JPH05206778A - Composite filter for surface acoustic wave resonator - Google Patents

Composite filter for surface acoustic wave resonator

Info

Publication number
JPH05206778A
JPH05206778A JP1474592A JP1474592A JPH05206778A JP H05206778 A JPH05206778 A JP H05206778A JP 1474592 A JP1474592 A JP 1474592A JP 1474592 A JP1474592 A JP 1474592A JP H05206778 A JPH05206778 A JP H05206778A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
wave resonator
filter
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1474592A
Other languages
Japanese (ja)
Inventor
Nobuhiko Shibagaki
信彦 柴垣
Toyoji Tabuchi
豊治 田渕
Mitsutaka Hikita
光孝 疋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1474592A priority Critical patent/JPH05206778A/en
Publication of JPH05206778A publication Critical patent/JPH05206778A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To obtain a steep frequency characteristic and to improve the production yield by connecting between one or more surface acoustic wave resonators connected in parallel to each other and a common earth potential electrode with a via hole on a substrate and a conductive material embedding this via hole. CONSTITUTION:Plural surface acoustic wave resonators 2 are connected to each other on a piezoelectric substrate 1 set on a stem 6, and the input and the output of each resonator 2 are connected to the input and output terminals IN and OUT respectively via the metallic thin wires 8. At the same time, the earth side of the one or more resonators 2 connected to a common earth potential electrode connected to the output path of the signal in parallel and the common earth potential electrode is connected. This connection is performed via a conductive paste material put into a via hole 10 formed on the substrate 1. Thus the inductance caused by the connection is minimized. As a result, a steep frequency characteristic is obtained with the least variance of the inductance and improvement of the production yield in comparison with the connection secured by the wires 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は弾性表面波フィルタに係
り、特に、弾性表面波の伝搬可能な圧電基板上に多数対
の薄膜交差指電極を配して構成された弾性表面波共振
器、および本弾性表面波共振器を複数個組合せ、変換,
逆変換に伴う損失が少なく、ワット単位の電力の通電が
可能なバンドパスあるいはバンドリジェクションタイプ
の弾性表面波フィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave filter, and more particularly to a surface acoustic wave resonator formed by arranging a large number of pairs of thin film interdigital electrodes on a piezoelectric substrate capable of propagating surface acoustic waves. And combining and converting multiple surface acoustic wave resonators,
The present invention relates to a band-pass or band-rejection type surface acoustic wave filter that has a small loss due to reverse conversion and is capable of supplying electric power in watts.

【0002】[0002]

【従来の技術】従来の弾性表面波共振器複合形フィルタ
は特開昭63−132515号公報に記載のように、単一圧電基
板上に形成した多数対の薄膜交差指電極からなる一開口
弾性表面波共振器を複数個組合せて構成されており、フ
ィルタの通過特性あるいは帯域間の立上り,立下り特性
は共振器の電極構造及び圧電基板の材料定数によって定
まっていた。また、特開平1−260911 号公報に記載の一
開口弾性表面波共振器は、ソリッド形あるいはシリーズ
形共振器内に波長の半分以上の伝搬路を複数個導入し
て、弾性表面波共振器複合形フィルタの特性を改善して
いた。これらの従来技術では、信号経路に対して並列に
接続された弾性表面波共振器と共通接地電位電極間の電
気的な接続を金属製の細線で行なっていた。
2. Description of the Related Art A conventional surface acoustic wave resonator composite type filter is disclosed in Japanese Unexamined Patent Publication (Kokai) No. 63-132515, and it has a single aperture elasticity composed of a plurality of thin film interdigital electrodes formed on a single piezoelectric substrate. It consists of a combination of surface acoustic wave resonators, and the pass characteristics of the filter or the rise and fall characteristics between bands are determined by the electrode structure of the resonator and the material constants of the piezoelectric substrate. In addition, the single-aperture surface acoustic wave resonator described in JP-A-1-260911 is a composite surface acoustic wave resonator in which a plurality of propagation paths each having a wavelength of at least half the wavelength are introduced into a solid type or series type resonator. The characteristics of the shape filter were improved. In these conventional techniques, a thin metal wire is used to electrically connect the surface acoustic wave resonator connected in parallel to the signal path and the common ground potential electrode.

【0003】[0003]

【発明が解決しようとする課題】信号経路に対して並列
に接続された弾性表面波共振器では、弾性表面波共振器
の電気的インピーダンスの周波数特性を利用して、弾性
表面波共振器の直列共振周波数でフィルタの減衰帯域
を、並列共振周波数でフィルタの通過帯域を形成する。
但し、信号経路に対して並列に接続された弾性表面波共
振器は、フィルタの減衰帯域が通過帯域よりも低い周波
数配置の場合に有用である。ここで、直列共振周波数と
並列共振周波数の比は圧電基板の材料定数である電気機
械結合係数と比例する関係にあるので、フィルタの減衰
帯域と通過帯域が接近しているような場合には電気機械
結合係数の小さな圧電基板を、逆に、フィルタの減衰帯
域と通過帯域が比較的離れている場合には、電気機械結
合係数の大きな圧電基板を使用するのが一般的である。
In the surface acoustic wave resonator connected in parallel to the signal path, the frequency characteristics of the electrical impedance of the surface acoustic wave resonator are utilized to connect the surface acoustic wave resonator in series. The resonance frequency forms the attenuation band of the filter and the parallel resonance frequency forms the pass band of the filter.
However, the surface acoustic wave resonator connected in parallel to the signal path is useful when the attenuation band of the filter is located at a frequency lower than the pass band. Here, since the ratio of the series resonance frequency to the parallel resonance frequency is proportional to the electromechanical coupling coefficient, which is the material constant of the piezoelectric substrate, when the attenuation band and the pass band of the filter are close to each other, the Generally, a piezoelectric substrate having a small mechanical coupling coefficient is used, and conversely, a piezoelectric substrate having a large electromechanical coupling coefficient is used when the attenuation band and the pass band of the filter are relatively distant from each other.

【0004】信号経路に対して並列に接続された弾性表
面波共振器では、電気機械結合定数の他に、弾性表面波
共振器と共通接地電位電極の間の電気的接続を行なうた
めの金属細線が発生するインダクタンス成分がフィルタ
の周波数特性に影響を与える事が知られている。即ち、
直列共振周波数fr,並列共振周波数faとなるような
圧電基板でも、信号経路に対して並列に接続された弾性
表面波共振器ではインダクタンス成分の存在によって、
直列共振周波数は見掛け上低下し、fr−ΔLとなる。
この際、並列共振周波数はfaでインダクタンス成分の
影響を受けない。
In the surface acoustic wave resonator connected in parallel to the signal path, in addition to the electromechanical coupling constant, a thin metal wire for making an electrical connection between the surface acoustic wave resonator and the common ground potential electrode. It is known that the inductance component generated by the filter affects the frequency characteristic of the filter. That is,
Even with a piezoelectric substrate having a series resonance frequency fr and a parallel resonance frequency fa, the presence of an inductance component in a surface acoustic wave resonator connected in parallel to the signal path causes
The series resonance frequency apparently decreases to fr-ΔL.
At this time, the parallel resonance frequency is fa and is not affected by the inductance component.

【0005】従って、直列共振周波数と並列共振周波数
を接近させたい場合、即ち、減衰帯域と通過帯域の接近
したフィルタを設計したい場合には、弾性表面波共振器
と共通接地電位電極の間の電気的接続を行なうための金
属細線が発生するインダクタンス成分は、不要な場合が
多い。また、金属細線のインダクタンス成分は金属細線
の配線形状によって影響を受けるため、量産工程で制御
することが困難な配線形状のばらつきが周波数特性のば
らつきとなってしまう。従来の技術では、金属細線が発
生するインダクタンス成分の影響についての考慮がなさ
れていなかった。
Therefore, when it is desired to bring the series resonance frequency and the parallel resonance frequency close to each other, that is, to design a filter having a close attenuation band and close to the pass band, the electrical connection between the surface acoustic wave resonator and the common ground potential electrode is required. In many cases, the inductance component generated by the thin metal wire for performing the physical connection is unnecessary. Further, since the inductance component of the thin metal wire is influenced by the wiring shape of the thin metal wire, the variation in the wiring shape, which is difficult to control in the mass production process, causes the variation in the frequency characteristic. In the conventional technology, no consideration has been given to the influence of the inductance component generated by the thin metal wire.

【0006】[0006]

【課題を解決するための手段】上記従来技術の問題点
は、弾性表面波共振器と共通接地電位電極の間の電気的
接続を、圧電基板上に形成したバイアホール及び前記バ
イアホールを埋め込んだ導電性材料を介して行なうこと
により解決される。
The problem of the above-mentioned prior art is that the electrical connection between the surface acoustic wave resonator and the common ground potential electrode is buried in the via hole formed on the piezoelectric substrate and the via hole. It is solved by performing it through a conductive material.

【0007】また、上記従来技術の問題点は、弾性表面
波共振器と共通接地電位電極の間の電気的接続を、導電
性ペースト状の導電性材料を介して行なうことによって
も同様に解決される。
Further, the above-mentioned problems of the prior art are similarly solved by electrically connecting the surface acoustic wave resonator and the common ground potential electrode via a conductive material in the form of a conductive paste. It

【0008】[0008]

【作用】圧電基板上に形成したバイアホール及びバイア
ホールを埋め込んだ導電性材料を介し電気的接続を行な
った場合、従来の金属細線による電気的接続よりも発生
するインダクタンスを小さくすることができる。更に、
製造上のばらつきに関しても従来技術に比べて小さくす
ることが可能である。ペースト状の導電性材料を使用し
た場合も、同様な効果が得られる。従って、本発明によ
れば、減衰帯域と通過帯域の接近したフィルタを設計す
る際に、インダクタンスの影響を最小限に留め、急峻な
周波数特性を実現できる。更に、製造工程で発生するイ
ンダクタンスのばらつきの影響による周波数特性のばら
つきも、最小限にすることが可能である。
When the electrical connection is made through the via hole formed on the piezoelectric substrate and the conductive material in which the via hole is buried, the generated inductance can be made smaller than that of the conventional electrical connection by the thin metal wire. Furthermore,
It is possible to reduce manufacturing variations as compared with the conventional technique. Similar effects can be obtained when a paste-like conductive material is used. Therefore, according to the present invention, when designing a filter in which the attenuation band and the pass band are close to each other, it is possible to minimize the influence of the inductance and realize a steep frequency characteristic. Further, it is possible to minimize the variation in the frequency characteristic due to the influence of the variation in the inductance generated in the manufacturing process.

【0009】[0009]

【実施例】上記従来技術の弾性表面波共振器では、弾性
表面波共振器と共通接地電位電極の間の電気的接続を、
金属細線で行うために、そこから発生するインダクタン
スによって、弾性表面波共振器の本来の急峻な周波数特
性が実現されないことがあった。ここではまず、弾性表
面波共振器の等価回路表現を説明し、これに基づいて金
属細線のインダクタンスと弾性表面波共振器の特性の関
係について説明する。
EXAMPLES In the above-mentioned conventional surface acoustic wave resonator, the electrical connection between the surface acoustic wave resonator and the common ground potential electrode is
Since the thin metal wire is used, the inductance generated therefrom may not realize the original steep frequency characteristic of the surface acoustic wave resonator. Here, first, an equivalent circuit expression of the surface acoustic wave resonator will be described, and based on this, the relationship between the inductance of the thin metal wire and the characteristics of the surface acoustic wave resonator will be described.

【0010】図1は一組の弾性表面波共振器の斜視図を
示している。圧電基板1上に形成された一組の薄膜櫛型
交差指電極2によって構成される弾性表面波共振器は、
交差指電極間に高周波電界を印加すると、基板の圧電性
によって弾性表面波が発生し、電極間の多重反射によっ
て共振状態が実現される。
FIG. 1 shows a perspective view of a set of surface acoustic wave resonators. A surface acoustic wave resonator composed of a set of thin film comb-shaped interdigital electrodes 2 formed on a piezoelectric substrate 1 is
When a high-frequency electric field is applied between the interdigital electrodes, surface acoustic waves are generated due to the piezoelectricity of the substrate, and a resonance state is realized by multiple reflection between the electrodes.

【0011】この弾性表面波共振器は図2に示す等価回
路でよく表現される。図2において弾性表面波共振器
は、電極間静電容量3,等価容量4,等価インダクタン
ス5によって表現されている。
This surface acoustic wave resonator is often expressed by the equivalent circuit shown in FIG. In FIG. 2, the surface acoustic wave resonator is represented by an inter-electrode electrostatic capacitance 3, an equivalent capacitance 4, and an equivalent inductance 5.

【0012】図1に示すように、電極の交差部分の長さ
をW、電極の基本繰返し周期をp、電極の繰返し回数を
Nとする。この時、電極間静電容量3は数1、等価容量
4は数2、等価インダクタンス5は数3で求めることが
できる。
As shown in FIG. 1, the length of the intersection of the electrodes is W, the basic repetition period of the electrodes is p, and the number of times the electrodes are repeated is N. At this time, the inter-electrode capacitance 3 can be obtained by the equation 1, the equivalent capacitance 4 by the equation 2, and the equivalent inductance 5 by the equation 3.

【0013】[0013]

【数1】 [Equation 1]

【0014】[0014]

【数2】 [Equation 2]

【0015】[0015]

【数3】 [Equation 3]

【0016】ここで、fr,faはそれぞれ直列共振周
波数,並列共振周波数であり、直列共振周波数frは数
4より求まる周波数である。
Here, fr and fa are a series resonance frequency and a parallel resonance frequency, respectively, and the series resonance frequency fr is a frequency obtained from the equation 4.

【0017】[0017]

【数4】 [Equation 4]

【0018】また数2より、faとfrの比[fa/f
r]は数5の関係を満たしており、圧電基板の材料定数
によって定まる値を持つ。
From the equation 2, the ratio of fa to fr [fa / f
r] satisfies the relationship of Expression 5, and has a value determined by the material constant of the piezoelectric substrate.

【0019】[0019]

【数5】 [Equation 5]

【0020】弾性表面波共振器の電極の交差部分の長さ
W,電極の基本繰返し周期p,電極の繰返し回数N及
び、圧電基板の材料定数である容量係数Csと[fa/
fr]を与えると、数1から数5の関係を用いて弾性表
面波共振器の特性をシミュレートすることができる。
The length W of the intersection of the electrodes of the surface acoustic wave resonator, the basic repetition period p of the electrodes, the number N of times of repetition of the electrodes, and the capacitance coefficient Cs and [fa /
fr], the characteristics of the surface acoustic wave resonator can be simulated by using the relationships of Equations 1 to 5.

【0021】数1から数5の関係を用いて計算した弾性
表面波共振器のインピーダンスの周波数特性を図3に示
す。インピーダンスはfrで0,faで無限大となる。
このような周波数特性を持つ弾性表面波共振器を、信号
の入出力回路に並列に、図4の様に接続した時の通過損
失の周波数特性を図5に示す。並列回路のインピーダン
スが0となる周波数frでは減衰域が形成され、並列回
路のインピーダンスが無限大となる周波数faでは通過
域が形成される。しかし、実際のデバイスでは実装に伴
うインダクタンスの発生が無視できない。
FIG. 3 shows the frequency characteristics of the impedance of the surface acoustic wave resonator calculated using the relations of the equations 1 to 5. The impedance is 0 at fr and infinite at fa.
FIG. 5 shows the frequency characteristics of the pass loss when the surface acoustic wave resonator having such frequency characteristics is connected in parallel to the signal input / output circuit as shown in FIG. An attenuation band is formed at a frequency fr at which the impedance of the parallel circuit is 0, and a pass band is formed at a frequency fa at which the impedance of the parallel circuit is infinite. However, in an actual device, the generation of inductance due to mounting cannot be ignored.

【0022】図6は従来例の実装の斜視図を示してい
る。図6に示すように金属性のステム6上に弾性表面波
素子7を実装するため、弾性表面波共振器2とステム6
上の共通設置電極の接続には金属細線8を用いる。この
ため、金属細線8から発生するインダクタンス9も考慮
すると、図6に示した構造のデバイスの等価回路は、図
2に金属細線のインダクタンス9を付加した図7とな
る。従って、図7の共振回路のインピーダンスの周波数
特性は、図3のインピーダンスの周波数特性よりも金属
細線8のインダクタンスの影響により誘導性にシフトし
た図8となる。図8には比較のため図3の弾性表面波共
振器2の本来のインピーダンスの周波数特性を破線で示
した。図8では、共振回路のインピーダンスが0となる
周波数は、弾性表面波共振器2が本来持つ周波数frよ
りもΔLだけ低周波数側にシフトする。
FIG. 6 shows a perspective view of the conventional mounting. As shown in FIG. 6, since the surface acoustic wave element 7 is mounted on the metallic stem 6, the surface acoustic wave resonator 2 and the stem 6 are arranged.
A thin metal wire 8 is used to connect the upper common electrode. Therefore, when the inductance 9 generated from the thin metal wire 8 is also taken into consideration, the equivalent circuit of the device having the structure shown in FIG. 6 is shown in FIG. 7 in which the inductance 9 of the thin metal wire is added to FIG. Therefore, the frequency characteristic of the impedance of the resonance circuit of FIG. 7 is inductively shifted from the frequency characteristic of the impedance of FIG. 3 due to the influence of the inductance of the thin metal wire 8. In FIG. 8, the frequency characteristic of the original impedance of the surface acoustic wave resonator 2 of FIG. 3 is shown by a broken line for comparison. In FIG. 8, the frequency at which the impedance of the resonance circuit becomes 0 shifts to the lower frequency side by ΔL than the frequency fr originally possessed by the surface acoustic wave resonator 2.

【0023】図7に示すように、frが低周波数側にシ
フトしても、faはシフトしないので、この回路を信号
の入出力回路に並列に、図9の様に接続した時の通過損
失の周波数特性は図10のようになる。図10の周波数
特性は減衰域の周波数が、図5の弾性表面波共振器2が
持つ本来のもの(図10には点線で示した)よりもΔL
だけ低くなっている。先にも述べたように、faは金属
細線のインダクタンス9の影響を受けないので通過域の
周波数に変化は生じない。従って、金属細線のインダク
タンス9の影響によって、実現可能なフィルタの急峻性
が損なわれ、通過域と減衰域の周波数差が大きくなって
しまう。
As shown in FIG. 7, even if fr shifts to the low frequency side, fa does not shift. Therefore, when this circuit is connected in parallel with the signal input / output circuit as shown in FIG. The frequency characteristics of are as shown in FIG. In the frequency characteristic of FIG. 10, the frequency in the attenuation range is ΔL more than that of the original surface acoustic wave resonator 2 of FIG. 5 (shown by the dotted line in FIG. 10).
Is only low. As described above, since fa is not affected by the inductance 9 of the thin metal wire, the frequency of the pass band does not change. Therefore, due to the influence of the inductance 9 of the thin metal wire, the steepness of the filter that can be realized is impaired, and the frequency difference between the pass band and the attenuation band becomes large.

【0024】このように、通過域と減衰域の周波数が接
近したフィルタを設計する際には、金属細線のインダク
タンス9が特性に悪影響を及ぼす。更に、金属細線のイ
ンダクタンス9は、金属細線の長さ、及び形状によって
変化するため、製造上の偏差がどうしても生じてしま
う。インダクタンスの製造偏差は、既に説明した理由に
よって、フィルタの周波数特性の偏差として現われるた
め、製造コストを向上させるには、金属細線のインダク
タンス偏差を小さく抑える必要がある。
Thus, when designing a filter in which the frequencies of the pass band and the attenuation band are close to each other, the inductance 9 of the thin metal wire adversely affects the characteristics. Furthermore, since the inductance 9 of the thin metal wire changes depending on the length and shape of the thin metal wire, a manufacturing deviation will inevitably occur. Since the manufacturing deviation of the inductance appears as a deviation of the frequency characteristic of the filter for the reason already described, it is necessary to suppress the inductance deviation of the thin metal wire to be small in order to improve the manufacturing cost.

【0025】そこで本発明では、弾性表面波共振器が本
来持っている急峻性を最大限に発揮させるために、従来
のような金属細線による接続ではなく図11に実施例を
示したように、圧電性基板1にバイアホール10を形成
し、バイアホール10に埋め込んだ導電性ペーストを介
して弾性表面波共振器2と共通接地電極間の接続を行っ
ている。このため弾性表面波共振器2と共通接地電極間
の接続に伴って発生するインダクタンスを最小限に留め
ることが可能になる。
Therefore, in the present invention, in order to maximize the steepness that the surface acoustic wave resonator originally has, the connection is not made by a thin metal wire as in the prior art, but as shown in FIG. The via hole 10 is formed in the piezoelectric substrate 1, and the surface acoustic wave resonator 2 and the common ground electrode are connected via the conductive paste embedded in the via hole 10. Therefore, it is possible to minimize the inductance generated due to the connection between the surface acoustic wave resonator 2 and the common ground electrode.

【0026】図12は図11の素子の断面構造を示して
いる。図12に示すように、ステム上に導電性のペース
ト材料11を介して素子を接着する際にバイアホール1
0は、導電性のペースト材料11で埋め込まれることに
より、弾性表面波共振器2と共通接地電極間の接続が行
なわれる。更に、バイアホールの加工はエッチングプロ
セスによって行なうため、バイアホール径などの製造偏
差は極めて小さくすることができ、接続に伴うインダク
タンスの偏差も最小限に留めることができる。
FIG. 12 shows a sectional structure of the device shown in FIG. As shown in FIG. 12, the via hole 1 is used when the device is bonded onto the stem through the conductive paste material 11.
0 is embedded with a conductive paste material 11 to connect the surface acoustic wave resonator 2 and the common ground electrode. Further, since the processing of the via hole is performed by the etching process, the manufacturing deviation such as the diameter of the via hole can be made extremely small, and the deviation of the inductance due to the connection can be minimized.

【0027】バイアホールの加工が困難な場合には、図
13の実施例に斜視図を示したように、導電性のペース
ト材料によって弾性表面波共振器と共通接地電極間の接
続を行っても同様の効果が得られる。また図14の実施
例に斜視図を示したように、金属細線8ではなくリボン
状の導体12によって弾性表面波共振器と共通接地電極
間の接続を行っても同様の効果が得られる。以上、本発
明の実施例を一つの弾性表面波共振器を信号経路に対し
て並列に導入したデバイスを例に説明した。
When the processing of the via hole is difficult, even if the surface acoustic wave resonator and the common ground electrode are connected by a conductive paste material as shown in the perspective view of the embodiment of FIG. The same effect can be obtained. Further, as shown in the perspective view of the embodiment of FIG. 14, the same effect can be obtained by connecting the surface acoustic wave resonator and the common ground electrode by the ribbon-shaped conductor 12 instead of the metal thin wire 8. The embodiments of the present invention have been described above by taking as an example the device in which one surface acoustic wave resonator is introduced in parallel to the signal path.

【0028】本発明の有用性は、例えば図15に等価回
路で示したように、複数個の弾性表面波共振器を組合せ
てなる弾性表面波共振器複合型フィルタにおいて、信号
経路に対して並列に接続した弾性表面波共振器のうち少
なくとも一つの弾性表面波共振器と共通接地電極の接続
に本発明を適用することにより、フィルタの性能を向上
させることができる。
The utility of the present invention is that the surface acoustic wave resonator composite type filter formed by combining a plurality of surface acoustic wave resonators is connected in parallel to the signal path, as shown by an equivalent circuit in FIG. The performance of the filter can be improved by applying the present invention to the connection of at least one surface acoustic wave resonator connected to the common ground electrode and the common ground electrode.

【0029】性能向上の一例を英国向け自動車電話の受
信フィルタを例にして示す。英国向け自動車電話は送信
帯域と受信帯域のスペースが12MHzしかなく、フィ
ルタには非常に急峻な周波数特性が要求されている。図
16は本発明を適用した場合の周波数特性であり、図1
7は従来の金属細線による接続を適用した場合の周波数
特性である。図16では仕様を満足しているが、図17
では金属細線のインダクタンスの影響によって送信帯域
において仕様を満足しない周波数領域がある。
An example of the performance improvement is shown by taking a reception filter of a car phone for the UK as an example. The car phone for the UK has a space of only 12 MHz between the transmission band and the reception band, and the filter is required to have a very steep frequency characteristic. FIG. 16 shows frequency characteristics when the present invention is applied.
Reference numeral 7 shows frequency characteristics when the conventional connection using a thin metal wire is applied. Although the specifications are satisfied in FIG. 16, FIG.
In the transmission band, there is a frequency range that does not satisfy the specifications due to the influence of the inductance of the thin metal wire.

【0030】以上、実施例として900MHz帯の周波
数を使用したデバイスを用いて、本発明の有効性を説明
した。本発明の有効性は900MHz帯の周波数に限ら
ず、使用する周波数によらず有効である。接続に伴うイ
ンダクタンスの影響は周波数が高いほど大きいため、特
に今後需要が拡大する準マイクロ波以上の周波数帯にお
いて、その効果は大きい。
The effectiveness of the present invention has been described above by using the device using the frequency of 900 MHz band as the embodiment. The effectiveness of the present invention is not limited to the frequency of 900 MHz band and is effective regardless of the frequency used. The higher the frequency, the greater the influence of the inductance due to the connection. Therefore, the effect is great especially in the frequency band above the quasi-microwave, where demand will increase in the future.

【0031】[0031]

【発明の効果】本発明の弾性表面波共振器複合形フィル
タにより、帯域間隔が狭く急峻な立上り,立下り特性が
要求されるフィルタ仕様を実現することができる。ま
た、弾性表面波共振器複合形フィルタを用いて構成した
分波器は、送信フィルタからアンテナを介する大電力の
送信信号と、アンテナから受信フィルタを介する微弱電
力の受信信号を、それぞれ減衰させること無く伝搬でき
る。従って、送受信機の品質の改善および装置の低消費
電力化を実現できる。
According to the surface acoustic wave resonator composite type filter of the present invention, it is possible to realize a filter specification in which band intervals are narrow and steep rise and fall characteristics are required. Further, the duplexer configured by using the surface acoustic wave resonator composite filter can attenuate a high power transmission signal from the transmission filter through the antenna and a weak power reception signal from the antenna through the reception filter. Can be propagated without. Therefore, it is possible to improve the quality of the transceiver and reduce the power consumption of the device.

【0032】また、本発明による分波器を移動無線端
末、あるいは民生用,衛星用などの通信装置に用いるこ
とにより、端末あるいは装置を小形軽量化,低消費電力
化できる。
Further, by using the duplexer according to the present invention in a mobile radio terminal, or a communication device for consumer use, satellite use, etc., the terminal or device can be made smaller and lighter and the power consumption can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】弾性表面波共振器の斜視図。FIG. 1 is a perspective view of a surface acoustic wave resonator.

【図2】弾性表面波共振器の等価回路図。FIG. 2 is an equivalent circuit diagram of a surface acoustic wave resonator.

【図3】弾性表面波共振器のインピーダンスの周波数特
性図。
FIG. 3 is a frequency characteristic diagram of impedance of a surface acoustic wave resonator.

【図4】弾性表面波共振器の評価回路図。FIG. 4 is an evaluation circuit diagram of a surface acoustic wave resonator.

【図5】弾性表面波共振器の通過特性図。FIG. 5 is a transmission characteristic diagram of the surface acoustic wave resonator.

【図6】弾性表面波共振器複合フィルタの斜視図。FIG. 6 is a perspective view of a surface acoustic wave resonator composite filter.

【図7】弾性表面波共振器の等価回路図。FIG. 7 is an equivalent circuit diagram of a surface acoustic wave resonator.

【図8】弾性表面波共振器のインピーダンスの周波数特
性図。
FIG. 8 is a frequency characteristic diagram of impedance of a surface acoustic wave resonator.

【図9】弾性表面波共振器の評価回路図。FIG. 9 is an evaluation circuit diagram of a surface acoustic wave resonator.

【図10】弾性表面波共振器複合フィルタの通過特性
図。
FIG. 10 is a pass characteristic diagram of the surface acoustic wave resonator composite filter.

【図11】本発明の一実施例の斜視図。FIG. 11 is a perspective view of an embodiment of the present invention.

【図12】本発明の一実施例の断面図。FIG. 12 is a sectional view of an embodiment of the present invention.

【図13】本発明の第二の実施例の斜視図。FIG. 13 is a perspective view of a second embodiment of the present invention.

【図14】本発明の第三の実施例の斜視図。FIG. 14 is a perspective view of a third embodiment of the present invention.

【図15】本発明の実施例の等価回路図。FIG. 15 is an equivalent circuit diagram of an embodiment of the present invention.

【図16】弾性表面波共振器複合フィルタの通過特性
図。
FIG. 16 is a pass characteristic diagram of the surface acoustic wave resonator composite filter.

【図17】弾性表面波共振器複合フィルタの通過特性
図。
FIG. 17 is a pass characteristic diagram of the surface acoustic wave resonator composite filter.

【符号の説明】 1…圧電性基板、2…弾性表面波共振器、6…ステム、
8…金属細線、10…バイアホール。
[Explanation of reference numerals] 1 ... Piezoelectric substrate, 2 ... Surface acoustic wave resonator, 6 ... Stem,
8 ... fine metal wire, 10 ... via hole.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】圧電性基板上に設けられた弾性表面波共振
器を複数個接続した弾性表面波共振器複合型フィルタに
おいて、信号の入出力経路に対して並列に接続された前
記弾性表面波共振器のうち少なくとも一つの弾性表面波
共振器と共通接地電位電極の間の電気的接続を、前記圧
電性基板上に形成したバイアホールと前記バイアホール
を埋め込んだ導電性材料によって行なうことを特徴とす
る弾性表面波共振器複合型フィルタ。
1. A surface acoustic wave resonator composite type filter comprising a plurality of surface acoustic wave resonators connected on a piezoelectric substrate, wherein the surface acoustic waves are connected in parallel to a signal input / output path. The electrical connection between at least one surface acoustic wave resonator of the resonator and the common ground potential electrode is performed by a via hole formed on the piezoelectric substrate and a conductive material in which the via hole is embedded. Surface acoustic wave resonator composite type filter.
【請求項2】圧電性基板上に設けられた弾性表面波共振
器を複数個接続した弾性表面波共振器複合型フィルタに
おいて、信号の入出力経路に対して並列に接続された前
記弾性表面波共振器のうち少なくとも一つの弾性表面波
共振器と共通接地電位電極の間の電気的接続を、導電性
ペースト材料によって行なうことを特徴とする弾性表面
波共振器複合型フィルタ。
2. A surface acoustic wave resonator composite type filter in which a plurality of surface acoustic wave resonators provided on a piezoelectric substrate are connected, wherein the surface acoustic wave is connected in parallel to a signal input / output path. A surface acoustic wave resonator composite type filter, characterized in that at least one surface acoustic wave resonator among the resonators and a common ground potential electrode are electrically connected by a conductive paste material.
【請求項3】圧電性基板上に設けられた弾性表面波共振
器を複数個接続した弾性表面波共振器複合型フィルタに
おいて、信号の入出力経路に対して並列に接続された前
記弾性表面波共振器のうち少なくとも一つの弾性表面波
共振器と共通接地電位電極の間の電気的接続を、リボン
状の導体によって行なうことを特徴とする弾性表面波共
振器複合型フィルタ。
3. A surface acoustic wave resonator composite filter comprising a plurality of surface acoustic wave resonators connected to each other on a piezoelectric substrate, wherein the surface acoustic waves are connected in parallel to a signal input / output path. A composite surface acoustic wave resonator filter, wherein at least one surface acoustic wave resonator among the resonators and a common ground potential electrode are electrically connected by a ribbon-shaped conductor.
JP1474592A 1992-01-30 1992-01-30 Composite filter for surface acoustic wave resonator Pending JPH05206778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1474592A JPH05206778A (en) 1992-01-30 1992-01-30 Composite filter for surface acoustic wave resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1474592A JPH05206778A (en) 1992-01-30 1992-01-30 Composite filter for surface acoustic wave resonator

Publications (1)

Publication Number Publication Date
JPH05206778A true JPH05206778A (en) 1993-08-13

Family

ID=11869654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1474592A Pending JPH05206778A (en) 1992-01-30 1992-01-30 Composite filter for surface acoustic wave resonator

Country Status (1)

Country Link
JP (1) JPH05206778A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE37375E1 (en) 1991-10-28 2001-09-18 Fujitsu Limited Surface acoustic wave filter
JP2007202171A (en) * 1996-10-02 2007-08-09 Nokia Corp Device containing controllable thin-film bulk acoustic resonator for amplitude and phase modulation
USRE40036E1 (en) 1991-10-28 2008-01-29 Fujitsu Limited Surface acoustic wave filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE37375E1 (en) 1991-10-28 2001-09-18 Fujitsu Limited Surface acoustic wave filter
USRE37790E1 (en) 1991-10-28 2002-07-16 Fujitsu Limited Surface acoustic wave filter
USRE40036E1 (en) 1991-10-28 2008-01-29 Fujitsu Limited Surface acoustic wave filter
JP2007202171A (en) * 1996-10-02 2007-08-09 Nokia Corp Device containing controllable thin-film bulk acoustic resonator for amplitude and phase modulation

Similar Documents

Publication Publication Date Title
JP5296282B2 (en) Bulk acoustic wave device
US4803449A (en) Filter combining surface acoustic wave resonators
US5831493A (en) Surface acoustic wave ladder filter utilizing a generated spurious component of the parallel arm
US3451015A (en) Microwave stripline filter
US7042132B2 (en) Transducer structure that operates with acoustic waves
EP1296454B1 (en) SAW element and SAW device
US6541893B2 (en) Programmable surface acoustic wave (SAW) filter
KR100280611B1 (en) Surface acoustic wave device
US4697115A (en) Surface acoustic wave device
US8581674B2 (en) Filter and communications apparatus
US10873319B2 (en) Compensation structures for radio frequency filtering devices
KR20030051315A (en) Surface acoustic wave element and duplexer having the same
US4365219A (en) In-line surface acoustic wave filter assembly module and method of making same
JPH09321573A (en) Surface acoustic wave filter device
US4954795A (en) Surface acoustic wave filter for suppressing surface to surface interference for a satellite communication receiver
CN114301422A (en) Filter, multiplexer, radio frequency front end and method for manufacturing filter
JPWO2004112246A1 (en) Surface acoustic wave duplexer
US4748364A (en) Surface acoustic wave device
JPH05206778A (en) Composite filter for surface acoustic wave resonator
JPH0832402A (en) Surface acoustic wave device, branching filter for mobile radio equipment and mobile radio equipment
JP3310132B2 (en) Surface acoustic wave device and antenna duplexer using the same
EP1320192A1 (en) Surface acoustic wave filter device
CN1870425B (en) Elastic surface wave resonator, elastic surface wave apparatus, and communication equipment
JP3895397B2 (en) Substrate mounting method of SAW filter
JP3885270B2 (en) Filter mounted multilayer board