JPH0520641B2 - - Google Patents

Info

Publication number
JPH0520641B2
JPH0520641B2 JP61276335A JP27633586A JPH0520641B2 JP H0520641 B2 JPH0520641 B2 JP H0520641B2 JP 61276335 A JP61276335 A JP 61276335A JP 27633586 A JP27633586 A JP 27633586A JP H0520641 B2 JPH0520641 B2 JP H0520641B2
Authority
JP
Japan
Prior art keywords
exhaust gas
waste heat
heat recovery
medium layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61276335A
Other languages
Japanese (ja)
Other versions
JPS63129201A (en
Inventor
Kunio Yoshida
Shigeo Takatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP61276335A priority Critical patent/JPS63129201A/en
Publication of JPS63129201A publication Critical patent/JPS63129201A/en
Publication of JPH0520641B2 publication Critical patent/JPH0520641B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、流動層熱交換器を用いた廃熱回収シ
ステムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a waste heat recovery system using a fluidized bed heat exchanger.

(従来の技術) 従来のこの種廃熱回収システムにあつては、排
ガス発生源から導かれた排ガスの排出経路に次の
ような構成の流動層熱交換器を介設してある。
(Prior Art) In a conventional waste heat recovery system of this type, a fluidized bed heat exchanger having the following configuration is interposed in the exhaust path of the exhaust gas led from the exhaust gas generation source.

すなわち、この流動層熱交換器は、排ガスによ
つて流動せしめられて流動層を形成する廃熱回収
媒体層を内装すると共に該層内に廃熱回収管を導
いてなる。そして、前記廃熱回収媒体として平均
粒径0.2〜3.0mm程度のアルミナ砂又は珪砂を使用
している。また、廃熱回収管は暖房、給湯等の熱
負荷部に接続されていて、適宜の熱媒体が流動層
と熱負荷部との間を循環せしめられるようしてあ
る。
That is, this fluidized bed heat exchanger includes a waste heat recovery medium layer that is fluidized by exhaust gas to form a fluidized bed, and a waste heat recovery pipe is introduced into the layer. Alumina sand or silica sand with an average particle size of about 0.2 to 3.0 mm is used as the waste heat recovery medium. Further, the waste heat recovery pipe is connected to a heat load section such as heating or hot water supply, so that an appropriate heat medium can be circulated between the fluidized bed and the heat load section.

したがつて、かかる廃熱回収システムによれ
ば、排ガスが流動層熱交換器を通過する間におい
て、排ガスと廃熱回収管内の熱媒体とが流動する
廃熱回収媒体を介して効果的に熱交換されて、排
ガスからの熱回収が良好に行われ、この回収熱を
暖房等の熱源として利用することができる。
Therefore, according to this waste heat recovery system, while the exhaust gas passes through the fluidized bed heat exchanger, the exhaust gas and the heat medium in the waste heat recovery pipe effectively transfer heat through the flowing waste heat recovery medium. As a result, heat is efficiently recovered from the exhaust gas, and this recovered heat can be used as a heat source for heating, etc.

ところで、前記アルミナ砂等の廃熱回収媒体に
は排ガス浄化作用がなく、流動層熱交換器は単に
廃熱回収機能を有するものにすぎないことから、
排ガスの排出経路に流動層熱交換器を介設するの
みでは、排ガス中の有害物質例えば窒素酸化物、
ハイドロカーボン、一酸化炭素等は除去されずに
そのまま大気中に放出されることになり、公害問
題を引き起すことになる。
By the way, the waste heat recovery medium such as alumina sand has no exhaust gas purification effect, and the fluidized bed heat exchanger merely has a waste heat recovery function.
Merely installing a fluidized bed heat exchanger in the exhaust gas exhaust route will not eliminate harmful substances in the exhaust gas, such as nitrogen oxides,
Hydrocarbons, carbon monoxide, etc. are not removed and are released into the atmosphere as they are, causing pollution problems.

そこで、従来システムでは、排ガスの排出経路
に、流動層熱交換器に加えて、脱硝装置、脱硫装
置等の排ガス浄化装置を介設しているのが普通で
ある。
Therefore, in conventional systems, in addition to a fluidized bed heat exchanger, an exhaust gas purification device such as a denitrification device or a desulfurization device is usually installed in the exhaust gas discharge path.

(発明が解決しようとする問題点) ところが、このような排ガス浄化装置を設けた
場合には、排ガス中の煤塵や水分の付着による排
ガス浄化装置の性能劣化を防止すべく、更に蒸気
や高圧空気等を用いた煤吹装置等のクリーニング
装置を必要とすることとも相俟つて、システム全
体の構造が徒に複雑化、大型化するといつた問題
がある。しかも、メンテナンスも容易ではなく、
脱硝装置の交換等、保守・点検に要するシステム
停止時間が長くなり、運転効率が頗る悪いといつ
た問題がある。
(Problem to be solved by the invention) However, when such an exhaust gas purification device is installed, in order to prevent performance deterioration of the exhaust gas purification device due to adhesion of soot and moisture in the exhaust gas, steam and high-pressure air are further added to the exhaust gas purification device. Coupled with the need for a cleaning device such as a soot blower using a soot blower, etc., there is a problem in that the structure of the entire system becomes unnecessarily complicated and large. Moreover, maintenance is not easy,
There is a problem in that the system down time required for maintenance and inspection, such as replacing the denitrification equipment, becomes long, resulting in extremely poor operational efficiency.

本発明は、かかる問題を生ずることなく、排ガ
スの熱回収と浄化とを効率良く行いうる廃熱回収
システムを提供することを目的とするものであ
る。
An object of the present invention is to provide a waste heat recovery system that can efficiently recover and purify exhaust gas heat without causing such problems.

(問題点を解決するための手段) 本発明の廃熱回収システムは、上記の目的を達
成すべく、特に、流動層熱交換器を熱回収機能の
みならず排ガス浄化機能をも備えた構成としたも
のである。
(Means for Solving the Problems) In order to achieve the above object, the waste heat recovery system of the present invention has a fluidized bed heat exchanger having not only a heat recovery function but also an exhaust gas purification function. This is what I did.

すなわち、第1発明の廃熱回収システムにあつ
ては、排ガスの排出経路に、排ガスによつて流動
せしめられて流動層を形成する廃熱回収媒体層を
内装すると共に該層内に廃熱回収管を導いてな
る、流動層熱交換器を介設し、前記廃熱回収媒体
として排ガス中の各種有害物質を浄化除去しうる
複数種の粒状セラミツク触媒を使用している。
That is, in the waste heat recovery system of the first invention, a waste heat recovery medium layer that is fluidized by the exhaust gas to form a fluidized bed is installed in the exhaust gas discharge path, and the waste heat recovery medium layer is disposed in the exhaust gas discharge path. A fluidized bed heat exchanger formed by guiding pipes is provided, and a plurality of types of granular ceramic catalysts capable of purifying and removing various harmful substances in exhaust gas are used as the waste heat recovery medium.

また、第2発明の廃熱回収システムにあつて
は、排ガス排出経路の一部を両端で合流する主経
路部分とバイパス経路部分とに分岐構成し、排ガ
ス排出経路に、主経路部分を通過する排ガスによ
つて流動せしめられて流動層を形成する廃熱回収
媒体層を内装すると共に該層内に廃熱回収管を導
いてなる熱交換部と、バイパス経路部分を通過す
る排ガスによつて流動せしめられて流動層を形成
する排ガス浄化媒体層を内装してなる排ガス浄化
部と、からなる流動層熱交換器を介設すると共
に、主経路部分から熱交換部への排ガス導入量及
びバイパス経路部分から排ガス浄化部への排ガス
導入量を制御する排ガス導入量制御機構を配設
し、前記廃熱回収媒体及び排ガス浄化媒体として
排ガス中の各種有害物質を浄化除去しうる複数種
の粒状セラミツク触媒を使用している。
Further, in the waste heat recovery system of the second invention, a part of the exhaust gas exhaust route is configured to branch into a main route part and a bypass route part that merge at both ends, and the exhaust gas exhaust route passes through the main route part. A heat exchange section is equipped with a waste heat recovery medium layer that is fluidized by exhaust gas to form a fluidized bed, and a waste heat recovery pipe is introduced into the layer, and a heat exchange section that is fluidized by exhaust gas passing through a bypass route section. A fluidized bed heat exchanger consisting of an exhaust gas purification section having an internal exhaust gas purification medium layer that is forced to form a fluidized bed is installed, and the amount of exhaust gas introduced from the main path section to the heat exchange section and the bypass path. A plurality of types of granular ceramic catalysts are provided with an exhaust gas introduction amount control mechanism that controls the amount of exhaust gas introduced from the section to the exhaust gas purification section, and can purify and remove various harmful substances in the exhaust gas as the waste heat recovery medium and the exhaust gas purification medium. are using.

前記廃熱回収媒体及び排ガス浄化媒体たるセラ
ミツク触媒としては、公知のものを使用でき、熱
回収しようとする排ガスに含まれる各種有害物質
の性状に応じて最適のものを適宜選択する。例え
ば、燃焼触媒としてはセラミツクに白金を担持さ
せたもの、窒素酸化物、ハイドロカーボン、一酸
化炭素を浄化するセラミツク触媒としてはセラミ
ツクに白金及びロジウムを担持させたもの又はセ
ラミツクにバナジウムを担持させたもの等が好適
である。
As the ceramic catalyst serving as the waste heat recovery medium and the exhaust gas purification medium, known ones can be used, and the most suitable one is selected depending on the properties of various harmful substances contained in the exhaust gas from which heat is to be recovered. For example, combustion catalysts include platinum supported on ceramic, ceramic catalysts for purifying nitrogen oxides, hydrocarbons, and carbon monoxide include platinum and rhodium supported on ceramic, or vanadium supported on ceramic. Preferably,

また、前記各流動層は、複数種のセラミツク触
媒が混在する単一層としても良いし、或は各々が
異種のセラミツク触媒からなる複数の単一種セラ
ミツク触媒層を排ガスの通過方向に沿つて直列配
しても良い。例えば、第1層を煤塵、ハイドロカ
ーボン、一酸化炭素等を低温で燃焼浄化させるセ
ラミツク触媒で構成し、第2層を窒素酸化物を還
元浄化させるセラミツク触媒で構成しておく如く
である。この場合、廃熱回収管は、各層を順次通
過するように配置しておく。
Further, each of the fluidized beds may be a single layer in which a plurality of types of ceramic catalysts are mixed, or a plurality of single-type ceramic catalyst layers each consisting of a different type of ceramic catalyst may be arranged in series along the exhaust gas passage direction. You may do so. For example, the first layer may be made of a ceramic catalyst that burns and purifies soot, hydrocarbons, carbon monoxide, etc. at low temperatures, and the second layer is made of a ceramic catalyst that reduces and purifies nitrogen oxides. In this case, the waste heat recovery pipe is arranged so as to pass through each layer in sequence.

(作用) 第1発明の廃熱回収システムにあつては、排ガ
スが流動層熱交換器にもたらされると、排ガスの
運動エネルギにより、粒状セラミツク触媒が流動
されて、流動層が形成される。この流動層によつ
て排ガスからの熱回収が効果的に行われる。一
方、排ガス中の有害物質は、排ガスがセラミツク
触媒層を通過する間において、セラミツク触媒の
作用により浄化除去される。したがつて、流動層
熱交換器を経過した排ガスには有害物質が含まれ
ておらず、煙突等からそのまま放出しても大気汚
染等の公害問題を引き起すことがない。しかも、
セラミツク触媒は常に流動せしめられていること
から、自浄作用があり、その結果、煤等の付着を
確実に防止し得る。
(Operation) In the waste heat recovery system of the first invention, when the exhaust gas is brought to the fluidized bed heat exchanger, the kinetic energy of the exhaust gas causes the granular ceramic catalyst to flow, forming a fluidized bed. This fluidized bed effectively recovers heat from the exhaust gas. On the other hand, harmful substances in the exhaust gas are purified and removed by the action of the ceramic catalyst while the exhaust gas passes through the ceramic catalyst layer. Therefore, the exhaust gas that has passed through the fluidized bed heat exchanger does not contain harmful substances, and does not cause pollution problems such as air pollution even if it is discharged as is from a chimney or the like. Moreover,
Since the ceramic catalyst is constantly fluidized, it has a self-cleaning effect, and as a result, the adhesion of soot and the like can be reliably prevented.

なお、セラミツク触媒は一定温度以上の高温条
件下では触媒作用を喪失する虞れがあるが、上記
流動層熱交換器においては廃熱回収によつて200
℃〜500℃程度に維持され、触媒作用が効果的に
行われることになる。
Note that ceramic catalysts may lose their catalytic activity under high-temperature conditions above a certain temperature, but in the fluidized bed heat exchanger mentioned above, waste heat recovery
The temperature is maintained at approximately 500°C to 500°C, and the catalytic action is effectively carried out.

ところで、排ガスによつて流動層が良好に形
成・維持されるには、その構成材たる粒状セラミ
ツク触媒の大きさ、重量にもよるが、流動層を通
過する排ガス量ないし排ガス速度を、それがある
程度(流動化開始点)以下となると流動層構成材
が流動しなくなり、逆にある程度(終末速度)を
超えると流動層構成材が飛散して良好な流動層を
形成できなくなるため、流動化開始点を超え且つ
終末速度以下の範囲に維持しておくことが必要で
ある。したがつて、排ガス発生源たるボイラ等が
負荷に応じて比例制御されるものである場合に
は、流動層熱交換器に導入される排ガス量ないし
排ガス速度が変動し、第1発明のシステムでは流
動層を良好に形成・維持し得なくなる虞れがあ
る。
By the way, in order for a fluidized bed to be well formed and maintained by exhaust gas, it depends on the size and weight of the granular ceramic catalyst that is the constituent material, but it is necessary to control the amount of exhaust gas passing through the fluidized bed or the exhaust gas velocity. Below a certain point (fluidization start point), the fluidized bed components will no longer flow, and conversely, if it exceeds a certain point (terminal velocity), the fluidized bed components will scatter and will no longer form a good fluidized bed, so fluidization will begin. It is necessary to maintain the range above the terminal velocity and below the terminal velocity. Therefore, if a boiler or the like that is a source of exhaust gas is controlled proportionally depending on the load, the amount of exhaust gas introduced into the fluidized bed heat exchanger or the exhaust gas velocity will fluctuate, and in the system of the first invention, There is a possibility that a fluidized bed cannot be properly formed and maintained.

第2発明の廃熱回収システムにあつては、この
ような不都合を解消することができるのであり、
排ガス導入量制御機構により主経路部分から熱交
換部への排ガス導入量及びバイパス経路部分から
排ガス浄化部への排ガス導入量を制御することに
よつて、排ガス発生源から排出される排ガス量又
は回収熱量に対する熱負荷の変動に良好に対処し
得るのである。
In the waste heat recovery system of the second invention, such inconveniences can be eliminated,
By controlling the amount of exhaust gas introduced from the main path section to the heat exchange section and the amount of exhaust gas introduced from the bypass path section to the exhaust gas purification section using the exhaust gas introduction amount control mechanism, the amount of exhaust gas discharged from the exhaust gas generation source or recovery can be controlled. This makes it possible to cope well with variations in heat load relative to the amount of heat.

すなわち、通常は、排ガスを熱回収部に導入さ
せておき、排ガスが流動化開始点以下となると、
排ガスを排ガス浄化部に導入させる。この排ガス
浄化部において、排ガスが終末速度を超えるよう
になると、再び排ガスを熱回収部に導入させる。
さらに、この熱回収部においても、排ガスが終末
速度を超えるようになると、排ガスの一部を排ガ
ス浄化部にも導入させる。
That is, normally, the exhaust gas is introduced into the heat recovery section, and when the exhaust gas becomes below the fluidization starting point,
The exhaust gas is introduced into the exhaust gas purification section. In this exhaust gas purification section, when the exhaust gas exceeds the terminal velocity, the exhaust gas is introduced into the heat recovery section again.
Furthermore, in this heat recovery section as well, when the exhaust gas exceeds the terminal velocity, a portion of the exhaust gas is also introduced into the exhaust gas purification section.

このように排ガスの熱回収部及び排ガス浄化部
への導入量を制御することによつて、排ガス発生
源から排出される排ガス量の変動に拘らず、流動
層を良好に形成・維持できるのである。また、同
様にして、廃熱回収量を調整し得て、熱負荷部で
の負荷変動に対処することができる。例えば、熱
負荷が減少した場合には、排ガスの全部又は一部
を排ガス浄化部に導入させるのである。
By controlling the amount of exhaust gas introduced into the heat recovery section and the exhaust gas purification section in this way, it is possible to form and maintain a fluidized bed in good condition regardless of fluctuations in the amount of exhaust gas discharged from the exhaust gas generation source. . Further, in the same manner, the amount of waste heat recovery can be adjusted, and load fluctuations in the heat load section can be coped with. For example, when the heat load decreases, all or part of the exhaust gas is introduced into the exhaust gas purification section.

なお、排ガスが廃熱回収部を通過する間に熱回
収作用及び排ガス浄化作用が、また排ガス浄化部
を通過することによつて排ガス浄化作用が行われ
ることは、第1発明のシステムにおけると同様で
ある。
Note that the heat recovery action and the exhaust gas purification action are performed while the exhaust gas passes through the waste heat recovery section, and the exhaust gas purification action is performed when the exhaust gas passes through the exhaust gas purification section, as in the system of the first invention. It is.

(実施例) 以下、本発明の構成を第1図〜第4図に示す各
実施例に基づいて具体的に説明する。
(Example) Hereinafter, the structure of the present invention will be specifically explained based on each example shown in FIGS. 1 to 4.

第1図に示す第1実施例のシステムにおいて、
1は例えばON、OFF制御されるボイラ、エンジ
ン、ガスタービン等の排ガス発生源、2は煙突、
3は排ガス発生源1から煙突2に至る排ガス排出
経路、4は排ガス排出経路3に介設された流動層
熱交換器、5は暖房設備、給湯設備等の熱負荷部
である。
In the system of the first embodiment shown in FIG.
1 is an exhaust gas generation source such as a boiler, engine, or gas turbine that is controlled ON/OFF; 2 is a chimney;
Reference numeral 3 designates an exhaust gas discharge path from the exhaust gas generation source 1 to the chimney 2, 4 a fluidized bed heat exchanger installed in the exhaust gas discharge path 3, and 5 a heat load section such as heating equipment or hot water supply equipment.

流動層熱交換器4は、本体容器6の上下部に設
けた排ガス出入口6a,6bを排ガス排出経路3
に接続し、本体容器6に廃熱回収媒体層7を内装
すると共に、該層7内に廃熱回収管8を導いてな
る。
The fluidized bed heat exchanger 4 connects exhaust gas inlets and outlets 6a and 6b provided at the upper and lower parts of the main body container 6 to an exhaust gas exhaust path 3.
A waste heat recovery medium layer 7 is installed inside the main body container 6, and a waste heat recovery pipe 8 is guided into the layer 7.

廃熱回収媒体層7は、排ガス10に含まれる窒
素酸化物等の各種有害物質を浄化しうる複数種の
粒状セラミツク触媒を多孔板11上に積層載置し
て構成されており、排ガス入口6bから排ガス出
口6aへと本体容器6内を通過する排ガス10に
よつて流動層を形成する。セラミツク触媒は公知
であり、種々のものがあるが、前記廃熱回収媒体
層7の構成材としては、前述したように、排ガス
10に含まれる各種有害物質の性状に応じてこれ
らを浄化するに最適のものを使用する。また、セ
ラミツク触媒の平均粒径は、従来の流動層熱交換
器において使用されている廃熱回収媒体と同様に
0.2〜3.0mm程度としておくことが望ましい。
The waste heat recovery medium layer 7 is constructed by stacking a plurality of types of granular ceramic catalysts on a perforated plate 11, which can purify various harmful substances such as nitrogen oxides contained in the exhaust gas 10. A fluidized bed is formed by the exhaust gas 10 passing through the main body container 6 from the exhaust gas outlet 6a to the exhaust gas outlet 6a. Ceramic catalysts are known and there are various types, but as the constituent material of the waste heat recovery medium layer 7, as mentioned above, ceramic catalysts are suitable for purifying various harmful substances contained in the exhaust gas 10 depending on their properties. Use the best one. Additionally, the average particle size of ceramic catalysts is similar to that of waste heat recovery media used in conventional fluidized bed heat exchangers.
It is desirable to keep it at around 0.2 to 3.0 mm.

前記廃熱回収媒体層7は、第2図に示す如く、
上記複数種のセラミツク触媒が混在する単一層と
しても良いし、かかる混在層を熱回収量に応じて
適当数段配置するようにしても良い。或は、各々
が異種のセラミツク触媒からなる複数の単一種セ
ラミツク触媒層を上下複数段に直列配置しても良
い。例えば、第3図に示す如く、廃熱回収媒体層
7を上下3段に分離構成して、第1層7aを煤塵
を燃焼除去する燃焼触媒で、第2層7bをハイド
ロカーボン、一酸化炭素等を燃焼除去する燃焼触
媒で、更に第3層7cを窒素酸化物を還元除去す
るセラミツク触媒で夫々構成する。この場合、排
ガス10が各層7a,7b,7cを通過すること
によつて、これに含まれている各種有害物質が順
次除去されることになり、特に第1層7aはフイ
ルタとしての機能をも果たすことになる。勿論、
単一セラミツク触媒層の段数は、排ガスに含まれ
る有害物質の種類、必要とする触媒の種類、触媒
の活性温度範囲等に応じて適宜設定しておくもの
である。
The waste heat recovery medium layer 7, as shown in FIG.
It may be a single layer in which the plurality of types of ceramic catalysts described above are mixed, or such mixed layers may be arranged in an appropriate number of stages depending on the amount of heat recovery. Alternatively, a plurality of single-type ceramic catalyst layers, each consisting of a different type of ceramic catalyst, may be arranged in series in a plurality of upper and lower stages. For example, as shown in FIG. 3, the waste heat recovery medium layer 7 is separated into upper and lower three stages, and the first layer 7a is a combustion catalyst that burns and removes soot and dust, and the second layer 7b is a hydrocarbon and carbon monoxide layer. The third layer 7c is composed of a ceramic catalyst that reduces and removes nitrogen oxides. In this case, as the exhaust gas 10 passes through each layer 7a, 7b, and 7c, various harmful substances contained therein are sequentially removed, and in particular, the first layer 7a also functions as a filter. It will be fulfilled. Of course,
The number of stages of the single ceramic catalyst layer is appropriately set depending on the type of harmful substances contained in the exhaust gas, the type of catalyst required, the active temperature range of the catalyst, etc.

なお、前記廃熱回収管8は、熱負荷部5との間
で適宜の熱媒体を循環させる循環閉回路9の一部
を構成する伝熱管である。また、前記多孔板11
はセラミツク触媒層7を保持するためのものであ
ると共に、排ガス10による流動層形成を良好に
行わしめるべく、流動層7に流入する排ガス10
を均一に分散させるためのものでもある。
Note that the waste heat recovery pipe 8 is a heat transfer pipe that constitutes a part of a circulation closed circuit 9 that circulates an appropriate heat medium between the heat load section 5 and the heat load section 5 . Moreover, the porous plate 11
is for holding the ceramic catalyst layer 7, and in order to properly form a fluidized bed by the exhaust gas 10, the exhaust gas 10 flowing into the fluidized bed 7 is
It is also used to uniformly disperse the

また、第4図に示す第2実施例のシステムにあ
つては、排ガス排出経路3の一部を両端で合流す
る主経路部分3aとバイパス経路部分3bとに分
岐構成すると共に、流動層熱交換器4を熱交換部
4aと排ガス浄化部4bとに分割構成して、各部
4a,4bを各経路部分3a,3bに介装してあ
る。すなわち、本体容器6を隔壁12で熱交換部
4aと排ガス浄化部4bとに区画し、各部4a,
4bに夫々廃熱回収媒体層13a及び排ガス浄化
媒体層13bを内装し、廃熱媒体層13a内に廃
熱回収管8を導いてある。各層13a,13bの
構成は第1実施例における廃熱回収媒体層7と同
一である。廃熱回収媒体層13aは、主経路部分
3aを通過する排ガス10によつて流動せしめら
れて流動層を形成し、熱回収作用及び排ガス浄化
作用を行うものであり、また排ガス浄化媒体層1
3bは、バイパス経路部分3bを通過する排ガス
10によつて流動層せしめられて流動層を形成
し、排ガス浄化作用を行うものである。なお、排
ガス浄化媒体層13bは、それを良好に流動させ
るに必要な排ガス量が廃熱回収媒体層13aにお
いて必要とされる排ガス量よりも少なくて済むよ
うに構成されている。具体的には、排ガス浄化媒
体層13bを廃熱回収媒体層13aよりも小容量
のものとしている。各層13a,13bは、前記
廃熱回収媒体層7と同様に、第2図又は第3図に
例示する如き構成としておくことができること勿
論である。また、排ガス発生源1は、比例制御さ
れるボイラ等である。
In addition, in the system of the second embodiment shown in FIG. 4, a part of the exhaust gas discharge path 3 is configured to branch into a main path portion 3a and a bypass path portion 3b that merge at both ends, and a fluidized bed heat exchange The vessel 4 is divided into a heat exchange section 4a and an exhaust gas purification section 4b, and each section 4a, 4b is interposed in each path section 3a, 3b. That is, the main body container 6 is divided by the partition wall 12 into a heat exchange section 4a and an exhaust gas purification section 4b, and each section 4a,
A waste heat recovery medium layer 13a and an exhaust gas purification medium layer 13b are installed inside the waste heat recovery medium layer 13a and an exhaust gas purification medium layer 13b, respectively, and a waste heat recovery pipe 8 is guided into the waste heat medium layer 13a. The configuration of each layer 13a, 13b is the same as the waste heat recovery medium layer 7 in the first embodiment. The waste heat recovery medium layer 13a is made to flow by the exhaust gas 10 passing through the main path portion 3a to form a fluidized bed, and performs a heat recovery action and an exhaust gas purification action.
3b is a fluidized bed formed by the exhaust gas 10 passing through the bypass path portion 3b to form a fluidized bed and perform an exhaust gas purifying action. Note that the exhaust gas purification medium layer 13b is configured such that the amount of exhaust gas required to flow it well is smaller than the amount of exhaust gas required in the waste heat recovery medium layer 13a. Specifically, the exhaust gas purification medium layer 13b has a smaller capacity than the waste heat recovery medium layer 13a. It goes without saying that each layer 13a, 13b can have a configuration as illustrated in FIG. 2 or 3, similarly to the waste heat recovery medium layer 7. Further, the exhaust gas generation source 1 is a proportionally controlled boiler or the like.

さらに、主経路部分3aから熱交換部4aへの
排ガス導入量及びバイパス経路部分3bから排ガ
ス浄化部4bへの排ガス導入量を制御する排ガス
導入量制御機構14を配設してある。この排ガス
導入量制御機構14は、主経路部分3aに介設し
た第1ダンパ15aと、バイパス経路部分3bに
介設した第2ダンパ15bと、廃熱回収媒体層1
3aの上下部における圧力差を検出する第1差圧
検出器16aと、排ガス浄化媒体層13bの上下
部における圧力差を検出する第2差圧検出器16
bと、各検出器16a,16bによる検出値に基
づいて各ダンパ15a,15bの開度を制御する
制御装置17とからなる。すなわち、排ガス量の
変化を圧力損失の変化として検出し(例えば、排
ガス量が減少すると、層13a,13bの上下部
における圧力差つまり圧力損失が小さくなる)、
これに基づいて、前述した如く熱回収部4a又は
排ガス浄化部4bへの排ガス導入量を制御するの
である。かかる制御は、熱負荷部5での熱負荷変
動に基づいても行うことができること勿論であ
る。
Further, an exhaust gas introduction amount control mechanism 14 is provided to control the amount of exhaust gas introduced from the main path portion 3a to the heat exchange portion 4a and the amount of exhaust gas introduced from the bypass path portion 3b to the exhaust gas purification portion 4b. This exhaust gas introduction amount control mechanism 14 includes a first damper 15a provided in the main path portion 3a, a second damper 15b provided in the bypass path portion 3b, and a waste heat recovery medium layer 1.
A first differential pressure detector 16a detects the pressure difference between the upper and lower portions of the exhaust gas purification medium layer 13b, and a second differential pressure detector 16 detects the pressure difference between the upper and lower portions of the exhaust gas purification medium layer 13b.
b, and a control device 17 that controls the opening degree of each damper 15a, 15b based on the detected value by each detector 16a, 16b. That is, a change in the amount of exhaust gas is detected as a change in pressure loss (for example, when the amount of exhaust gas decreases, the pressure difference between the upper and lower parts of the layers 13a and 13b, that is, the pressure loss becomes smaller),
Based on this, the amount of exhaust gas introduced into the heat recovery section 4a or the exhaust gas purification section 4b is controlled as described above. Of course, such control can also be performed based on heat load fluctuations in the heat load section 5.

なお、第2実施例のシステムにおいて、排ガス
浄化媒体層13b内に低熱負荷用の廃熱回収管
(図示せず)を導いて、排ガス10が該層13b
を通過するときにも小容量の熱交換を行いうるよ
うに構成しておいても良い。
In the system of the second embodiment, a waste heat recovery pipe (not shown) for low heat load is introduced into the exhaust gas purification medium layer 13b, and the exhaust gas 10 is transferred to the layer 13b.
It may be configured so that a small amount of heat exchange can be performed even when passing through.

(発明の効果) 本発明の廃熱回収システムにあつては、流動層
熱交換器を、流動層構成材として排ガス浄化作用
のあるセラミツク触媒を使用することによつて、
廃熱回収機能及び排ガス浄化機能をも備えたもの
に構成したから、従来システムにおける如く流動
層熱交換器以外に排ガス浄化用の装置を別途設け
ておく必要がなく、したがつてシステム全体の構
造を極めて簡略化、小形化することができ、メン
テナンスも容易となる。しかも、セラミツク触媒
は常に流動していて自浄作用があるため、クリー
ニング装置を設けておかずとも、煤等の付着によ
る性能劣化を招く虞れがない。また、除去しよう
とする有害物質の種類、性状に応じてセラミツク
触媒を適当に選択しておくことによつて、システ
ム構造、配置を変えることなく、如何なる種類の
排ガスをも浄化することができ、汎用性に富む。
(Effects of the Invention) In the waste heat recovery system of the present invention, by using a fluidized bed heat exchanger as a fluidized bed constituent material, a ceramic catalyst having an exhaust gas purifying effect,
Since it is configured to have a waste heat recovery function and an exhaust gas purification function, there is no need to separately install a device for exhaust gas purification other than the fluidized bed heat exchanger as in conventional systems, and the overall system structure is therefore can be extremely simplified and miniaturized, and maintenance is also easy. In addition, since the ceramic catalyst is constantly flowing and has a self-cleaning effect, there is no need to provide a cleaning device and there is no risk of performance deterioration due to adhesion of soot, etc. In addition, by appropriately selecting a ceramic catalyst according to the type and properties of the harmful substances to be removed, any type of exhaust gas can be purified without changing the system structure or layout. Full of versatility.

さらに、第2発明の廃熱回収システムにあつて
は、上記効果に加えて、排ガスの発生量若しくは
熱負荷の変動に拘らず、常に良好な流動層を維持
して廃熱回収及び排ガス浄化をより効率良く行わ
しめることができる。
Furthermore, in addition to the above-mentioned effects, the waste heat recovery system of the second invention always maintains a good fluidized bed to recover waste heat and purify exhaust gas, regardless of fluctuations in the amount of exhaust gas generated or heat load. This can be done more efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る廃熱回収システムの第1
実施例を示す概略縦断側面図、第2図は同要部の
拡大図、第3図は同要部の変形例を示す第2図同
様の拡大図、第4図は第2実施例を示す廃熱回収
システムの概略縦断側面図である。 1……排ガス発生源、3……排ガス排出経路、
3a……主経路部分、3b……バイパス経路部
分、4……流動層熱交換器、4a……廃熱回収
部、4b……排ガス浄化部、5……熱負荷部、
7,13a……廃熱回収媒体層、8……廃熱回収
管、10……排ガス、13b……排ガス浄化媒体
層、14……排ガス導入量制御機構、15a,1
5b……ダンパ、16a,16b……差圧検出
器、17……制御装置。
Figure 1 shows the first diagram of the waste heat recovery system according to the present invention.
A schematic longitudinal sectional side view showing the embodiment, FIG. 2 is an enlarged view of the same essential parts, FIG. 3 is an enlarged view similar to FIG. 2 showing a modification of the essential parts, and FIG. 4 shows the second embodiment. FIG. 2 is a schematic longitudinal sectional side view of the waste heat recovery system. 1...Exhaust gas generation source, 3...Exhaust gas emission route,
3a... Main route part, 3b... Bypass route part, 4... Fluidized bed heat exchanger, 4a... Waste heat recovery section, 4b... Exhaust gas purification section, 5... Heat load section,
7, 13a...Waste heat recovery medium layer, 8...Waste heat recovery pipe, 10...Exhaust gas, 13b...Exhaust gas purification medium layer, 14...Exhaust gas introduction amount control mechanism, 15a, 1
5b...Damper, 16a, 16b...Differential pressure detector, 17...Control device.

Claims (1)

【特許請求の範囲】 1 排ガス発生源から導かれた排ガスの排出経路
に、排ガスによつて流動せしめられて流動層を形
成する廃熱回収媒体層を内装すると共に該層内に
廃熱回収管を導いてなる、流動層熱交換器を介設
し、前記廃熱回収媒体層を、排ガス中の窒素酸化
物、ハイドロカーボン、一酸化炭素等の各種有害
物質を浄化除去しうる、セラミツクに白金、ロジ
ウム又はバナジウムを担持させたもの等の複数種
の粒状セラミツク触媒でもつて構成して、排ガス
をこれが廃熱回収媒体層を通過する間に浄化せし
めるようにしたことを特徴とする廃熱回収システ
ム。 2 前記廃熱回収媒体層が、複数種のセラミツク
触媒が混在する単一層であることを特徴とする、
特許請求の範囲第1項に記載する廃熱回収システ
ム。 3 前記廃熱回収媒体層が、各々が異種のセラミ
ツク触媒からなる複数の単一種セラミツク触媒層
を排ガスの通過方向に沿つて直列配置してなるも
のであることを特徴とする、特許請求の範囲第1
項に記載する廃熱回収システム。 4 排ガス発生源から導かれた排ガス排出経路の
一部を両端で合流する主経路部分とバイパス経路
部分とに分岐構成し、排ガス排出経路に、主経路
部分を通過する排ガスによつて流動せしめられて
流動層を形成する廃熱回収媒体層を内装すると共
に該層内に廃熱回収管を導いてなる熱交換部と、
バイパス経路部分を通過する排ガスによつて流動
せしめられて流動層を形成する排ガス浄化媒体層
を内装してなる排ガス浄化部と、からなる流動層
熱交換器を介設すると共に、主経路部分から熱交
換部への排ガス導入量及びバイパス経路部分から
排ガス浄化部への排ガス導入量を制御する排ガス
導入量制御機構を配設し、前記廃熱回収媒体層及
び排ガス浄化媒体層を、排ガス中の窒素酸化物、
ハイドロカーボン、一酸化炭素等の各種有害物質
を浄化除去しうる、セラミツクに白金、ロジウム
又はバナジウムを担持させたもの等の複数種の粒
状セラミツク触媒でもつて構成して、排ガスをこ
れが廃熱回収媒体層又は排ガス浄化媒体層を通過
する間に浄化せしめるようにしたことを特徴とす
る廃熱回収システム。 5 前記廃熱回収媒体層が、複数種のセラミツク
触媒が混在する単一層であることを特徴とする、
特許請求の範囲第4項に記載する廃熱回収システ
ム。 6 前記排ガス浄化媒体層が、複数種のセラミツ
ク触媒が混在する単一層であることを特徴とす
る、特許請求の範囲第4項又は第5項記に記載す
る廃熱回収システム。 7 前記廃熱回収媒体層が、各々が異種のセラミ
ツク触媒からなる複数の単一種セラミツク触媒層
を排ガスの通過方向に沿つて直列配置したもので
あることを特徴とする、特許請求の範囲第4項又
は第6項に記載する廃熱回収システム。 8 前記排ガス浄化媒体層が、各々が異種のセラ
ミツク触媒からなる複数の単一種セラミツク触媒
層を排ガスの通過方向に沿つて直列配置したもの
であることを特徴とする、特許請求の範囲第4項
又は第5項に記載する廃熱回収システム。
[Claims] 1. A waste heat recovery medium layer that is made to flow by the exhaust gas to form a fluidized bed is installed in the exhaust path of the exhaust gas led from the exhaust gas generation source, and a waste heat recovery pipe is installed in the layer. A fluidized bed heat exchanger is installed in which the waste heat recovery medium layer is made of ceramic and platinum, which can purify and remove various harmful substances such as nitrogen oxides, hydrocarbons, and carbon monoxide in the exhaust gas. A waste heat recovery system comprising a plurality of types of granular ceramic catalysts, such as those carrying rhodium or vanadium, to purify exhaust gas while it passes through a waste heat recovery medium layer. . 2. The waste heat recovery medium layer is a single layer in which multiple types of ceramic catalysts are mixed.
A waste heat recovery system according to claim 1. 3. Claims characterized in that the waste heat recovery medium layer is formed by arranging a plurality of single type ceramic catalyst layers in series along the exhaust gas passage direction, each layer comprising a different type of ceramic catalyst. 1st
The waste heat recovery system described in Section. 4 A part of the exhaust gas exhaust route led from the exhaust gas generation source is configured to branch into a main route part and a bypass route part that join at both ends, and the exhaust gas passing through the main route part is made to flow into the exhaust gas exhaust route. a heat exchange section having a waste heat recovery medium layer therein which forms a fluidized bed and guiding a waste heat recovery pipe into the layer;
A fluidized bed heat exchanger is interposed between the exhaust gas purification section, which is equipped with an exhaust gas purification medium layer that is made to flow by the exhaust gas passing through the bypass path section to form a fluidized bed, and An exhaust gas introduction amount control mechanism is installed to control the amount of exhaust gas introduced into the heat exchange section and the amount of exhaust gas introduced into the exhaust gas purification section from the bypass path section, and the waste heat recovery medium layer and the exhaust gas purification medium layer are nitrogen oxides,
It is composed of multiple types of granular ceramic catalysts, such as ceramics supported with platinum, rhodium, or vanadium, which can purify and remove various harmful substances such as hydrocarbons and carbon monoxide, and converts exhaust gas into a waste heat recovery medium. A waste heat recovery system characterized in that the waste heat is purified while passing through a layer or an exhaust gas purification medium layer. 5. The waste heat recovery medium layer is a single layer in which multiple types of ceramic catalysts are mixed.
A waste heat recovery system according to claim 4. 6. The waste heat recovery system according to claim 4 or 5, wherein the exhaust gas purification medium layer is a single layer in which a plurality of types of ceramic catalysts are mixed. 7. Claim 4, characterized in that the waste heat recovery medium layer is a plurality of single-type ceramic catalyst layers, each of which is made of a different type of ceramic catalyst, arranged in series along the exhaust gas passage direction. or the waste heat recovery system described in paragraph 6. 8. Claim 4, wherein the exhaust gas purification medium layer is a plurality of single-type ceramic catalyst layers, each of which is made of a different type of ceramic catalyst, arranged in series along the exhaust gas passage direction. or the waste heat recovery system described in Section 5.
JP61276335A 1986-11-19 1986-11-19 Waste-heat recovery system Granted JPS63129201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61276335A JPS63129201A (en) 1986-11-19 1986-11-19 Waste-heat recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61276335A JPS63129201A (en) 1986-11-19 1986-11-19 Waste-heat recovery system

Publications (2)

Publication Number Publication Date
JPS63129201A JPS63129201A (en) 1988-06-01
JPH0520641B2 true JPH0520641B2 (en) 1993-03-22

Family

ID=17568009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61276335A Granted JPS63129201A (en) 1986-11-19 1986-11-19 Waste-heat recovery system

Country Status (1)

Country Link
JP (1) JPS63129201A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2655979B2 (en) * 1992-12-21 1997-09-24 三菱重工業株式会社 Heat transfer tube arrangement method for fluidized bed boiler

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840418A (en) * 1981-09-03 1983-03-09 Asahi Glass Co Ltd Heat recovering method for incinerator
JPS59231392A (en) * 1983-06-14 1984-12-26 Mitsui Eng & Shipbuild Co Ltd Fluidized bed type heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026241Y2 (en) * 1980-12-03 1985-08-07 川崎重工業株式会社 Structure of bulkhead heat transfer surface of fluidized bed boiler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840418A (en) * 1981-09-03 1983-03-09 Asahi Glass Co Ltd Heat recovering method for incinerator
JPS59231392A (en) * 1983-06-14 1984-12-26 Mitsui Eng & Shipbuild Co Ltd Fluidized bed type heat exchanger

Also Published As

Publication number Publication date
JPS63129201A (en) 1988-06-01

Similar Documents

Publication Publication Date Title
US5567394A (en) SOx , NOx , and particulate removal system
EP0814895B1 (en) Method and apparatus for treatment of exhaust streams
KR930000473B1 (en) Exhaust emission purifier for diesel engines
US4663300A (en) Pollution control catalyst
CN101977668A (en) Flue gas purification plant
US20120195802A1 (en) Cold Selective Catalytic Reduction
CN102472136A (en) Method and apparatus for regenerating a particle filter arranged in the exhaust gas tract of an internal combustion engine
CN106237751A (en) A kind of grain bed dedusting catalytic unit
DK164490B (en) Method for selective elimination of NOx from flue gases
JP2004530538A (en) Reactor and method for reducing nitrogen oxides content of gas
US4836988A (en) Apparatus for removal of nitrogen oxides from flue gas
JPH08117559A (en) Denitration apparatus of coal burning boiler
JPH0520641B2 (en)
JPH10192657A (en) Catalyst regeneration
JP2006233939A (en) Exhaust emission control filter and device
JP3002452B1 (en) High efficiency flue gas denitration system
US4504450A (en) Sulfur oxides and nitrogen oxides gas treating process
JP2789871B2 (en) Catalyst purification device
JPS5987220A (en) Exhaust gas purifying device in diesel engine
JP2549482Y2 (en) Exhaust gas treatment device
WO1991006361A1 (en) A method of purifying air from combustible pollutants and an apparatus for performing the method
JPH09184417A (en) Soot particles remover for diesel engine
Chu et al. Improved SOx, NOx, and particulate removal system
JPH11137968A (en) Heat exchange-type denitrification device
JPH10121946A (en) Exhaust emission control device for diesel engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees