interrogator in the transponder; a data processor for analyzing the azimuth and distance of the aircraft and the receiving condition from the received signal; An indicator for displaying the status; and an azimuth / distance measuring device provided.
JP3181973A 1991-06-26 1991-06-26 Azimuth / distance measuring device Expired - Lifetime JP2743626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3181973A JP2743626B2 (en) 1991-06-26 1991-06-26 Azimuth / distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3181973A JP2743626B2 (en) 1991-06-26 1991-06-26 Azimuth / distance measuring device

Publications (2)

Publication Number Publication Date
JPH052070A true JPH052070A (en) 1993-01-08
JP2743626B2 JP2743626B2 (en) 1998-04-22

Family

ID=16110107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3181973A Expired - Lifetime JP2743626B2 (en) 1991-06-26 1991-06-26 Azimuth / distance measuring device

Country Status (1)

Country Link
JP (1) JP2743626B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502414A (en) * 2003-08-14 2007-02-08 センシス コーポレーション Target location method and apparatus using TDOA distributed antenna
KR20210083086A (en) * 2019-12-26 2021-07-06 우리항행기술(주) Radio positioning system and navigation method for unmanned aerial vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097287A (en) * 1983-11-01 1985-05-31 Nec Corp Down link system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097287A (en) * 1983-11-01 1985-05-31 Nec Corp Down link system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502414A (en) * 2003-08-14 2007-02-08 センシス コーポレーション Target location method and apparatus using TDOA distributed antenna
KR20210083086A (en) * 2019-12-26 2021-07-06 우리항행기술(주) Radio positioning system and navigation method for unmanned aerial vehicle

Also Published As

Publication number Publication date
JP2743626B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
US5374936A (en) Security system
US8253622B2 (en) Device and method for the improved directional estimation and decoding by means of secondary radar signals
US5075694A (en) Airborne surveillance method and system
USRE32368E (en) Collision avoidance system for aircraft
US6720921B2 (en) Position location and tracking method and system employing low frequency radio signal processing
EP1666917A2 (en) Decoder and decoding method for Mode S transponder transmission signal
JPWO2013121694A1 (en) Mobile body position measurement system, central processing unit, and question control method used therefor
US9035762B2 (en) Method and system for locating signal emitters using cross-correlation of received signal strengths
AU1593188A (en) Multi-mode microwave landing system
US11397237B2 (en) Aircraft acoustic position and orientation detection method and apparatus
JPH052070A (en) Azimuth/distance measuring device
JP7379551B2 (en) Radar device, transponder reflected wave detection method, and positioning method
JP2007010510A (en) Secondary monitoring radar control device and secondary monitoring radar control method
EP1779136B1 (en) System and device used to automatically determine the position of an entity with respect to two or more reference entities in real time
JP2660695B2 (en) Passive SSR device
US3699570A (en) Tacan ground station track and display system
JPS63266381A (en) Passive type ssr device
JPH08278364A (en) Transponder position confirmation device
JPS61256272A (en) Airplane discrimination apparatus by ssr system
JP3015502B2 (en) Secondary surveillance radar equipment
JPS6082985A (en) Target locating method
JPH01502691A (en) Microwave landing method for use in back course approaches
Svyd et al. Evaluation of the Responder Capacity of the Indication Channel of Near Navigation Radio Systems
RU1753837C (en) Long-range radio guidance system for short-range navigation
JP2023036375A (en) air traffic control radio system